FINAL

WORK PLAN/UNIFORM FEDERAL POLICY QUALITY ASSURANCE PROJECT PLAN

FOR A TREATABILITY STUDY AT FORMER TITAN 1-A MISSILE FACILITY, LINCOLN, CALIFORNIA

FORMERLY USED DEFENSE SITE (FUDS) HAZARDOUS, TOXIC AND RADIOACTIVE WASTE (HTRW) PROJECT J09CA1108-01

Contract Number: W91238-21-D-0008 Task Order No. W9123823F0044

PREPARED FOR: U.S. ARMY CORPS OF ENGINEERS, SACRAMENTO DISTRICT

FEBRUARY 2025

Prepared by: **PARSONS** 999 18th St., Suite N1555 Denver, CO 80202

<u>Title Page:</u>

FINAL WORK PLAN / UNIFORM FEDERAL POLICY – QUALITY ASSURANCE PROJECT PLAN for A TREATABILITY STUDY at FORMER TITAN 1-A MISSILE FACILITY, LINCOLN, CALIFORNIA

FORMERLY USED DEFENSE SITE (FUDS) HAZARDOUS, TOXIC AND RADIOACTIVE WASTE (HTRW) PROJECT J09CA1108-01

Prepared for: U.S. Army Corps of Engineers, Sacramento District

Prepared under: Contract No. W91238-21-D-0008 Task Order W9123823F0044

February 2025

Prepared by: Parsons Federal Solutions, Inc. 999 18th St., Suite N1555 Denver, CO 80202

Technical Review Signature Sheet

The following technical specialists have participated in the production and review of the relevant parts of this document and are satisfied with its technical adequacy regarding their fields of expertise.

Discipline	Reviewer, Title	Signature	Date
Technical Director	Mark Rigby, Ph.D.	My	02/10/2025
Technical Reviewer	Cynthia Oppenheimer, professional geologist (PG)	Cynthio Oppunheimer	02/10/2025

Approval signatures are shown on Worksheets #1 & 2.

Table of Contents

Techni	cal Review Signature Sheet	i
List of	Tables	v
List of	Figures	vii
List of	Appendices	viii
Acrony	ms and Abbreviations	. ix
Introdu	action	xiii
Works	heets #1 & 2: Title and Approval Page	. 1
1.1	Project Identifying Information	.1
1.2	Concurring Signatures	.1
Works	heets #3 & 5: Project Organization and UFP-QAPP Distribution	. 2
Works	heets #4, 7, & 8: Personnel Qualifications and Sign-off Sheet	. 3
Works	heet #6: Communication Pathways and Procedures	. 7
Works	heet #9: Project Planning Session Summary	11
9.1	Project Planning Session Summary	11
Works	heet #10: Conceptual Site Model	12
10.1	Overview	12
10.2	Site History and Setting	12
10.3	Site Geology	14
	10.3.1 Regional Geology	14
10.1	10.3.2 Site-specific Geological Conditions	14
10.4	Site Hydrogeology	15
10.5	Site Climate	16
10.6		16
10.7	10.7.1 Historical or Cultural Resources	17
	10.7.2 Summary of Previous Investigations	17
10.8	Exposure Profile	18
10.0	10.8.1 Potential Receptors and Land Use	18
	10.8.2 Potential Source and Distribution of Contaminants	19
	10.8.3 Migration and Exposure Pathways	19
Works	heet #11: Project Data Quality Objectives	21
11.1	Step 1 - State the Problem	21
11.2	Step 2 - Identify the Goals of the Study	21
11.3	Step 3 - Identify Information Inputs	22
11.4	Step 4 - Define the Boundaries of the Study	22
11.5	Step 5 - Develop the Analytic Approach (Decision Rules)	23
	11.5.1 Groundwater Monitoring	23
	11.5.2 Montoring Well Depth and Soil Samples	24

	11.5.3 Amendr	ment Injections	. 24
11.6	Step 6 - Speci	fy Performance or Acceptance Criteria	.25
11.7	Step 7 - Devel	op the Plan for Obtaining Data (Technical Approach Summary)	.25
Worksl	neet #12: Mea	surement Performance Criteria	.26
12.1	MPC for Field-	Related Tasks	.26
12.2	Measurement	Performance Criteria for Sample Collection	.29
Works	neet #13: Seco	ondary Data Uses and Limitations	. 39
Works	neet #14 & 16	: Project Tasks and Schedule	.42
14.1	Definable Fea	tures of Work	.42
14.2	Project Sched	ule	.44
Works	neet #15: Proje Quantitation L	ect Screening Levels and Laboratory-Specific Detection / .imits	.45
Works	neet #17: Sam	pling Design and Rationale	. 55
17.1	Groundwater	Sampling Design/Rationale	.55
17.2	Soil Sampling	Design/Rationale	.56
17.3	Injection Loca	tion design/rationale	.56
17.4	REporting		.56
Worksl	neet #18: Sam	pling Locations and Methods	.57
18.1	Mobilization		.57
18.2	Vegetation Cle	earance	.57
18.3	Utility Clearan	ce	.57
18.4	Fieldwork Con	siderations	.58
	18.4.1 Field Do	ocumentation	. 58
18.5	Soil Boring an	d Monitoring Well Installation and Amendment Injections	.58
	18.5.1 Soil Boi	rings and Monitoring Wells	. 58
10.0	18.5.2 Amendi	ment Injections	. 59
18.6	Sampling	nnling	.61
	18.0.1 SUII SUI 18.6.2 Baselin	e Groundwater Sampling	. 01 61
	18.6.3 Perform	ance Monitoring	. 62
18.7	Survey Requir	ements	.65
18.8	Waste Manag	ement	.65
18.9	Biological Miti	gations	.65
18.10	Archaeologica	I Requirements (Inadvertent Discovery Clause)	.66
	18.10.1	Procedures for Discovery of Cultural Resources	. 66
	18.10.2	Procedures for Discovery of Human Remains	. 67
Works	neets #19 & 3	0: Sample Containers, Preservation, and Hold Times	. 68
Works	neet #20: Field	d Quality Control	.72
Works	neet #21: Field	d Standard Operating Procedures	.74
Works	neet #22: Field	Equipment Calibration, Maintenance, Testing, and Inspection	.75

Works	heet #23: Analytical Standard Operating Procedures	76
Works	heet #24: Analytical Instrument Calibration	80
Works	heet #25: Analytical Instrument and Equipment Maintenance, Testing, and Inspection	89
Works	heets #26 & 27: Sample Handling, Custody, and Disposal	96
26.1	Sample Numbering	.96
26.2	Sample Handling	.97
26.3	Sample Labeling	.98
26.4	Field Sample Custody Procedures (Sample Collection, Packaging, Shipment, and Delivery to Laboratory)	.98
26.5	Laboratory Sample Custody Procedures (Receipt of Samples, Archiving, Disposal)	99
26.6	Sample Identification Procedures.	.99
26.7	Chain-of-Custody Procedures	.00
26.8	Non-Conformance	.00
26.9	Laboratory Sample Handling Procedures 1	.00
Works	heet #28: Analytical Quality Control and Corrective Action1	.01
Works	heet #29: Project Documents and Records1	.15
29.1	Project Documents and Records for field-Related Tasks1	.15
29.2	Project Documents and Records for Analytical-Related Tasks	.17
	29.2.1 Analytical Records	117
Works	heet #31, 32, & 33: Assessments and Corrective Action	.20
31.1	Planned Project Assessments	.20
31.2	Assessment Findings and Corrective Action Responses	.20
31.3 Madad	Quality Assurance Management Reports	.20
WORKS	neet #34: Data verification & validation inputs1	.28
Works	heet #35: Data Verification Procedures1	.31
Works	heet #36: Data Validation Procedures1 Data Validation	. 33 .34
Works	heet #37: Usability Assessment1	.36
37.1	Usability Assessment for Field-Related Data 1	.36
	37.1.1 Summary of Usability Assessment Processes	136
27.0	37.1.2 Usability Assessment Documentation for Field Work	137
31.2	USADIIILY ASSESSMENT FOR ANALYLICAL Data	. <u>31</u>
	37.2.2 Dereannel Responsible for Performing Leability Assessment	130
	37.2.3 Impacts of Qualified Data and Plan Deviations	130
	37.2.4 Usability Assessment Documentation	139
Refere	nces1	.40

LIST OF TABLES

Table 3.1 – UFP-QAPP Recipients	2
Table 4.1 – Key Project Personnel	3
Table 4.2 – Other Project Personnel	5
Table 6.1 - Communication Pathways and Procedures	7
Table 12.1 – Definable Features of Work	. 26
Table 12.2.1 – Measurement Performance Criteria for Analysis of Volatiles in Soil and Groundwater	. 30
Table 12.2.2 – Measurement Performance Criteria for Analysis of Metals in Groundwater	. 32
Table 12.2.3 – Measurement Performance Criteria for Analysis of Dissolved Gases in Groundwater	. 33
Table 12.2.4 – Measurement Performance Criteria for Analysis of Anions in Groundwater	. 34
Table 12.2.5 – Measurement Performance Criteria for Analysis of Alkalinity in Groundwater	. 35
Table 12.2.6 - Measurement Performance Criteria for Analysis of Hardness in Groundwater	. 36
Table 12.2.7 – Measurement Performance Criteria for Analysis of Total Organic Carbon (TOC) in Groundwater	. 37
Table 12.2.8 – Measurement Performance Criteria for VOCs and Alcohol Tracers in PFM Media	. 38
Table 13.1 – Secondary Data Uses and Limitations	. 39
Table 14.1 – Definable Features of Work and Associated Tasks	. 42
Table 15.1 – Reference Levels and Evaluation Table: Water, VOCs (8260C)	. 46
Table 15.2 - Reference Levels and Evaluation Table: Water, Metals (6010C)	.47
Table 15.3 – Reference Levels and Evaluation Table: Water, Dissolved Gases (RSK-175)	48
Table 15.4 – Reference Levels and Evaluation Table: Water, Anions (9056A): Sulfate and Nitrate	. 49
Table 15.5 – Reference Levels and Evaluation Table: Water, Alkalinity (SM 2320B)	.50
Table 15.6 – Reference Levels and Evaluation Table: Water, Hardness (SM 2340C)	.51
Table 15.7 – Reference Levels and Evaluation Table: Water, Total Organic Carbon (9060A)	.52
Table 15.8 – Reference Levels and Evaluation Table: Soil, VOCs (8260C)	.53
Table 15.9 – Reference Levels and Evaluation Table: PFM, VOCs (8260C)	.54
Table 18.1 – Proposed Sampling Locations and Methods	. 63
Table 19.1 – EMAX: Sample Containers, Preservation, and Hold Times: Groundwater and Soil Samples	. 68
Table 19.2 – Regenesis: Sample Containers, Preservation, and Hold Times: Soil	. 70
Table 19.3 – EnviroFlux: Sample Containers, Preservation, and Hold Times: PFM Media	.71
Table 20.1 – Field Quality Control Sampling per Sampling Event	. 72
Table 21.1 – Field Standard Operating Procedures	. 74

Table 22.1 -	Field Equipment Calibration, Maintenance, Testing, and Inspection	75
Table 23.1 -	Analytical Standard Operating Procedures: VOCs (8260C)	76
Table 23.2 -	Analytical Standard Operating Procedures: Geochemical Parameters	77
Table 23.3 -	Analytical Standard Operating Procedures: VOCs and Alcohol Tracers in PFM Solid Samples	78
Table 23.4 -	Analytical Standard Operating Procedures (Miscellaneous)	79
Table 24.1 -	Analytical Instrument Calibration: VOCs (8260C)	80
Table 24.2 -	Analytical Instrument Calibration: Geochemical Parameters	83
Table 24.3 -	Analytical Instrument Calibration: Alcohol Tracers	88
Table 25.1 -	Analytical Instrument and Equipment Maintenance, Testing, and Inspection: VOCs	89
Table 25.2 -	Analytical Instrument and Equipment Maintenance, Testing, and Inspection: Geochemical Parameters	92
Table 25.3 -	Analytical Instrument and Equipment Maintenance, Testing, and Inspection: PFM- Volatiles and Alcohol Tracers	95
Table 26.1 -	Responsibilities for Sample Handling, Custody, and Disposal	97
Table 28.1 -	Analytical Quality Control and Corrective Action: Soil and Water, Volatile Organic Compounds	. 101
Table 28.1.1	 Analytical Quality Control and Corrective Action: Water, Volatile Organic Compounds (SW8260C) 	. 104
Table 28.1.2	 Analytical Quality Control and Corrective Action: Soil, Volatile Organic Compounds (SW8260C) 	. 105
Table 28.2 -	Analytical Quality Control and Corrective Action: Water, Dissolved Gases	. 106
Table 28.2.1	- Analytical Quality Control and Corrective Action: Water, Dissolved Gases	. 107
Table 28.3 -	Analytical Quality Control and Corrective Action: Water, Metals	. 108
Table 28.3.1	- Analytical Quality Control and Corrective Action: Water, Metals	. 110
Table 28.4 -	Analytical Quality Control and Corrective Action: Water, Anions	. 111
Table 28.5 -	Analytical Quality Control and Corrective Action: Water, Total Organic Carbon (TOC)	. 112
Table 28.6 -	Analytical Quality Control and Corrective Action: Water, Alkalinity and Hardness	. 113
Table 28.7 -	Analytical Quality Control and Corrective Action: PFM Volatiles and Alcohol Tracers	. 114
Table 29.1 -	Project Documents and Records for Field-Related Tasks	. 115
Table 29.2 -	Analytical Data Deliverables	. 117
Table 29.3 -	Method-Specific Data	. 117
Table 29.4 -	Data Assessment Records	. 118
Table 31.1 -	Planned Project Assessments	. 120
Table 31.2 -	Assessment Findings and Corrective Action Responses	. 125

Table 31.3 – Quality Assurance Management Reports	127
Table 34.1 – Verification and Validation Inputs for Field-Related Tasks	128
Table 34.2 – Verification and Validation Inputs for Analytical-Related Tasks	129
Table 35.1 – Verification Procedures for Field-Related Tasks	131
Table 35.2 - Verification Procedures for Analytical Related Tasks	132
Table 36.1 – Validation Procedures for Field-Related Tasks	133
Table 36.2 – Validation Procedures for Analytical-Related Tasks	133
Table 36.3 – Overview of Analytical Data Validation for All Analytes	134
Table 36.4 – Data Validation Codes and Definitions	135
Table 37.1 – Field Data Completion Checklist	138

LIST OF FIGURES

- Figure Int.1 General Site Location
- Figure Int.2 Site Setting
- Figure Int.3 Historic Site Features
- Figure Int.4 Parcel Ownership
- Figure Int.5 Groundwater Well Locations
- Figure Int.6 Injection Locations
- Figure 3.1 Project Organization Chart
- Figure 10.1 Conceptual Site Exposure Model for Human Receptors
- Figure 10.2 Conceptual Site Exposure Model for Ecological Receptors
- Figure 10.3 Conceptual Site Model
- Figure 10.4 Groundwater Elevations and Contours, 1st Semi-Annual Sampling Event 2024
- Figure 10.5 Trichloroethene and cis-1,2-Dichloroethene in Groundwater, 1st Semi-Annual Sampling Event 2024
- Figure 11.1 Injection Locations
- Figure 18.1 Sampling Route Map

LIST OF APPENDICES

- APPENDIX A Project Schedule
- APPENDIX B Waste Management Plan
- APPENDIX C Meeting Minutes
- APPENDIX D Field SOPs
- APPENDIX E Field Forms
- APPENDIX F Laboratory Accreditation
- APPENDIX G Laboratory SOPs

Acronyms and Abbreviations

>	greater than
≥	greater than or equal to
<	less than
\leq	less than or equal to
%	percent
±	plus, or minus
٥C	degrees Celsius
٥F	degrees Fahrenheit
§	section sign
1Q23	first quarter of 2023
4Q19	fourth quarter of 2019
AFB	Air Force Base
AHA	Activity Hazard Analysis
APP	Accident Prevention Plan
ASTM	ASTM International, formerly American Society for Testing and Materials
B.A.	Bachelor of Arts (degree)
BDI Plus®	Bio-Dechlor Inoculum Plus
BFB	bromofluorobenzene
bgs	below ground surface
BMP	best management practice
B.S.	Bachelor of Science (degree)
BTEX	benzene, toluene, ethylbenzene, and xylenes
CA	California
CAS	Chemical Abstracts Service (number)
CCB	continuing calibration blank
CCV	continuing calibration verification
CDFW	California Department of Fish and Wildlife
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
Church	Roman Catholic Church
cm	centimeter(s)
CoC	chain of custody
COPC	contaminant of potential concern
COR	Contracting Officer's Representative
CSM	conceptual site model
CVRWQCB	Central Valley Regional Water Quality Control Board
DFTPP	decafluorotriphenylphosphine
DL	detection limit
DoD	Department of Defense
DQI	data quality indicator
DQO	data quality objective

DTSC	Department of Toxic Substances Control
DUA	data usability assessment
DUR	Data Usability Report
EAB	enhanced anaerobic bioremediation
EDD	electronic data deliverable
ELAP	Environmental Laboratory Accreditation Program
EM	electromagnetic
EMAX	EMAX Laboratories Inc.
eOAPP	electronic Quality Assurance Project Plan
FD	field duplicate
ft	foot/feet
ft/ft	foot per foot
FUDS	Formerly Used Defense Site
FUDSChem	Formerly Used Defense Sites Chemistry Database
GC	gas chromatography
GCS	geographic coordinate system
GIS	geographic information system
GPR	ground penetrating radar
GPS	global positioning system
H&S	health and safety
HSA	hollow-stem auger
HTRW	hazardous, toxic, and radioactive waste
IC	ion chromatography
ICAL	initial calibration
ICB	initial calibration blank
ICP	Inductive Coupled Plasma
ICP-ES	Inductive Coupled Plasma Emissions Spectrometer
ICV	Initial calibration verification
ICS	interference check solution(s)
IDQTF	Intergovernmental Data Quality Task Force
IDW	investigation-derived waste
ISCR	in situ chemical reduction
IT	IT Corporation
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LIMS	Laboratory Information Management System
LOD	limit of detection
LOQ	limit of quantitation
µg/L	micrograms per liter
MB	method blank
MD	matrix duplicate
mL	milliliter
MLD	most likely descendant
MPC	Measurement Performance Criteria

mph	miles per hour
MRL	method reporting limit
M.S.	Master of Science (degree)
MS ₁	mass spectrometry
MS ₂	matrix spike
MSD	matrix spike duplicate
MW	monitoring well
N/A	not applicable
NA	not available
NAHC	Native American Heritage Commission
NAVD88	North American Vertical Datum of 1988
NCR	Nonconformance Report
NRHP	National Register of Historic Places
OM	oxygen/moisture indicator
PARCC	precision, accuracy, representativeness, comparability, and completeness
Parsons	Parsons Federal Solutions, Inc.
PDF	portable document format
PE	Professional Engineer
PFM	Passive Flux Meter™
PG	Professional Geologist
рН	potential of hydrogen
Ph.D.	Doctor of Philosophy (degree)
PlumeStop®	PlumeStop® Liquid Activated Carbon™
PM	Project Manager
PMP	Project Management Professional
PQLG	Project Quantitation Limit Goals
PQO	project quality objective
PRC	Public Resources Code
PSL	Project Screening Level
PUL	precision utility location
PVC	polyvinyl chloride
QA	quality assurance
QAPP	Quality Assurance Project Plan
QASP	Quality Assurance Surveillance Plan
QC	quality control
QSM	Quality Systems Manual
RCA	root cause analysis
RF	response factor(s)
RI	Remedial Investigation
RPD	relative percent difference
RRT	relative retention times
RSD	relative standard deviation
RT	retention time
S-MicroZVI	Sulfidated-Micro Zero Valent Iron
SDG	sample delivery group

SEDD	staged electronic data deliverable
SOP	standard operating procedure
SQL	structured query language
SSHO	site safety and health officer
SSHP	Site Safety and Health Plan
TBD	to be determined
TCE	trichloroethene
UFP-QAPP	Uniform Federal Policy - Quality Assurance Project Plan
U.S.	United States
USACE	U.S. Army Corps of Engineers
USC	U.S. Code
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
UST	underground storage tank
VOA	volatile organic analysis
VOC	volatile organic compound
WGS84	World Geodetic System 1984
YSI	Yellow Springs Instruments

Introduction

The United States Army Corps of Engineers (USACE), Sacramento District has contracted Parsons Federal Solutions, Inc. (Parsons) to perform a treatability study at the Former Titan 1-A Missile Facility (referred to as "Beale Air Force Base Titan 1-A" in the FUDS Management Information System), located in Placer County, California, Formerly Used Defense Site (FUDS) Property Number J09CA1108, Hazardous, Toxic, and Radioactive Waste (HTRW) project J09CA1108-01 under contract W91238-21-D-0008 (Figures Int.1 and Int.2). This HTRW project is being conducted as part of a Remedial Investigation/Feasibility Study and is regulated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 and the Superfund Amendments and Reauthorization Act of 1986 (42 United States Code [USC] 9601 et seq.), and applicable State requirements.

The Former Titan 1-A Missile Facility is located approximately 1.6 miles east of Lincoln, California in Placer County approximately 20 miles northeast of Sacramento, California (**Figure Int.1**). Construction of the facility began in 1960 and was finished in 1962. Once construction was finished, the facility consisted of three 160-foot-deep missile silos and support structures (**Figure Int.3**). The facility was closed in 1965 (Woodward-Clyde 1996).

In 1991, groundwater sampling on the Cal Sierra Limited parcel (formerly the Crocker Knoll parcel) to the west of the Former Titan 1-A Missile Facility (**Figure Int.4**) detected the presence of trichloroethene (TCE) in groundwater at up to 490 micrograms per liter (μ g/L). Investigations began on the Former Titan 1-A Missile Facility in 1993 (Woodward-Clyde 1996) and have continued to the present. The current groundwater wells and TCE plume boundary are shown on **Figure Int.5**. Today, the contaminants of potential concern (COPCs) are:

- 1,1-Dichloroethene
- cis-1,2-Dichloroethene
- trans-1,2-Dichloroethene
- 1,4-Dichlorobenzene
- Benzene
- Ethylbenzene
- Toluene
- Trichloroethene
- Vinyl chloride
- o- and m,p-Xylenes

This work plan/site-specific Uniform Federal Policy–Quality Assurance Project Plan (UFP-QAPP) (also referred to as the "work plan") details the methods that will be used to complete a treatability study to evaluate injection treatment technologies at the Site, including a combination of in situ chemical reduction (ISCR) and enhanced anaerobic bioremediation (EAB). For this work plan, "the Site" refers to the Former Titan 1-A Missile Facility and downgradient areas to the southwest that are impacted by COPCs (**Figure Int.5**). Twenty-four injections will be completed in two areas to evaluate the effectiveness of ISCR and EAB as a source area treatment and a perimeter treatment (**Figure Int.6**). Baseline sampling events and post-treatment performance monitoring will be also conducted to evaluate the effectiveness of the treatment technologies. One additional monitoring well and one soil boring will also be installed to evaluate the effectiveness of treatment technologies (**Figure Int.6**).

This work plan has been prepared in accordance with requirements set forth in the United States Environmental Protection Agency (USEPA) (IDQTF 2005, 2012) guidance to ensure environmental data collected are scientifically sound, of known and documented quality, and suitable for their intended purposes. This work plan includes a review of site conditions, previous reports, and available data (**Worksheet 10**), which have been used to develop a conceptual site model (CSM). This work plan also describes the methods, procedures, and analytical methods that will be used to perform semi-annual groundwater and soil vapor sampling (**Worksheets 17** and **18**), and data management and validation procedures (**Worksheets 29-37**). The results of the activities described here will be reported in a Treatability Study Report following the completion of 4 quarters of performance monitoring. Quarterly progress updates will also be submitted to the Central Valley Water Board via email.

Supporting plans and information are included in the appendices, as follows:

- A. Project Schedule: presents a detailed project schedule.
- B. Waste Management Plan: describes the procedures that will be used to manage and track the waste generated as a result of the field investigation.
- C. Meeting Minutes: provides full versions of meeting minutes and/or associated presentations discussed on Worksheet #9.
- D. Field standard operating procedures (SOPs): contains SOPs related to field operations.
- E. Field Forms: contains forms that will be used during the field operation.
- F. Laboratory Accreditation: provides the Department of Defense (DoD) and California Environmental Laboratory Accreditation Program (ELAP) documentation for the laboratory that will perform chemical analyses.
- G. Laboratory SOPs: contains the analytical laboratory SOPs.

Worksheets #1 & 2: Title and Approval Page

1.1 PROJECT IDENTIFYING INFORMATION

Site Name/ Project Name:	Beale Air Force Base (AFB), Titan 1-A Missile Facility Treatability Study
Site Location/No.:	Former Titan 1-A Missile Facility, Lincoln, California Formerly Used Defense Site (FUDS) # J09CA1108 HTRW Project # J09CA1108-01
Contract/Task Order (TO) No.:	W91238-21-D-0008 / W9123823F0044

1.2 CONCURRING SIGNATURES

The signatures below indicate that the representatives of the subject organizations have reviewed this work plan/UFP-QAPP and concur with its implementation as written.

Lead Organization/ Interim Project Manager			
	Linda Mercurio United States Army C	orps of Engineers (USACE)	Date
Lead Organization Chemist			
	Kyle Bayliff		Date
	USACE		
Prime Contractor Project Manager	Carrie Ross	ne Bos	02/10/2025 Date
	Parsons Federal Solu	tions, Inc. (Parsons)	
Prime Contractor Chemist		Kin M	02/10/2025
	Katherine LaPierre Parsons	Not the Xal In	Date

Relevant plans and reports from previous investigations are described on Worksheet #10.

Worksheets #3 & 5: Project Organization and UFP-QAPP Distribution

The project team listed below will receive a copy of the UFP-QAPP. The organization of the project team is shown on Figure 3.1.

Table 3.1 – UFP-QAPP Recipients

UFP-QAPP Recipients	Title	Organization	Telephone Number	E-mail Address
Matt Marlatt	FUDS Program Manager	USACE	Retracted	Retracted
Tim Crummett	Contracting Officer's Representative (COR) and Project Manager (PM)	USACE	Retracted	Retracted
Linda Mercurio	Interim Project Manager	USACE	Retracted	Retracted
Charity Meakes	Technical Lead	USACE	Retracted	Retracted
Carrie Ross	Project Manager	Parsons	Retracted	Retracted
Mark Rigby	Technical Director	Parsons	Retracted	Retracted
Katherine LaPierre	Senior Project Chemist	Parsons	Retracted	Retracted
Cynthia Oppenheimer	Project Geologist	Parsons	Retracted	Retracted

Worksheets #4, 7, & 8: Personnel Qualifications and Sign-off Sheet

Table 4.1 – Key Project Personnel

Name	Project Title / Role	Contact Information	Education / Experience	Specialized Training/ Certifications	Signature/ Date
Tim Crummett	USACE COR and PM	Retracted	Not Applicable (N/A)	N/A	Signature on Worksheets #1 & #2
Linda Mercurio	Interim Project Manager	Retracted	N/A	N/A	Signature on Worksheets #1 & #2
Charity Meakes	Technical Lead	Retracted	N/A	N/A	N/A
Kyle Bayliff	Project Chemist	Retracted	N/A	N/A	Signature on Worksheets #1 & #2
John Ratz, Professional Engineer (PE) Parsons	Program Manager	Retracted	B.S. Civil Engineering; Colorado State University; M.S. Environmental & Water Resources Engineering, Vanderbilt University; 30+ years environmental experience	Professional Engineer (Colorado, #30292) Parsons Certified PM, 2006	N/A
Carrie Ross Parsons	PM	Retracted	M.S., Engineering Systems Management, 2009 B.S., Environmental Engineering, 2004 17 years of experience, including management of numerous remedial investigations and removal actions.	Professional Engineer, CA, No. 6853, WY, No. 14578, CO, No.44978 Project Management Professional (PMP) Certification, 2021 (PMI ID: 7459983) Parsons Certified PM, 2012	Signature on Worksheets #1 & #2

Table 4.1 – Key Project Personnel

Name	Project Title / Role	Contact Information	t Information Education / Experience		Signature/ Date
Mark Rigby, Ph.D. Parsons	Technical Director	Retracted	B.A. Aquatic Biology; M.S. Environmental Science and Ecology; Ph.D. Experimental Ecology; 21 years environmental experience	Parsons Certified PM, 2020	Signature on Technical Review Sheet
Cynthia Oppenheimer Parsons	Project Geologist	Retracted	B.S. Geology; B.S. Marine Science and Oceanography; M.S. Geology; 17 years environmental experience	Professional Geologist (California #9415)	Signature on Technical Review Sheet
Lauren Ranker Parsons	Contractor Quality Control Manager	Retracted	B.S. Geology 16 years environmental remediation experience	Professional Geologist, (Wyoming #3686) CQM-c Certification	N/A
Katherine LaPierre Parsons	Project Chemist	Retracted	B.S. Chemistry; 23 years' experience in analytical / environmental chemistry; Lead Chemist for Parsons Federal environmental program.	N/A	Signature on Worksheets #1 & #2
Dan Griffiths Parsons	Risk Manager	Retracted	B.S., Geology; M.S., Geology Experience: 26 years. Mr. Griffiths is also Parsons a Subject Matter Director for in- situ remedy design and installation.	Certified Professional Geologist, National Registered Geologist, AK Parsons Certified Project Manager	N/A

Table 4.2 - Other Project Personnel

Name	Project Title/Role	Contact Information	Education/Experience	Specialized Training/ Certifications
Mark Shibata USACE	Risk Assessor/ Toxicologist	Retracted	NA	NA
Chris Ajello USACE	Biologist	Retracted	NA	NA
Jessequa Parker USACE	Geologist	Retracted	NA	NA
James Wheeler USACE	Archaeologist	Retracted	NA	NA
Tyler Stalker USACE	Public Affairs	Retracted	NA	NA
Robert Fagerness, PE Central Valley Regional Water Quality Control Board (CVRWQCB)	CVRWQCB PM	Retracted	NA	NA
Caspar Pang EMAX Laboratories Inc. (EMAX)	Quality Assurance (QA) Manager	Retracted	B.A. in Economics / 22 years in the analytical chemistry industry with supervisory experience	NA
Richard Beauvil EMAX	PM	Retracted	B.S. in Biology / 32 years in the analytical chemistry industry; 30 years supervisory experience	NA

Table 4.2 - Other Project Personnel

Name	Project Title/Role	Contact Information	Education/Experience	Specialized Training/ Certifications
Jay Cho, Ph.D. Enviroflux	QA Manager, PM	Retracted	Ph.D. in Environmental Engineering and Sciences, 35 years experience in the environmental contaminant sciences, 20 years experience in academic environmental contaminant research	NA

Worksheet #6: Communication Pathways and Procedures

Table 6.1 – Communication Pathways and Procedures

Communication Driver	Initiator (role) ⁽¹⁾⁽²⁾	Recipient(s) (role) ⁽¹⁾	Procedure
General communication between USACE and other USACE staff	USACE PM or designee	Appropriate USACE staff	Communicates directly as needed (verbally and/or in writing).
Regulatory interface	USACE PM	Regulator	Provides project update via e-mail at least every other week during field activities.
Regulatory oversight	Regulators	USACE PM	Communicate directly as needed (verbally and/or in writing).
Project management, TO administration and logistics	Parsons PM	USACE PM and/or Parsons lead technical and site management personnel	Communicate directly as needed (in writing).
Monthly project conference calls	Parsons PM	USACE PM and appropriate USACE staff	Communicates project status verbally via monthly conference call.
Project management field coordination	Parsons PM/Site Manager	Landowner(s)	Verbal and or in writing communication a minimum of 10 days prior to field activities
Field progress reports/ Data Reports	Site Manager	Parsons PM and Parsons lead technical and site personnel	Documents progress in daily report and submits to Parsons PM for onward distribution to appropriate USACE staff. Daily reports will be submitted to USACE PM, within 24 hours of work completion that day whenever possible. USACE PM will submit reports weekly to CVRWQCB.
Stop work due to safety issues	All field personnel	Parsons Site Manager	Verbally notify the Parsons Site Manager that there is a safety issue requiring a work stoppage. Stop work.
	Parsons Site Manager	Parsons PM	Verbally notify Parsons PM as soon as possible after work stoppage.
	Parsons PM	USACE PM and appropriate USACE staff	Notify USACE PM verbally or via e-mail as soon as possible after work stoppage.

Table 6.1 – Communication Pathways and Procedures

Communication Driver	Initiator (role) ⁽¹⁾⁽²⁾	Recipient(s) (role) (1)	Procedure
	USACE PM	CVRWQCB	USACE PM will submit field progress reports weekly to CVRWQCB, which will describe any "stop work" issues.
Minor QAPP change (i.e., a revision that does not affect project procedures and/or quality control [QC] criteria)	Parsons Site Manager	Parsons PM	Communicates directly as needed (verbally and/or in writing) and submits draft Field Change Request form for discussion; does not implement change until approval is granted; consults with other personnel as needed.
	Parsons PM	USACE PM	Submits Field Change Request form to USACE for approval; does not implement change until approval is granted.
	USACE PM	Regulator	Forwards field change request for approval, if necessary.
	Parsons PM	USACE PM	Parsons PM notifies USACE PM of minor change.
Biological Resource finds	Parsons PM/Biologist	USACE PM/Biologist	Follow the procedures outlined in the Biological Resources Work Plan.
Field Corrective Actions	Parsons Site Manager	Parsons PM	The need for field Corrective Actions will be determined by the Site Manager in consultation with the Parsons PM, and/or Parsons technical personnel. Site Manager will notify Parsons PM of necessary field Corrective Actions and Parsons PM will respond within 24 hrs. Site Manager will document the occurrence using a root cause analysis (RCA)/Nonconformance Report (NCR).
	Parsons PM	USACE PM	Parsons PM notifies USACE PM and transmits copy of RCA/NCR for review and approval.
	USACE PM	CVRWQCB	USACE PM provides RCAs/NCRs to CVRWQCB as part of weekly field progress updates.
Identified impacts to receptors	USACE PM	CVRWQCB	USACE PM will notify CVRWQCB within 48 hours of identifying impacts to receptors or groundwater (e.g., spills or daylighting to surface waters, monitoring indicates negative impacts to groundwater, etc.)

Table 6.1 – Communication Pathways and Procedures

Communication Driver	Initiator (role) ⁽¹⁾⁽²⁾	Recipient(s) (role) ⁽¹⁾	Procedure
Sample receipt discrepancies (for example, broken or missing samples, improper preservation, or missing analysis requests)	Laboratory PM	Parsons Project Chemist	The laboratory PM will communicate discrepancies in sample receipt to Parsons Project Chemist on the same business day that the discrepancy is identified. The Project Chemist, in consultation with Parsons PM, will instruct the laboratory PM on the appropriate course of action.
Laboratory QC variances	Parsons Project Chemist	Parsons PM, USACE PM, USACE Chemist	The Project Chemist will prepare variance requests in collaboration with laboratory PMs for transmittal to USACE for approval.
Significant data quality issues	Parsons Project Chemist	Parsons PM, USACE PM, USACE Chemist, USACE Technical Lead	The Project chemist will notify the team of any significant data quality issues that might affect the integrity of the data.
	USACE PM	CVRWQCB	USACE PM provides notification to CVRWQCB as part of weekly field progress updates, should such an event occur.
Analytical Corrective Actions	Parsons Project Chemist	Parsons PM, USACE PM, USACE Chemist, USACE Technical Lead	Need for laboratory Corrective Actions will be determined by the Project Chemists and/or laboratory PM or QA Manager and will be documented in memoranda to Parsons PM or transmittal to USACE for approval.
Formerly Used Defense Sites Chemical Database (FUDSChem) electronic QAPP (eQAPP)	Parsons Project Chemist	Laboratory PM	The Project Chemist or designee will create the project eQAPP in FUDSChem and notify the laboratory when the eQAPP is complete. The Project Chemist will also upload a portable document format (PDF) copy of the final UFP-QAPP to the Project Library in FUDSChem for comparison to the eQAPP. The laboratory will then review and acknowledge the eQAPP in FUDSChem.
FUDSChem eQAPP	Parsons Project Chemist	Parsons PM, USACE Chemist	The Project Chemist will notify the USACE Chemist when the laboratory has acknowledged the eQAPP in FUDSChem. The USACE Chemist will approve the eQAPP prior to samples being collected.
FUDSChem Data Validation	Parsons Project Chemist	Parsons PM, USACE Chemist	The Project Chemist will complete validation in FUDSChem, supplementing with manual review as necessary. The

Table 6.1 – Communication Pathways and Procedures

Communication Driver	Initiator (role) ⁽¹⁾⁽²⁾	Recipient(s) (role) ⁽¹⁾	Procedure
			FUDSChem data validation report will be generated in FUDSChem and added to the Project Library. Once the validation files have been certified, the USACE Chemist will be automatically notified by FUDSChem that the files are ready for review. The USACE Chemist will review and approve the validation files.
FUDSChem Data Usability Assessment (DUA)	Parsons Project Chemist	Parsons PM, USACE PM, USACE Chemist	Upon approval of the Data Validation files by the USACE Chemist, the Project Chemist will complete the DUA in FUDSChem using the Assessment Checklist. When completed, the USACE Chemist will be automatically notified by FUDSChem that the DUA is ready for review. The USACE Chemist will review and approve the DUA and the final data submission will be made for the event.

Notes:

(1) Names and contact information for personnel provided on **Worksheets #4, 7, & 8**.

Worksheet #9: Project Planning Session Summary

9.1 PROJECT PLANNING SESSION SUMMARY

Date: 27 February 2024

Location: Webex Conference Call

Purpose: Discuss the goals, objectives, and scope of the treatability study. Meeting Minutes are provided in **Appendix C**.

Participants:

Name	Project Title / Role	Phone Number	Email Address			
USACE						
Tim Crummett	USACE PM	916-557-6942	tim.r.crummett@usace.army.mil			
Matt Marlatt	Technical Lead	916-557-7046	matthew.marlatt@usace.army.mil			
Kyle Bayliff	Project Chemist	916-557-7028	kyle.w.bayliff@usace.army.mil			
Parsons						
Carrie Ross	PM	303-764-8736	carrie.ross@parsons.us			
Tom McManus	Deputy PM		thomas.mcmanus@parsons.us			
Mark Rigby, Ph.D.	Technical Director	801-553-3350	mark.rigby@parsons.com			
Abby Bazin, PE	Project Engineer	206-390-2324	abby.bazin@parsons.com			
Craig Communications						
Tracy Craig	Craig Communications Principal	510-334-4866	tracy@craig-communications.com			

Worksheet #10: Conceptual Site Model

10.1 OVERVIEW

A CSM is a description of a site and its environment that is used to depict the nature of potential contamination and the potential for exposure of human and environmental receptors to that contamination. The CSM is a comprehensive representation of the site that documents the potential for exposure (under current and future land use) to chemicals at a site based on the source(s) of contamination, the release mechanism(s), migration route(s), exposure pathway(s), and receptor(s) either at the site or that may reasonably be anticipated to be at the Site. The exposure models for human and ecological receptors are provided in **Figures 10.1** and **10.2**, respectively. A graphical representation of the CSM is provided in **Figure 10.3**.

The contaminants of potential concern (COPCs) for the former Titan 1-A Missile Facility are:

- 1,1-Dichloroethene
- cis-1,2-Dichloroethene
- trans-1,2-Dichloroethene
- 1,4-Dichlorobenzene
- Benzene
- Ethylbenzene
- Toluene
- Trichloroethene
- Vinyl chloride
- o- and m,p-Xylenes

The basis for this list of COPCs, as well as a preliminary CSM for the Site are described below. These are based on the available information that describes the sources of environmental contamination or hazards at the site, actual or potential pathways, current or proposed uses of the property, and potential receptors. The CSM is a living document and will be revised as additional information and investigation results are obtained throughout the investigation process.

The following is a discussion of site background, previous investigations, and the conceptual site model for the former Titan 1-A Missile Facility (also referred to as "Titan 1-A" or "Site").

10.2 SITE HISTORY AND SETTING

The former Titan 1-A Missile Facility is located approximately 1.6 miles east of the City of Lincoln at 401 Oak Tree Lane in Placer County. Lincoln is located approximately 20 miles north of Sacramento, California (**Figure Int.1**). The former Titan 1-A Missile Facility originally occupied approximately 46 acres (**Figures Int.2** and **Int.3**) with an additional 227-acre easement surrounding the missile complex to provide isolation and safety. The property was purchased by the U.S. Government from Floyd R. Bonnifield, et al in 1959 (Woodward-Clyde 1996).

Prior to its purchase by the U.S. Government, the Site was used as a cattle ranch (CEBMCO 1962). Aerial photographs from 1952 and 1957 show that there were no buildings, roads, row crops, or other improvements on the land that would become the Titan 1-A Missile Facility.

Construction began on January 22, 1960. Open cut excavation techniques were used as a partial excavation for the tunnels, launcher structures, and antenna silos. When the excavation encountered competent bedrock, it was removed by drilling and blasting. Excavation was slow due to muddy ground conditions, and groundwater was reportedly encountered at about 20-to 30-feet below ground surface (bgs). Approximately 470,000 cubic yards of soil were removed during the construction of the facility. The excavation was backfilled with stockpile materials obtained from the open cut excavation. Excavation was completed on June 27, 1960 (Woodward-Clyde 1996).

The Titan 1-A Missile Facility was completed in 1962 and consisted of three 160-foot deep missile silos, each with adjacent propellant and liquid oxygen terminals; a control center with living quarters; two antenna silos; a generator house; power room; entry portal; and system of connecting tunnels and air intake/exhaust vents. Underground utilities included storage tanks and distribution lines for #4 fuel oil, #2D fuel oil, Refined Petroleum-1 fuel (commonly referred to as RP-1), liquid oxygen, and liquid nitrogen; electrical wiring, water supply, wastewater collection system, and communications. Aboveground structured included a helicopter pad, quonset huts, hardstands for missile launches, watch towers, an oxidation pond and septic tank, and a communications system (Woodward-Clyde 1996). Historical above ground features are shown in **Figure Int.3**.

Information on specific uses of TCE at the Titan 1-A Missile Facility are sparse. Dynamac (1992) states that "subsurface components of the missile site were washed with TCE" and that "TCE was used during site maintenance" but that the quantity of TCE used and disposal methods were not known. A U.S. Air Force (1962) corrosion control manual from the time indicates that TCE was used for vapor degreasing, cleaning surfaces where liquid oxygen was used.

Titan 1 missiles were two stage missiles stored within the silos and lifted by elevator to the ground surface for launching. The missiles were 98-feet long, 10-feet in diameter, weighed 110 tons when loaded with fuel. The first stage consisted of a liquid rocket engine with two nozzles and the second stage consisted of a liquid rocket engine with a single nozzle. The rockets were propelled by a liquid oxygen/RP-1 liquid fuel mixture (Woodward-Clyde 1996).

Although groundwater did not present a serious problem for excavation activities, seepage of water into subsurface structures was a problem. Given the amount of water that seeped into subsurface structures, underground concrete surfaces were waterproofed (URS 2001). Surfaces that received waterproofing were initially covered with an asphalt primer. Five ply of thermoplastic bitumen-treated fibrous glass membrane was applied with hot asphalt and was protected on the outside surfaces by fiberboard. Leaks in the concrete walls were repaired with an epoxy grout or by channeling the water to the nearest sump (CEBMCO 1962).

The former Titan 1-A Missile Facility was deactivated in 1965, declared excess, and the property title was transferred to the General Services Administration, who dismantled the facility. The missiles were disassembled and shipped to the San Bernardino Air Material Area, at Norton Air Force Base (Woodward-Clyde 1996). Many of the features from the Former Titan 1-A Missile Facility, such as the air vents and silo doors are still visible. The underground structures are either partially or entirely flooded (Brown and Caldwell 2007).

In 1968, Placer County acquired the parcel that contained the former missile complex. Since 1968 the parcel had several uses (**Figure Int.3**):

- California Division of Forestry fire station
- Placer County Corporation Equipment Maintenance and Storage Yard (active)
- Trap and skeet club
- Pistol shooting range
- Gravel quarry

The Placer County Corporation Equipment Maintenance and Storage Yard is still actively used. The shooting ranges and fire station are no longer used.

The former Titan 1-A Missile Facility is bordered to the west by the Roman Catholic Church (Church), and to the southwest, south, southeast, and east by vacant land that is zoned for future residential use. To the north, the former Titan 1-A Missile Facility is bounded by a reservoir.

10.3 SITE GEOLOGY

10.3.1 REGIONAL GEOLOGY

The Former Titan 1-A Missile Facility lies between the dissected alluvial uplands of the Central Valley and the Sierra Nevada geomorphic provinces. The Sierra Nevada Geomorphic Province is underlain by hard, non-water bearing rocks and is characterized by steep-sided hills and narrow, rocky streamchannels. The dissected alluvial uplands border the Sierra Nevada to the west and are typified by rolling topography; i.e., rounded knolls and ridges separated by minor intermittent streams (Brown and Caldwell 2007).

10.3.2 SITE-SPECIFIC GEOLOGICAL CONDITIONS

The surficial alluvial material consists of lenses or layers of gravel, sand, silt, and clay in a silty matrix. Trenches advanced into the alluvium to depths of over 26 feet held vertical walls without collapsing, indicating that the alluvial material is partially cemented, compacted, or has a high dry strength (indicative of clays). Sieve analyses performed on soil samples indicate that the alluvial material has a high amount of silt and clay. A quartz cobble sedimentary deposit is present at the bottom of the alluvial material in some areas. The quartz cobble unit is distinguished by large (1 to 3 inches in diameter) rounded quartz cobbles in a sandy silt matrix (Brown and Caldwell 2007). Underlying the quartz cobble deposit is the Penryn Pluton. The pluton is granodiorite and tends to weather to clay or "saprolite" and, therefore, is relatively less permeable than the overlying alluvial sediments (URS 2001).

Below is a more comprehensive description of each lithologic unit present at the Site.

Surface Soil: Surface soil is typically characterized as a sandy silt or silty sand with gravel; clay is typically reported at concentrations ranging from trace to 15%. Gravel ranges in size from 1/8-inch to 2-inches in diameter and is usually moderately rounded to well rounded. The distinctive indicators for this lithologic unit are the fines content in the range of 15% to 35%, the reddish coloration, and the gravel. This lithologic unit typically extends from the surface to 2 to 5 feet below grade. The surface soil appears to be a diagenetic lithologic unit that conformably overlies the underlying lithologic unit (URS 2001).

Silty Sand: This lithologic unit is typically characterized as silty sand with sand size ranging from fine to coarse. Clay generally is not present in concentrations identifiable in hand samples. This lithologic unit is distinguished from the overlying surface soil facies by the absence of gravel, a shift in color from reddish browns to yellowish and grayish browns, and the reduction in fines content (particularly clay). The unit is sometimes identified as "reworked decomposed granite"; this sedimentary unit appears to have been produced by the erosion and deposition of a nearby granodiorite source rock. The silty sand unit typically ranges from 10 to 30 feet thick (URS 2001).

Basal Gravel / Cobble: A gravel is often identified in boring logs at the base of the sedimentary section just above the weathered bedrock. This layer ranges from approximately two to ten feet thick and was observed in boring logs between roughly 10 to 25 feet (ft) bgs. The gravel is moderately rounded to well rounded, ranges in diameter from 1 to more than 3 inches, and is composed of

massive, milky white quartz (bull quartz). Cobbles larger than 8 inches in diameter are present in this unit as well (URS 2001).

Weathered Bedrock / Bedrock: The sedimentary lithologic units nonconformably overlie the granodiorite Penryn Pluton, which displays varying degrees of weathering across the site. Weathered bedrock is encountered between roughly 15 to 45 ft bgs at the Site. The overall effect of the weathering was the conversion of the competent igneous rock to material resembling a sandy silt or clay. The zone of highly weathered material appears to be about 30 feet thick, although the transition zone from highly weathered to moderately weathered rock is gradual and thicker in some areas. Below the highly weathered bedrock, the degree of weathering gradually decreases with depth, until competent bedrock is reached at 70 to 90 feet bgs (URS 2001). The weathered zone may be slightly saturated near the contact with the overlying sediments, but since the bedrock weathers to a clay, it is less permeable than the overlying sediments and effectively acts as an aquitard (URS 2001, Brown and Caldwell 2007).

10.4 SITE HYDROGEOLOGY

The depth to groundwater ranges from 1.5 to 29 feet bgs, depending on the location (Parsons 2024a). The groundwater gradient is toward the southwest (**Figure 10.4**), with a gradient of approximately 0.013 foot per foot (ft/ft), which also depends on location and year. The overall thickness of the water-bearing sediments encountered in the borings ranged from approximately 5 feet to 15 feet. Based on observation of sample wetness during drilling, the basal gravel portion of the sedimentary section (where present) appears to be the portion of the water-bearing zone that best produces water. Groundwater at the Site is generally found under unconfined conditions (URS 2001).

The practical lower limit of the groundwater flow zone is likely the contact between the sedimentary section and the highly weathered bedrock. This is because the bedrock does not yield groundwater readily – borings that did not encounter groundwater prior to encountering bedrock (common in wells drilled on the eastern side of the Site, where bedrock elevations are higher relative to the static water level) typically yielded water very slowly. Bedrock samples also do not appear to be saturated – drilling logs from borings that encountered bedrock below the water table typically indicate the moisture content of the bedrock samples as "damp," "moist," or "very moist," they do not use the term "wet," which typically is applied to saturated sediments. This is evident in many of the boring logs from URS (2001) and Ahtna (2023f). Additionally, the hydraulic conductivity of the weathered bedrock ranges from 10⁻⁶ to 10⁻⁸ cm/sec. That is at least 10 times lower than the hydraulic conductivity of the sandy water-bearing sediments that overlie the weathered bedrock, which have hydraulic conductivities in the range of 10⁻⁵ cm/sec (URS 2001). The description of the weathered bedrock in the boring logs, combined with its low hydraulic conductivity, indicate that it is not a water bearing unit.

The hydraulic conductivity of the weathered bedrock is in the range of 10^{-6} to 10^{-8} cm/sec. This is at least 10 times lower than the hydraulic conductivity of the sandy, water-bearing sediments that overlie the weathered bedrock, which have hydraulic conductivities in the range of 10^{-5} cm/sec (URS 2001).

This does not preclude the presence or movement of groundwater in the weathered bedrock, but does indicate that the movement of water in the weathered bedrock is very slow relative to the movement in the overlying sedimentary material. It is suspected that the formation of clay secondary minerals in the highly weathered bedrock decreases the hydraulic conductivity of the decomposed granite so that it acts essentially as an aquitard (URS 2001).

Given the relatively thin layer of water-bearing sediments overlying the bedrock, and how the bedrock effectively acts as an aquitard, groundwater flow can be influenced by bedrock elevations in the subsurface; i.e., groundwater may flow along dips/channels in the bedrock.

In the southern portion of the Site, the elevation of groundwater is sometimes higher than surface water. For example, at MW-19, groundwater elevation has ranged from 176.5 to 181.8 ft amsl from

2019 to 2023 (see **Table 2.5**; Ahtna 2023f). Approximately 25 feet downhill from MW-19, there is a pond that has a ground surface elevation of approximately 179 ft amsl¹. Thus, during periods with higher groundwater elevations, the elevation of groundwater at MW-19 can be higher than the ground surface elevation at the pond downhill. Groundwater elevations can also exceed the elevation of the streambeds downhill from MW-54 and MW-55.

This suggests that there may be a potential hydraulic connection between a) groundwater and b) the ephemeral streams and ponds in the southern corner of the Site near MW-19, MW-54, and MW-55 (see **Figure 10.4**). A hydraulic connection may include both a) discharge of groundwater to surface water (e.g., a spring or infiltration of groundwater to surface water) or b) mixing of groundwater and surface water in the saturated soils surrounding the ephemeral streams and ponds (i.e., the hyporheic zone).

10.5 SITE CLIMATE

The mean daily temperature was 61 degrees Fahrenheit (° F) and mean annual precipitation was 12.5 inches. The coldest months are December and January, when temperatures average 45 and 46 ° F, respectively. The warmest months are July and August, when temperatures average 78 and 76 ° F, respectively. Southeasterly winds prevail from January to September, while northwesterly winds are most prevalent from October to December, with a mean annual windspeed of 6.0 miles per hour (data from the Lincoln Regional Airport for 2009 to 2022; IEM 2023).

10.6 SITE ECOLOGY

The majority of natural habitat at and adjacent to the former Titan 1-A Missile Facility has been greatly disturbed with the construction and operation of the former Titan 1-A Missile Facility (Brown and Caldwell 2004a), as well as construction on adjacent parcels (e.g., the Cal Sierra Limited parcel was used as a staging area for construction to the west).

When USACE (2018) conducted a site visit in 2018, it was observed that the majority of the former Titan 1-A Missile Facility and downgradient areas overlying the trichloroethene (TCE) groundwater plume were non-native annual grassland. Common grass species observed include foxtail barley (*Hordeum murinum*), medusa head (*Elymus caputmedusae*), wild oats (*Avena fatua*), soft brome/chess (*Bromus horaceaus*), ripgut brome (*Bromus diandrus*), and Italian ryegrass (*Lolium perenne*). Frequently occurring herbaceous non-native plants include red-stem filaree (*Erodium cicutarium*), prickly wild lettuce (*Lactuca serriola*), Italian thistle (*Carduus pycnocephalus*), English plantain (*Plantago lanceolata*), wild radish (*Raphunus sativus*), common mustard (*Brassica rapa*), milk thistle (*Silybum marianum*), bitter cress (*Cardamine californica*), winter vetch (*Vicia villosa*), curly dock (*Rumex crispus*), and Canadian horseweed (*Erigeron canadensis*). The majority of the former missile facility was covered in patches of dead yellow starthistle (*Centaurea solstitialis*) from past years. USACE's biologist has also noted that native vinegarweed (*Trichostema lanceolatum*) is common at the Site.

USACE (2018) found that there are several ephemeral drainages, ponded areas along the drainages, and seasonal wetlands on the former Titan 1-A Missile Facility, as well as on the Cal Sierra Limited and Century Communities parcels.

Species that were found in wet soils and near the ephemeral drainages and seasonal wetlands include: yellow owl's clover (*Castilleja campestris*), California goldfields (*Lasthenia californica*),

¹ See <u>https://apps.nationalmap.gov/3depdem/</u>.

miniature lupine (*Lupinus bicolor*), butter 'n' eggs (*Triphysaria eriantha*), dwarf sack clover (Trifolium depauperatum), variegated clover (*Trifolium variegatum*), fiddleneck (*Amsinckia menziesii*), frying pans poppy (*Eschscholzia lobbi*), wild geranium (*Geranium dissectum*), narrow leaved owl's clover (*Castilleja attenuata*), hop clover (*Trifolium aureum*), and wild hyacinth (*Triteleia hyacinthina*).

On the southern end of the Cal Sierra Limited and Century Communities parcels, there is a larger creek with mature oak trees. A pond on the corner of the Cal Sierra Limited parcel contained cattails (*Typha angustifolia*) and appeared to support a small population of red-winged blackbirds (*Agelaius phoeniceus*), which are prevalent on site (USACE 2018).

Common overstory trees include blue oaks (*Quercus douglasii*), valley oaks (*Quercus lobata*), interior live oaks (*Quercus wislizenii*), willows (*Salix* spp.) and Fremont cottonwood (*Populus fremontii*). Understory shrubs include coyote brush (*Baccharis pilularis*), poison oak (*Toxicodendron diversilobum*), willows (*Salix* spp.), and Himalayan blackberry (*Rubus armeniacus*).

While USACE (2018) did not observe any special status species at the Titan 1-A Missile Facility or the adjacent Praxis Properties and Century Communities parcels, they determined that the Site contains suitable habitat for federally-listed vernal pool branchiopods. There is suitable habitat throughout the area with known TCE contamination extending southwest from the former missile facility primarily to the Cal Sierra Limited parcel (formerly known as the Crocker Knoll parcel). The general area also contains suitable habitat for the federally-listed valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*), with elderberry plants previously observed on the Century Communities parcel. A site assessment performed in 1994 also did not identify any special status species on the Site (Brown and Caldwell 2004a).

10.7 PREVIOUS INVESTIGATIONS

10.7.1 HISTORICAL OR CULTURAL RESOURCES

In 1994, as a part of an Environmental Assessment prepared by IT Corporation (IT), a cultural resources survey was performed to identify significant cultural resources at the Titan 1-A Missile Facility. No indications of prehistoric cultural resources were found during the field survey. Given the significant disturbance of the site during facility construction, it is unlikely that prehistoric cultural resources would be found (URS 2001).

10.7.2 SUMMARY OF PREVIOUS INVESTIGATIONS

Since 1991, numerous investigations and pilot tests have been performed on the Site. The investigations conducted between 1991 and 2002 are summarized in Brown and Caldwell (2007) and more recent investigations are summarized in the 2024 Draft Remedial Investigation (Parsons 2024a).

Quarterly groundwater monitoring and soil vapor sampling was completed by Ahtna Environmental, Inc. (Ahtna) from the fourth quarter of 2019 (4Q19) through the first quarter of 2023 (1Q23) (Ahtna 2020, 2021a-c, 2022a-d, 2023a-e). These activities were performed to assess current groundwater and soil vapor conditions at the Site and to fill data gaps previously identified. This investigation included the installation of 19 additional groundwater monitoring wells and 24 soil vapor probes. The monitoring confirmed that groundwater characteristics (e.g., flow direction and geochemistry) and the nature and extent of groundwater contamination were similar to previous investigations. Soil vapor impacts were further defined from this investigation, but the extent of soil vapor impacts were not fully delineated. The extent of the TCE plume in groundwater from the 1st semi-annual 2024 sampling event is shown in **Figure 10.5**.

10.8 EXPOSURE PROFILE

This section outlines the potential receptors, distribution of COPCs (see **Section 10.1** for the list of COPCs), and an overview of the potential exposure pathways.

The Continuing Remedial Investigation (RI) summarized investigations completed prior to and during the Continuing RI (Brown and Caldwell 2004b) and concluded that TCE and its daughter products (primarily cis-1,2-DCE) are the DoD-related COPCs that should be addressed under the FUDS program. The Continuing RI stated that additional contaminants, including metals and PAHs were identified, but were related to the skeet and pistol ranges that were constructed and operated subsequent to DoD operations. Because they were not related to past DoD use, they were not identified as COPCs in the Continuing RI.

Low concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected at the Church parcel and the Cal Sierra Limited parcel (**Figure Int.4**) as part of the Continuing RI. The response to comments on the Continuing RI (see appendix of the Continuing RI for the responses to comments) and a subsequent underground storage tank (UST) investigation (Brown and Caldwell 2005) ruled out the former missile facility as the source of the BTEX, and suggested that Placer County's gasoline storage tanks may have been the potential source (FA/BC 2004). Regardless, BTEX was carried forward as COPCs in the FS (Brown and Caldwell 2007) and in subsequent investigations. 1,4-Dichlorobenzene was selected as a COPC as it was used by the DoD as a toilet deodorizer and wastewater containing 1,4-dichlorobenzene was discharged by the DoD to the septic system leach field adjacent to the Placer County Corporation Yard (URS 2001).

10.8.1 POTENTIAL RECEPTORS AND LAND USE

Potential human receptors at the Site include commercial/industrial workers, utility and construction workers, and potential future residents. Residential housing is currently planned to be constructed over the groundwater and soil vapor plumes on the Cal Sierra Limit and Century Communities parcels; however, no housing currently exists over any portion of the groundwater plume. Residents are the most sensitive population either adjacent to or at the Site.

The Sun City community lies west of the Cal Sierra Limited parcel and is a developed residential subdivision. Groundwater is migrating towards the eastern margin of the community (**Figure 10.4**); however, current data suggests that the COPCs have not migrated to groundwater on this property. Nonetheless, if COPCs do migrate into groundwater within the Sun City community, residents would be potential receptors.

Although suitable habitat for the federally-listed valley elderberry longhorn beetle is present, the beetle is not exposed to the contaminants in shallow groundwater and is not fossorial (i.e., does not dwell in burrows where volatiles emitted from groundwater may concentrate). Similarly, vernal pools are present (although the locations are not mapped) that are suitable habitat for the federally-endangered Conservancy fairy shrimp (*Branchinecta conservatio*), vernal pool tadpole shrimp (*Lepidurus packardi*), and federally-threatened vernal pool fairy shrimp (*Branchinecta lynchi*). Although the exact location of the vernal pools are not known, they are assumed to be in the vicinity of MW-22, MW-42 through MW-45, and MW-59), groundwater occurs as shallow as 6 ft bgs, except at MW-43, where it can reach as shallow as 2.65 ft bgs (Parsons 2024a). In addition, vernal pools, if present, form over an impermeable bedrock or clay layer. Together, this suggests that TCE in the groundwater plume does not discharge to the vernal pools are unlikely to be exposed. In addition, based on the lack of listed fossorial wildlife at the Site and highly disturbed habitat conditions, evaluation of an exposure pathway for terrestrial ecological receptors is unnecessary. Downgradient from the vernal pools, groundwater may discharge to Ingram Slough south of MW-19 (**Figure 10.4**). While ecological receptors may be

present in the slough, no special status species have been identified there, nor is it suitable habitat for any special status species.

10.8.2 POTENTIAL SOURCE AND DISTRIBUTION OF CONTAMINANTS

Though no direct source of contamination has been confirmed, it is assumed that the original contamination was caused by spills, leaks, and other former operations on and around the Former Titan 1-A Missile Facility. No significant soil contamination has been found (Brown and Caldwell 2007).

As shown in **Figure 10.5**, the highest reported TCE concentrations in groundwater occur adjacent to, and southwest of, the current Placer County Corporation Yard. From there, TCE has migrated to the southwest in groundwater, following the general groundwater flow direction shown in **Figure 10.4**.

10.8.3 MIGRATION AND EXPOSURE PATHWAYS

Trichloroethene has been released to groundwater at the Site. A source has not been identified, but based on the TCE contours in groundwater, the release may have been in the vicinity of the current Placer County Corporation Yard. From there, the contamination in groundwater migrated to the southwest, resulting in the contaminant plume map shown in **Figure 10.5**. While contamination in groundwater migrated laterally, it does not appear to have migrated downward into the weathered bedrock, which, as noted above, acts essentially as an aquitard. Though the weathered bedrock acts as an aquitard, it also sorbs TCE, which may be released later.

Trichloroethene may also volatilize from groundwater. From there, TCE will migrate upwards through the soil column until it reaches the atmosphere. If there are any buildings overlying the plume, TCE may also be released to indoor air.

The potential groundwater exposure pathways for human receptors at the Site include:

- Child and adult residents using groundwater as drinking water (direct ingestion) and for showering (dermal absorption and inhalation of volatile organic compounds [VOCs])
- Commercial/industrial workers using groundwater as drinking water (direct ingestion) and for washing hands (dermal absorption and inhalation of VOCs)
- Construction workers encountering groundwater in a trench (incidental ingestion, dermal absorption, and inhalation of VOCs)

Although all groundwater in this part of the Central Valley is considered potentially suitable for domestic or agricultural purposes (CVRWQCB 2019), such uses are unlikely for the shallow groundwater at the Site. Groundwater production observed during the groundwater extraction pilot test was poor. Production from individual temporary groundwater sampling points was usually less than one gallon per minute on a sustainable basis (FA/BC 2004). In Placer County, to be considered adequate for domestic use, a well must produce a minimum of 1 gallon per minute and 1,200 gallons in a four-hour period (or 5 gallons per minute) at least once every 24 hours (Placer County Code Article 16.08.040.E.3.b and 16.20.180.C.3). Therefore, shallow groundwater at the Site does not meet County requirements for domestic water use.

While the area overlying the TCE plume remains undeveloped, terrestrial ecological receptors may be present at the Site, including plants, mammals, and birds. These receptors may be exposed to TCE via inhalation of outdoor and burrow air. If parts of the Site are developed, ecological receptors are assumed to no longer be present. On the southern end of the TCE plume, contaminated groundwater may be in contact with surface water. Ecological receptors could be exposed through dermal contact or ingestion of contaminated groundwater that discharges to surface water and/or sediment, as well as the ingestion of food items. Although the Site is suitable for several special status species, none

have been observed. These exposure pathways and receptors are summarized in Figures 10.1 and 10.2.
Worksheet #11: Project Data Quality Objectives

Data quality objectives (DQOs) are qualitative and quantitative statements that specify the quality and level of data required to support the decision-making processes for a project. Guidance for DQO development is provided by USACE (2016) and USEPA (2006). Specific DQOs have been established and are presented in below. These DQOs follow USEPA's (2006) seven-step, iterative process for DQO development.

In addition to these DQOs, all data collected during this project are required to attain the measurement performance criteria (MPCs) described on **Worksheet #12** to be considered adequate to support environmental decisions, unless sufficient alternative justification is provided to and accepted by the project team. Before final environmental decisions are made, data will be verified and validated as described in **Worksheets #34** through **#37**.

11.1 STEP 1 - STATE THE PROBLEM

Previous investigations have identified the nature of contamination; i.e., TCE and its breakdown products, which are present in groundwater at the Site. Historically, the highest TCE concentrations in groundwater are found to the southwest of the Placer County Corporation Yard. TCE has also been detected in soil vapor in areas overlying the groundwater TCE plume. Remediation alternatives will be identified and evaluated in a Feasibility Study and are likely to include treatment using injections to chemically reduce COPC concentrations and/or enhance bioremediation in situ. A combination of three amendments has been selected to evaluate abiotic and biotic treatment:

- PlumeStop® Liquid Activated Carbon™ (PlumeStop®) is a colloidal form of activated carbon that provides a large sorption surface to capture COPCs. PlumeStop® abiotically treats TCE through sorption, which will reduce TCE concentrations in groundwater without the formation of cis-1,2-DCE or vinyl chloride.
- Sulfidated-Micro Zero Valent Iron (S-MicroZVI) is a concentrated suspension of sulfidated, colloidal zero-valent iron that provides a chemical reduction mechanism that will treat COPCs. ZVI works by abiotically degrading TCE to ethene without the production of daughter products, such as cis-1,2-DCE or vinyl chloride. It also creates a long-lasting reducing environment that can provide native and augmented bacteria with the conditions needed for reductive dechlorination.
- Bio-Dechlor Inoculum Plus (BDI Plus®) is a live microbial culture of dechlorinating bacteria that can be added to augment existing bacterial populations to ensure the necessary types of bacteria are present for enhanced anaerobic bioremediation. BDI+ will enhance anaerobic degradation through reductive dechlorination, which will degrade TCE to cis-1,2-DCE and then to vinyl chloride.

The optimal dosing rates and effectiveness of these amendments at the Titan 1-A site is unknown. Therefore, a treatability study is proposed to evaluate in situ chemical reduction (ISCR) and enhanced anaerobic bioremediation (EAB).

11.2 STEP 2 - IDENTIFY THE GOALS OF THE STUDY

The goals of the study are to answer the following questions:

• Are ISCR and EAB feasible groundwater treatment technologies in the source area?

- Are ISCR and EAB feasible as perimeter groundwater treatment technologies?
- How do contaminant concentrations and groundwater flow vary with depth?
- What volume of the amendments can be injected into the formation?
- How much treatment is achieved at the applied amendment dosing rate(s)?
- Are there any constraints that will limit the effectiveness of injections (e.g., daylighting, refusal, inability to inject in the desired zone, inadequate treatment response, formation of undesirable compounds, etc.)?
- Are high concentrations of COPCs present in the weathered bedrock that could be a long-term source of contaminants to groundwater?

Data should be gathered to evaluate the suitability of ISCR and EAB as remedial options for the Site in a Feasibility Study.

11.3 STEP 3 - IDENTIFY INFORMATION INPUTS

Data from the previous investigations and reports listed in **Worksheet #13** will be used to refine the technical approach and will be used to calculate planned amendment dosing and evaluate treatment performance.

Additional monitoring wells will be installed and sampled for volatiles, metals, dissolved gases, anions, total organic carbon (TOC) and water quality parameters (see **Worksheet #15**) to evaluate groundwater geochemical conditions. This data will establish groundwater geochemical conditions, which will be used to evaluate whether geochemical conditions are suitable for treatment and as one indicator of whether treatment can be effective (USEPA 1998).

Soil samples from the soil borings will be collected and analyzed for volatiles to assess COPC concentrations in the weather bedrock and to qualitatively assess soil type. Passive flux meters (PFMs) will be installed in existing monitoring wells and sorbent media from the PFMs will be sampled for VOCs and alcohol tracers to calculate groundwater flow velocities and COPC flux at discrete depths. The PFMs will be installed within the planned treatment areas (EW-1 and MW-43), as well as areas outside the planned injection locations (MW-19 and MW-50) to assess groundwater flow and contaminant flux throughout the plume.

Groundwater samples will be collected prior to implementing the amendment injections to evaluate baseline conditions. Baseline conditions will be established a) in the source area with a sample from well EW-1 and b) near the perimeter by collecting samples from wells MW-43 and MW-67. After the amendments are injected, groundwater samples will be collected to evaluate treatment performance and changes in geochemical conditions. Source area treatment will be evaluated using samples from EW-1. Perimeter treatment will be evaluated using samples from MW-67 (upgradient) and MW-43 (downgradient).

See **Worksheet #18** for a summary of the sampling locations and methods. See **Appendix D** for Standard Operating Procedures (SOPs) used for data collection and **Worksheet #15** for the analyte list and methods.

11.4 STEP 4 - DEFINE THE BOUNDARIES OF THE STUDY

Spatial Boundaries: Injections will be completed in the area immediately surrounding EW-1 and in a row upgradient of MW-43 (**Figure 11.1**). Injections will be spaced 6 to 7 feet apart near EW-1 and 5 to 6 feet apart upgradient of MW-43. A new monitoring well (MW-67) will be installed upgradient of the injections near MW-43 and a soil boring (B-01) will be installed adjacent EW-1. Groundwater samples

will be collected from EW-1 and MW-43 and MW-67. PFMs will be installed in EW-1, MW-19, MW-43, and MW-50. Soil samples will be collected from B-01. Planned injection locations may be modified in the field based on accessibility, the presence of utilities and other obstructions, or surface water bodies, logistical factors, and/or rights of entry. The vertical boundary is the depth to bedrock (approximately 30 feet bgs).

Temporal Boundary: Well installation, sampling, and PFM installation will be conducted prior to completing injections. The injections are planned for early 2025. Performance sampling will be conducted quarterly for one year following the completion of the injections. It is expected that the results of the treatability study will be substantial and immediately apparent and that four quarters will be sufficient to identify the impact of the treatability study, or lack thereof. The impacts are expected to be observed within the first quarter and the remaining events will establish the additional evidence to support the evaluation of the outcomes. The project schedule is shown in **Appendix A**.

11.5 STEP 5 - DEVELOP THE ANALYTIC APPROACH (DECISION RULES)

Injection and sampling locations have been chosen to evaluate the effectiveness of in situ treatment of COPCs in the source area and as a downgradient perimeter treatment technology.

11.5.1 GROUNDWATER MONITORING

In general, TCE concentrations are expected to decrease because the three amendments that are intended to treat TCE. ZVI will abiotically degrade TCE to ethene without the production of daughter products. PlumeStop will sorb TCE leading to reduced concentration in groundwater. BDI+ will enhance anaerobic degradation and will produce daughter products (cis-1,2-DCE and vinyl chloride). Therefore, decreases in TCE concentrations may be attributable to any of these three amendments. However, only BDI+/EAB is associated with the generation of daughter products. Therefore, we are using the presence of daughter products as an indicator that EAB is a feasible technology at the Site. In this context, the term suitable is meant to state that conditions are such that reductive dechlorination can and do occur.

The following decision rules will be applied to groundwater monitoring well sampling:

- The new well (MW-67) will be sampled quarterly for one year. Once the four quarterly performance monitoring events are complete, MW-67 will be abandoned.
- At EW-1, if post-injection TCE concentrations in the performance monitoring samples are lower than the TCE concentration in the baseline sample, then ISCR is a feasible source treatment technology that can be considered for the Site remedy. As noted in the RI (Parsons, 2024a), TCE concentrations do not have a statistically significant trend up or down in EW-1 and do not appear to be correlated with groundwater elevations. Therefore, historical data from EW-1 will be graphed as a control chart, with new TCE concentration data compared to the pre-injection (i.e., from 2019 up to the injection) 95% upper and lower confidence limits and the preinjection median to evaluate whether the injections have affected TCE concentrations in groundwater at EW-1. Note, however, that with the recent construction in the area, groundwater flow patterns may have changed and the effect on TCE concentrations in the vicinity of EW-1 has not yet been determined. Therefore, alternative methods to evaluate the effects of the injection on TCE concentrations at EW-1 may be required.
- At MW-43, if TCE concentrations after treatment are lower than the TCE concentration in the baseline sample, then ISCR is a feasible perimeter treatment technology that can be considered for the Site remedy. Samples collected before and after treatment in the upgradient well (MW-67) will be used as a control to assess if treatment is effective. As MW-67 is close enough to MW-43 that TCE concentrations in groundwater should not be different,

a control chart (as described above for EW-1) will be developed for MW-43 and the data for both MW-43 and MW-67 will be plotted on the control chart to evaluate whether the injections have affected TCE concentrations in groundwater at MW-43. The expectation is that post-injection, a decrease in contaminant concentrations should be observed in MW-43 compared to the control chart confidence interval if the treatment is effective, but no decrease should be observed in MW-67.

If TCE daughter products are detected (cis-1,2-DCE and/or vinyl chloride) and geochemical parameters measured during performance monitoring indicate groundwater conditions are suitable for reductive dechlorination (groundwater is anaerobic and groundwater conditions are reducing), then EAB is a feasible treatment technology for reducing TCE concentrations. Any of the three amendments used may result in lower TCE concentrations; however, only BDI+/EAB is associated with the generation of daughter products. Therefore, the presence of daughter products is an indicator that EAB is a feasible technology at the Site. Because all three amendments will work to reduce daughter product concentrations, it is not expected that vinyl chloride will accumulate as a result of EAB. However, concentrations of vinyl chloride and their overall persistence should be evaluated to consider if these amendments should be selected as the Site remedy.

11.5.2 MONTORING WELL DEPTH AND SOIL SAMPLES

One new groundwater monitoring well (MW-67) and one new soil boring (B-01) will be installed (**Figure 11.1**). **Appendix D** includes procedures for installing soil borings and collection soil samples (SOP 05) for installing monitoring wells (SOP SESDGUID-101). Soil samples will be collected for VOCs and a qualitative assessment of soil type. Soil type samples will be collected every 2 feet from 15 to 24 feet bgs in B-01 and from 3 to 26 feet bgs in MW-67. The following decision rules will be applied to collecting soil samples:

• If field personnel note that the water bearing zone appears to be shallower than anticipated or if the depth to bedrock is deeper than expected, then more samples will be collected to cover the entire water bearing zone. Soil type samples will be collected so that the entire water bearing zone is sampled every two feet.

11.5.3 AMENDMENT INJECTIONS

The following decision rules will be applied to amendment injections:

• If daylighting of injected material is observed, injection at that interval will cease. The release will be managed by containing and collecting the surfaced groundwater and reagents. The injection plan will then be modified to limit the possibility of daylighting occurring again.

Exceptions to the injection approach that may be implemented based on decision inputs are:

If the formation cannot accept the volume of injectate prescribed, then the planned injection
volume may be adjusted. Examples of the formation not accepting the injectate include
daylighting, unacceptable injection pressures, injectate loss in trenches, utility corridors, and
other unforeseen circumstances. If an injection cannot be completed, then the location of one
or more planned injections may be adjusted. Examples of when a location would be modified
include drilling refusal before reaching target depth, daylighting of injectate, and surface
obstructions in the injection location (e.g., surface water, existing trenches, etc.).

11.6 STEP 6 - SPECIFY PERFORMANCE OR ACCEPTANCE CRITERIA

Injections and sampling and analysis shall achieve applicable MPCs as agreed upon in the work plan, unless MPC failures can be adequately explained and/or justified.

Analytical data quality will meet the MPCs outlined in **Worksheet #12**, **Section 12.2** and data performance criteria in **Worksheets #19/30, 35, 36**, and **37**.

11.7 STEP 7 - DEVELOP THE PLAN FOR OBTAINING DATA (TECHNICAL APPROACH SUMMARY)

The sampling design is provided in **Worksheet #17** and the analytical design is provided in **Worksheets #19/30, 20**, and **24-28**. SOPs for data collection are provided in **Appendix D**. Data will be gathered with a focus toward determining if amendment injections can be effectively applied in order to evaluate remedial options in a Feasibility Study.

One soil boring and one additional monitoring well will be installed to approximately 30 feet bgs. Soil samples will be collected every two feet from the water-bearing zone in each boring and submitted for visual analysis of soil type. Each boring will be completed at least six-inches into the bedrock and a bedrock sample will be collected from each boring and analyzed for VOCs. The well will be screened in the first water-bearing zone (approximately 5–30 feet bgs), sampled, and analyzed for VOCs and geochemical parameters.

Baseline groundwater sampling will be conducted prior to implementing the injection program to verify the planned amendment dosing and to provide baseline data for evaluating the effectiveness of the treatment. New and existing monitoring wells will be sampled for VOCs using PFMs and for geochemical parameters using low-flow groundwater sampling techniques. Amendment dosing and injection spacing will be verified based on the baseline sampling and the screening level PFM data collected prior to injection mobilization.

Amendment injections will be completed in two areas.

- Sixteen injections will be completed in a grid pattern around EW-1 (see Figure 11.1).
 - > The injections will be placed 6 to 7 feet apart laterally.
 - The injection interval will include the entire water bearing zone down to bedrock, estimated to be 15 to 24 feet bgs.
- Eight injections will be completed upgradient of MW-43.
 - The injections will be placed in a single row perpendicular to groundwater flow direction (see Figure 11.1).
 - > The injections will be spaced approximately 5-6 feet apart laterally.
 - The row will be located approximately 10 feet from MW-43 and at least 15 feet from MW-67. All injection points will be at least 10 feet from the existing extraction trenches and at least 6 feet from surface water bodies.

Groundwater sampling will be conducted at least one month after the injections are complete to evaluate treatment performance. Groundwater treatment performance samples will be collected quarterly for one year (four sampling events) from wells EW-1, MW-43, and MW-67 and qualitatively compared to the baseline sample results to evaluate treatment performance. Samples will be analyzed for VOCs and geochemical parameters.

Worksheet #12: Measurement Performance Criteria

12.1 MPC FOR FIELD-RELATED TASKS

The field operations for this project involve multiple elements, or "definable features of work." These definable features of work are listed on **Worksheet #14** and a discussion of each one is included in the Field Investigation Plan (**Worksheet #18**). Standard operating procedures (SOPs) for each field activity are provided in **Appendix D**. **Table 12.1** summarizes the MPCs that have been established for the definable features of work associated with the tasks to be conducted during this investigation. The quality of these procedures and the related results will be evaluated for compliance with project quality objectives (PQOs) through a review of overall precision, accuracy, representativeness, comparability, and completeness (PARCC), in accordance with the procedures described in **Worksheet #37**. (*Note that MPCs are required to indicate that the relevant data are of adequate quality to support project decisions*.)

Definable Feature of Work (<i>Data Type</i>)	Data Quality Indicator(s)	Activity to Assess Measurement Performance and/or Quality Control (QC) Sample	Measurement Performance Criteria	Frequency	Action in Event of Failure
<i>Borehole logging</i> (documentation)	Completeness	Geologist completes the drilling log (ASTM D2488-17)	Borehole logging documentation is correctly recorded.	Each boring installed	Correct entry if critical details cannot be resolved, resampling may be required.
<i>Soil sampling from boreholes</i> (documentation)	Completeness	Geologist collects samples from the boreholes	The proper samples are submitted for analysis.	Each boring installed	Correct entry. If critical details cannot be resolved, resampling may be required.
Soil sampling from boreholes (field measurements)	Accuracy	Perform equipment calibration and checks per Worksheet #22 .	All equipment is calibrated per requirement of Worksheet #22 , prior to field parameter collection.	See Worksheet #22.	Recalibrate or replace equipment as necessary.

Table 12.1 – Definable Features of Work

Table 12.1 – Definable Features of Work

Definable Feature of Work (<i>Data Type</i>)	Data Quality Indicator(s)	Activity to Assess Measurement Performance and/or Quality Control (QC) Sample	Measurement Performance Criteria	Frequency	Action in Event of Failure
<i>Well installation</i> (documentation)	Completeness	Geologist accurately details well installation and construction procedure (SESDGUID- 101)	Well construction details are correctly recorded.	Each well installed	Correct entry. If critical details cannot be resolved.
<i>Well development</i> (documentation)	Completeness	Geologist completes the well development log and records development parameters (SESDGUID-101)	Development logging documentation is correctly recorded.	Each monitoring well developed	Correct entry. If critical details cannot be resolved, redevelopment may be required.
<i>Well development</i> (field measurements)	Accuracy	Perform equipment calibration and checks per Worksheet #22 .	All equipment is calibrated per requirement of Worksheet #22 , prior to field parameter collection.	See Worksheet #22.	Recalibrate or replace equipment as necessary.
Low-Flow Groundwater Sampling (documentation)	Completeness	Sampler completes the low-flow groundwater sample log (SOP 02)	Sample documentation is correctly recorded.	End of each sample collection.	Correct entry. If critical details cannot be resolved, resampling may be required.
Low-Flow Groundwater Sampling	Accuracy	Perform equipment calibration and checks per Worksheet #22 .	All equipment is calibrated per requirement of Worksheet #22 , prior to	See Worksheet #22.	Recalibrate or replace equipment as necessary.

Table 12.1 – Definable Features of Work

Definable Feature of Work (<i>Data Type</i>)	Data Quality Indicator(s)	Activity to Assess Measurement Performance and/or Quality Control (QC) Sample	Measurement Performance Criteria	Frequency	Action in Event of Failure
(field measurements)			field parameter collection.		
Groundwater Sampling with PFMs (documentation)	Completeness	Sampler notes the details of PFM construction, installation, retrieval, and sampling for each PFM in the field logbook	Documentation is correctly recorded.	During deployment, retrieval, and sampling of each PFM	Correct entry. If critical details cannot be resolved, resampling may be required.
Amendment Injections (Completeness)	Completeness	Driller completes the correct number of injection points and injects the correct amount of amendments in each treatment area.	Injection documentation is correctly recorded.	End of each injection.	Correct entry. If critical details cannot be resolved, resampling may be required.
Waste Characterization Sampling (documentation)	Completeness	Sampler documents sample on Waste Tracking Log (Appendix B)	Documentation is complete.	For each waste characterization sample collected	Correct entry. If critical details cannot be resolved, resampling may be required.
Waste Management (documentation)	Accuracy	Geologist or sampler completes the Waste Tracking Log, Waste Disposal Tracking Log, and Waste	Documentation is on file for all waste generated on-site.	Each time a new waste drum/ container is generated, sampled, characterized,	Immediately report discrepancies to, Site Manager, and Parsons PM.

Table 12.1 - Definable Features of Work

Definable Feature of Work (<i>Data Type</i>)	Data Quality Indicator(s)	Activity to Assess Measurement Performance and/or Quality Control (QC) Sample	Measurement Performance Criteria	Frequency	Action in Event of Failure
		Transportation Tracking Log.		disposed of, or transported	Parsons PM notifies USACE PM to reconcile any differences.
Data Storage and Management	Completeness	Scientist manages and stores project data.	Documentation is complete and accurate.	All applicable data.	Correct entry.

12.2 MEASUREMENT PERFORMANCE CRITERIA FOR SAMPLE COLLECTION

The following table summarizes the MPCs that have been established for the related tasks to be conducted during the sampling at Former Titan 1-A. The quality of the sampling procedures and laboratory results will be evaluated for compliance with PQOs through a review of overall PARCC, in accordance with the procedures described in **Worksheet #37**. The results will be summarized in a DUA. These criteria are not applicable to injections or waste characterization.

Table 12.2.1 - Measurement Performance Criteria for Analysis of Volatiles in Soil and Groundwater

Laboratory:	EMAX
Matrix:	Soil and Groundwater
Analytical Group or Method:	Volatile Organic Compounds by SW8260C
Concentration Level:	All
Procedure:	Soil Sampling and Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Trip Blank	One per cooler	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Equipment/Rinsate Blank ¹	One per up to five (5) consecutive days of sampling when non- disposable sampling tools are used	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Source Blank ¹	One per rinse water source	Representativeness, Accuracy/Bias	All target compounds $\leq \frac{1}{2}$ LOQ
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25% for water and < 50% for soil
Matrix spike (MS) / Matrix spike duplicate (MSD)	One MS/MSD pair per 20 field samples	Accuracy, Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10$ sample concentration, or > $1/10^{\text{th}}$ of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
laboratory control sample duplicate (LCSD)	One per preparation batch when MSD is not applicable or available	Analytical Accuracy, Analytical Precision	See Worksheet #28

Table 12.2.1 - Measurement Performance Criteria for Analysis of Volatiles in Soil and Groundwater

Groundwater
rganic Compounds by SW8260C
ling and Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQls)	Measurement Performance Criteria
Surrogate	All field and QC samples	Analytical Accuracy/Bias	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Notes:

Table 12.2.2 - Measurement Performance Criteria for Analysis of Metals in Groundwater

Laboratory:	EMAX
Matrix:	Groundwater
Analytical Group or Method:	Metals by SW6010C
Concentration Level:	All
Procedure:	Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Equipment/Rinsate Blank ¹	One per up to five (5) consecutive days of sampling when non- disposable sampling tools are used	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Source Blank ¹	One per rinse water source	Representativeness, Accuracy/Bias	All target compounds $\leq \frac{1}{2}$ LOQ
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
MS/MSD	One MS/MSD pair per 20 field samples	Accuracy, Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10$ sample concentration, or > $1/10$ th of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
laboratory control sample duplicate (LCSD)	One per preparation batch when MSD is not applicable or available	Analytical Accuracy, Analytical Precision	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Notes:

Table 12.2.3 – Measurement Performance Criteria for Analysis of Dissolved Gases in Groundwater

EMAX
Groundwater
Dissolved Gases by RSK-175
All
Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Equipment/Rinsate Blank ¹	One per up to five (5) consecutive days of sampling when non- disposable sampling tools are used	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Source Blank ¹	One per rinse water source	Representativeness, Accuracy/Bias	All target compounds $\leq \frac{1}{2}$ LOQ
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
MS/MSD	One MS/MSD pair per 20 field samples	Accuracy, Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10 \text{ sample}$ concentration, or > $1/10^{\text{th}}$ of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
laboratory control sample duplicate (LCSD)	One per preparation batch when MSD is not applicable or available	Analytical Accuracy, Analytical Precision	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Notes:

Table 12.2.4 – Measurement Performance Criteria for Analysis of Anions in Groundwater

Laboratory:	EMAX
Matrix:	Groundwater
Analytical Group or Method:	Anions by SW9056A
Concentration Level:	All
Procedure:	Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Equipment/Rinsate Blank ¹	One per up to five (5) consecutive days of sampling when non- disposable sampling tools are used	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Source Blank ¹	One per rinse water source	Representativeness, Accuracy/Bias	All target compounds $\leq \frac{1}{2}$ LOQ
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
MS/MSD	One MS/MSD pair per 20 field samples	Accuracy, Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10$ sample concentration, or > $1/10$ th of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
laboratory control sample duplicate (LCSD)	One per preparation batch when MSD is not applicable or available	Analytical Accuracy, Analytical Precision	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Notes:

Table 12.2.5 – Measurement Performance Criteria for Analysis of Alkalinity in Groundwater

EMAX
Groundwater
Alkalinity by SM2320B
All
Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
sample duplicate	One matrix duplicate (MD) or sample duplicate per 20 field samples	Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > 1/2 LOQ or >1/10 sample concentration
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Table 12.2.6 – Measurement Performance Criteria for Analysis of Hardness in Groundwater

Laboratory:	EMAX
Matrix:	Groundwater
Analytical Group or Method:	Hardness by SM2340C
Concentration Level:	All
Procedure:	Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
sample duplicate	One MD or sample duplicate per 20 field samples	Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10$ sample concentration, or > $1/10$ th of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28

Table 12.2.7 – Measurement Performance Criteria for Analysis of Total Organic Carbon (TOC) in Groundwater

Laboratory:	EMAX
Matrix:	Groundwater
Analytical Group or Method:	TOC by SW9060A
Concentration Level:	All
Procedure:	Groundwater Sampling using Low-Flow Sampling

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Equipment/Rinsate Blank ¹	One per up to five (5) consecutive days of sampling when non- disposable sampling tools are used	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Source Blank ¹	One per rinse water source	Representativeness, Accuracy/Bias	All target compounds $\leq \frac{1}{2}$ LOQ
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 25%
MS, MD	One MS and MD per 20 field samples	Accuracy, Precision	See Worksheet #28
Temperature Blank	One per cooler	Representativeness	≤ 6 °C
Method Blank	One per preparation batch	Representativeness, Accuracy/Bias	No analytes detected > $1/2 \text{ LOQ}$, > $1/10$ sample concentration, or > $1/10$ th of the regulatory limit, whichever is greater
Laboratory control sample (LCS)	One per preparation batch	Analytical Accuracy	See Worksheet #28
laboratory control sample duplicate (LCSD)	One per preparation batch when MSD is not applicable or available	Analytical Accuracy, Analytical Precision	See Worksheet #28
LOQ Verification Sample	Quarterly	Sensitivity	Laboratory in-house limits

Notes:

Table 12.2.8 – Measurement Performance Criteria for VOCs and Alcohol Tracers in PFM Media

Laboratory:	EnviroFlux
Matrix:	PFM Media
Analytical Group or Method:	VOCs by SW8260C and alcohols by SW8015C
Concentration Level:	All Concentrations
Procedure:	Groundwater Sampling using Passive Flux Meters

QC Sample	Frequency	Data Quality Indicators (DQIs)	Measurement Performance Criteria
Trip Blank	One per cooler including VOC samples	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Field Blank	One per every PFM deployed	Representativeness, Accuracy/Bias	All target compounds \leq LOQ or \leq 5 times the LOQ for common laboratory contaminants
Field duplicate (FD)	One per 20 field samples	Precision	Relative percent difference (RPD) < 50%
Method Blank	One per batch of 20 samples	Representativeness, Accuracy/Bias	No analytes detected > method reporting limit (MRL) or LOQ
Temperature Blank	One per cooler	Representativeness	≤ 4 °C
Laboratory control sample (LCS)	One per batch of 20 Samples	Analytical Accuracy	See Worksheet #28

Worksheet #13: Secondary Data Uses and Limitations

Secondary data will be used to make decisions during the environmental investigation at the Former Titan 1-A Missile Facility. The following table lists the primary supporting documents for this project and the ways they might be used during project implementation.

Secondary Data	Data Source	How Data Will Be Used	Limitations on Data Use
Site history and CSM	 Previous investigations include: Monitoring Well Installation and Ground Water Sampling at Ferrari Eastlake Ranch Site (now Cal Sierra Limited; Radian 1991) Records Research Report (Woodward-Clyde 1996) Field Investigation Report, Passive Soil Vapor Survey (Woodward-Clyde 1997) Focused Remedial Investigation Report (URS 2001) 2001-2006 Annual Groundwater Monitoring Reports (FA/BC 2002, Brown and Caldwell 2003, 2004c, 2006) Continuing Remedial Investigation Report (Brown and Caldwell 2004b) Report of Soil Vapor Survey, Crocker Knoll Property (now Cal Sierra Limited; AEG 2012) Report of Groundwater Investigation, Crocker Knoll Property (now Cal Sierra Limited; AEG 2015a) 	Data will be used as reference for site history, types of contaminants, nature and extent of contamination, temporal trends, and general site information. Data will be used to evaluate potential location of new groundwater monitoring wells and/or injection locations.	Professional judgment will be required to determine data usability. The reports produced following this work plan will document the usability of secondary data, including any changes to the site history and CSM.

Table 13.1 – Secondary Data Uses and Limitations

Table 13.1 – Secondary Data Uses and Limitations

Secondary Data	Data Source	How Data Will Be Used	Limitations on Data Use
	 Report of Soil Vapor Survey, Oak Tree Lane Property (now 2 parcels, Praxis Properties and Century Communities; AEG 2015b) Surface Soil and Soil Vapor Investigation Report. Hidden Hills Property (now 2 parcels, Praxis Properties and Century Communities; Wallace-Kuhl 2015) Report of Groundwater Investigation, Former Titan 1-A Missile Facility (AEG 2016) 2019-2023 Quarterly Groundwater and Soil Vapor Monitoring Reports (Ahtna 2020, 2021a, b, c, 2022a, b, c, d, 2023a, b, c, d, e) 2023 Supplemental Remedial Investigation and Feasibility Study Report (Ahtna 2023f) 		
Soil and groundwater data collected under an approved work plan and QAPP using approved analytical methods, with appropriate detection limits to meet project goals.	Previous investigations (see above).	If proper data collection, analysis, and validation can be verified, data may be used for all applicable DQO purposes including determination of the nature and extent of contamination. Otherwise, data will be used as screening-level data to assist with CSM development and placement of samples.	None if proper collection, analysis and validation can be verified. If not, data will be considered screening-level data and will not be used for determination of nature and extent or for risk assessment purposes.

Table 13.1 – Secondary Data Uses and Limitations

Secondary Data	Data Source	How Data Will Be Used	Limitations on Data Use
Lithology and boring logs	Previous investigations (see above).	Data will be used to support the development of the hydrogeologic CSM, including the development of geologic cross sections.	Review of logs and professional judgment will be required to determine the data quality and data usability. The usability of secondary data from lithology and boring logs will be assessed during the refinement of the hydrogeologic CSM. The RI report (Parsons 2024a) documents the usability of secondary data.
Geographic Information System (GIS) Layers and Site Maps	Previous investigations (see above).	Data will be used to determine site features and previous sampling locations and will later support the determination of nature and extent of contamination.	Professional judgment will be required to determine usability of maps from previous reports. The RI report will document the usability of secondary data.

Worksheet #14 & 16: Project Tasks and Schedule

14.1 DEFINABLE FEATURES OF WORK

To perform the treatability study, the field investigation will include amendment injections and soil and groundwater sampling. Non-sampling investigation tasks may include measurements of water levels and geophysical investigations. The field operations involve multiple elements, or "definable features of work," that will be required to achieve the project goals. **Table 14.1** provides a summary of these definable features of work and the associated component tasks. A detailed discussion of each of the definable features of work is included in **Section 17.5** of **Worksheet #17 & 18**, and the specific field procedures to be used for the activities described in this summary are included in the various SOPs in **Appendix D**.

Definable Feature of Work	Associated Tasks
Site and Project Preparation	
Mobilization	 Preparation (review plans, make travel arrangements, etc.) Preconstruction biological surveys and ongoing biological monitoring Arrange for equipment and vehicles, and get them delivered to the site Set up site communications Conduct site-specific training and briefing for required field personnel
GIS data management	 Manage geospatial data in suitable formats Prepare maps and GIS for field use and final reports Prepare GIS deliverable
Field Activities	
Geophysical survey	 Perform appropriate QC checks Perform surveys, mark locations of utilities and buried objects, and record point data for documentation of object locations Prepare deliverable survey results report including maps
Point acquisition / sample location staking	 Establish a handheld global positioning system (GPS) control point Conduct QC checks for handheld GPS units Locate and stake proposed sample locations
Drill Soil Boring and Collect Samples (SESDGUID-101 and SOP 05)	 Drill borehole using hollow-stem auger (HSA) Collect soil samples. Decontaminate drilling equipment. Abandon borehole or construct monitoring well. Dispose of soil cuttings and other wastes in accordance with Waste Management Plan (Appendix B)

Table 14.1 – Definable Features of Work and Associated Tasks

Table 14.1 – Definable Features of Work and Associated Tasks

Definable Feature of Work	Associated Tasks
Groundwater Monitoring Well Installation (SESDGUID-101)	 Drill borehole using HSA Construct monitoring well Decontaminate drilling equipment Install surface completion Dispose of soil cuttings and other wastes in accordance with Waste Management Plan (Appendix B)
Groundwater Monitoring Well Development (SESDGUID-101)	 Develop wells through surging and pumping Decontaminate equipment Dispose of development water in accordance with Waste Management Plan (Appendix B)
Groundwater Sampling using Low-Flow Sampling (SOP 02)	 Follow the procedures in the SOP to collect groundwater sample Ship groundwater samples to laboratory for analysis Decontaminate equipment Dispose of purge water in accordance with Waste Management Plan (Appendix B)
Groundwater Sampling using Passive Flux Meters (Appendix G ; <i>PFM Standard</i> Operation Procedure)	 Install the PFM in the well Wait 4-8 weeks Retrieve the PFM from the well Fill sample jars with PFM sorbent for laboratory analysis Ship samples to laboratory for analysis Decontaminate equipment
Field Equipment Decontamination (SOP 04)	 Follow the procedures based on the type/size of equipment that needs decontamination Follow the Waste Management Plan (Appendix B) for disposal of all waste generated during field activities and decontamination process.
Demobilization	Upon completion of field activities all personnel, equipment, materials, and wastes will be removed from the site
Waste characterization sampling (Appendix B)	 Collect and analyze waste samples. Document sampling on Waste Tracking Log (Appendix B) Document Final Characterization on Waste Tracking Log (Appendix B)
Waste management (Appendix B)	 Label and properly store waste Inspect waste storage Profile waste for proper disposal Track waste from generation to disposal Complete all waste tracking and logging documentation

Table 14.1 - Definable Features of Work and Associated Tasks

Definable Feature of Work	Associated Tasks
Data storage and management	 Upload data to appropriate server(s) Accurate and current data are available Data are managed in an organized manner

14.2 PROJECT SCHEDULE

A detailed schedule is provided in Appendix A.

Worksheet #15: Project Screening Levels and Laboratory-Specific Detection / Quantitation Limits

Yellow highlighted values indicate achievable laboratory LOQs, limits of detection (LODs), and/or detection limits (DLs) that are greater than the Project Quantitation Limit Goals (PQLGs). In these cases, the LOD will become the de facto PQLG.

If the sensitivity requirements are not met for a particular analyte, the team will evaluate whether the data can still be used for project decisions. If non-detect values exceed the PQLGs, data are considered usable if the analyte is not a site-related compound. Analytes that are not site-related chemicals, and thus are not expected to be found, do not impact decision making. For analytes that are site-related, the team will use a "weight of evidence" approach to evaluate the likelihood of the chemical's presence. This approach uses available data that does meet sensitivity requirements to evaluate the presence or absence of the compound in other samples or other similar compounds and/or degradation products for the analyte in question.

Samples will be analyzed in accordance with the DoD Quality Systems Manual Version 5.4 (QSM 5.4; DoD, 2021) by a DoD and California ELAP accredited laboratory. Refer to **Appendix G** for the analyzing laboratories records of accreditations.

Note: The screening levels in this UFP-QAPP are used to select the most appropriate analytical methods and analyses for the project. These initial screening levels are used in the UFP-QAPP for project planning and may not be appropriate for use in subsequent steps of the project (e.g., quarterly monitoring reports and/or remedial investigation report).

Table 15.1 - Reference Levels and Evaluation Table: Water, VOCs (8260C)

Laboratory: EMAX

Matrix: Water

Analytical Group: Volatile Organic Compounds (SW8260C)

	046							DCI	Project	Laboratory-Specific ³			
Analyte	Number	Units	RSL	DTSC-SL	MCL	CA MCL	PSL ¹	Reference	Quantitation Limit Goal ²	LOQ	LOD	DL	
1,1-Dichloroethene	75-35-4	µg/L	280	130	7.0	6.0	6.0	CA MCL	2.0	1.0	0.20	0.10	
1,4-Dichlorobenzene	106-46-7	µg/L	0.48	N/A	75.0	5.0	0.48	USEPA RSL	0.20	1.0	0.20	0.10	
Benzene	71-43-2	µg/L	0.46	0.15	5.0	1.0	0.46	USEPA RSL	0.20	1.0	0.20	0.10	
cis-1,2-Dichloroethene	156-59-2	µg/L	25	12	70.0	6.0	6.0	CA MCL	2.0	1.0	0.20	0.10	
Ethylbenzene	100-41-4	µg/L	1.5	N/A	700	300	1.5	USEPA RSL	0.50	1.0	0.20	0.10	
m,p-Xylene	179601-23-1	µg/L	190	N/A	10,000	1,750	190	USEPA RSL	63	2.0	0.50	0.21	
o-Xylene	95-47-6	µg/L	190	N/A	10,000	1,750	190	USEPA RSL	63	1.0	0.20	0.10	
Toluene	108-88-3	µg/L	1,100	410	1,000	150	150	CA MCL	50	1.0	0.20	0.10	
trans-1,2-Dichloroethene	156-60-5	µg/L	68	110	100	10	10	CA MCL	3.3	1.0	0.20	0.10	
Trichloroethene	79-01-6	µg/L	0.49	N/A	5.0	5.0	0.49	USEPA RSL	0.20	1.0	0.20	0.10	
Vinyl chloride	75-01-4	µg/L	0.019	0.0098	2.0	0.50	0.019	USEPA RSL	0.30	1.0	0.30	0.11	

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.2 - Reference Levels and Evaluation Table: Water, Metals (6010C)

Laboratory: EMAX Matrix: Water Analytical Group: Metals (6010C)

Analyte	CAS	Units	USEPA RSL	DTSC-SL	USEPA	CA	PSL ¹	PSL	Project Quantitation	Laboratory-Specific ³			
	Number				MCL	MCL		Reterence	Limit Goal ²	LOQ	LOD	DL	
Aluminum	7429-90-5	mg/L	20	N/A	N/A	1.0	1.0	CA MCL	0.33	0.20	0.05	0.025	
Calcium	7440-70-2	mg/L	-	N/A	N/A	N/A	0.3	LOD	0.3	1.00	0.30	0.15	
Iron	7439-89-6	mg/L	14	N/A	N/A	N/A	14	USEPA RSL	4.7	0.20	0.05	0.025	
Magnesium	7439-95-4	mg/L	-	N/A	N/A	N/A	0.10	LOD	0.10	0.50	0.10	0.05	
Manganese	7439-96-5	mg/L	0.43	N/A	N/A	N/A	0.43	USEPA RSL	0.14	0.01	0.003	0.002	

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level.

https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.3 - Reference Levels and Evaluation Table: Water, Dissolved Gases (RSK-175)

Laboratory: EMAX

Matrix: Water

Analytical Group: Dissolved Gases (RSK-175)

Analyte	CAS	Units	s USEPA RSL	DTSC-SL	USEPA MCL	CA MCL	PSL ¹	PSL ¹ PSL Reference	Project Quantitation	Laboi	poratory-Specific ³		
	Number							Reterence	Limit Goal ²	LOQ	LOD	DL	
Ethane	74-80-0	µg/L	N/A	N/A	N/A	N/A	1.28	LOD	1.28	2.00	1.28	0.64	
Ethene	74-85-1	µg/L	N/A	N/A	N/A	N/A	1.20	LOD	1.20	2.00	1.20	0.60	
Methane	74-82-8	µg/L	N/A	N/A	N/A	N/A	0.68	LOD	0.68	2.00	0.68	0.34	
Carbon dioxide	124-38-9	µg/L	N/A	N/A	N/A	N/A	600	LOD	600	1200	600	300	

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-waterregulations. Accessed 29 April 2024.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.4 - Reference Levels and Evaluation Table: Water, Anions (9056A): Sulfate and Nitrate

Laboratory: EMAX

Matrix: Water

Analytical Group: Anions (9056A): Sulfate and Nitrate

Analyte	CAS Number	Units	USEPA RSL	DTSC-SL	USEPA MCL	CA MCL	PSL ¹	PSL Reference	Project Quantitation	Laboratory-Specific ³		
									Limit Goal ²	LOQ	LOD	DL
Nitrate	14797-55-8	mg/L	32	-	10 as N	10 as N	10	CA MCL	3.3	0.10	0.05	0.025
Sulfate	14808-79-8	mg/L	-	-	-	-	0.25	LOD	0.3	0.50	0.25	0.13

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.5 - Reference Levels and Evaluation Table: Water, Alkalinity (SM 2320B)

Laboratory: EMAX Matrix: Water Analytical Group: Alkalinity (SM 2320B)

Analyte	CAS	Units	USEPA RSL	DTSC-SL	USEPA MCL	CA MCL	PSL ¹	PSL Reference	Project Quantitation	Laboratory-Specific ³			
	Number								Limit Goal ²	LOQ	LOD	DL	
Alkalinity	N/A	mg/L	N/A	N/A	N/A	N/A	5.0	LOQ	5.0	5.0	NA	NA	

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD. If an LOD is not available, the LOQ will be used.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.6 - Reference Levels and Evaluation Table: Water, Hardness (SM 2340C)

Laboratory: EMAX Matrix: Water Analytical Group: Hardness (SM 2340C)

Analyte	CAS	Units	USEPA RSL	DTSC-SL	USEPA MCL	CA MCL	PSL ¹	PSL Reference	Project Quantitation	Laboratory-Specific ³		
	Number								Limit Goal ²	LOQ	LOD	DL
Hardness	N/A	mg/L	N/A	N/A	N/A	N/A	10	LOQ	10	10	NA	NA

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD. If an LOD is not available, the LOQ will be used.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.7 - Reference Levels and Evaluation Table: Water, Total Organic Carbon (9060A)

Laboratory: EMAX Matrix: Water Analytical Group: TOC (9060A)

Analyte	CAS	Units	USEPA RSL	DTSC-SL	USEPA MCL	CA MCL	PSL ¹	PSL Reference	Project Quantitation Limit Goal ²	Laboratory-Specific ³			
	Number									LOQ	LOD	DL	
Total Organic Carbon	N/A	mg/L	N/A	N/A	N/A	N/A	0.50	LOD	0.5	1.0	0.50	0.25	

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD. If an LOD is not available, the LOQ will be used.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 29 April 2024.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Table 15.8 - Reference Levels and Evaluation Table: Soil, VOCs (8260C)

Laboratory: EMAX

Matrix: Soil

Analytical Group: Volatile Organic Compounds (SW8260C)

	040					DEI	Project	Laboratory-Specific ³		
Analyte	Number	Units	RSL	DTSC-SL	PSL ¹	Reference	Quantitation Limit Goal ²	LOQ	LOD	DL
1,1-Dichloroethene	75-35-4	mg/kg	230	83	230	USEPA RSL	77	5.0	1.0	0.50
1,4-Dichlorobenzene	106-46-7	mg/kg	2.6	N/A	2.6	USEPA RSL	1.0	5.0	1.0	0.50
Benzene	71-43-2	mg/kg	1.2	0.33	1.2	USEPA RSL	1.0	5.0	1.0	0.50
cis-1,2-Dichloroethene	156-59-2	mg/kg	63	18	63	USEPA RSL	21.0	5.0	1.0	0.50
Ethylbenzene	100-41-4	mg/kg	5.8	N/A	5.8	USEPA RSL	1.9	5.0	1.0	0.50
m,p-Xylene	179601-23-1	mg/kg	580	N/A	580	USEPA RSL	193	10	2.0	1.0
o-Xylene	95-47-6	mg/kg	640	N/A	640	USEPA RSL	213	5.0	1.0	0.50
Toluene	108-88-3	mg/kg	4,900	1,100	4,900	USEPA RSL	1,633	5.0	1.0	0.50
trans-1,2-Dichloroethene	156-60-5	mg/kg	70	130	70	USEPA RSL	23	5.0	1.0	0.50
Trichloroethene	79-01-6	mg/kg	0.94	N/A	0.94	USEPA RSL	1.0	5.0	1.0	0.50
Vinyl chloride	75-01-4	mg/kg	0.059	0.0082	0.059	USEPA RSL	2.0	5.0	2.0	1.00

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD. If an LOD is not available, the LOQ will be used.

Definitions:

DTSC-SL = California Department of Toxic Substances Control May 2022 residential soil screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 residential soil Regional Screening Level. Target HQ = 1.

Table 15.9 - Reference Levels and Evaluation Table: PFM, VOCs (8260C)

Laboratory: EnviroFlux Matrix: PFM

Analytical Group: Volatile Organic Compounds (SW8260C)

Analyte	CAS Number	Units	USEPA RSL	DTSC-SL	PSL ¹	PSL Reference	Project Quantitation Limit Goal ²	Laboratory-Specific ³		
								LOQ	LOD	DL
Tetrachloroethene flux	N/A	mg/m ² -day	N/A	N/A	0.01	LOD	0.01	0.01	0.004	0.002
Trichloroethene flux	N/A	mg/m ² -day	N/A	N/A	0.01	LOD	0.01	0.01	0.004	0.002
1,2-cis-dichloroethene flux	N/A	mg/m ² -day	N/A	N/A	0.10	LOD	0.10	0.10	0.045	0.02
Vinyl chloride flux	N/A	mg/m ² -day	N/A	N/A	0.30	LOD	0.30	0.30	0.15	0.06
Darcy velocity	N/A	cm/day	N/A	N/A	0.1-0.3	LOD	0.1-0.3	0.1-0.3	0.1-0.3	0.1-0.3

Notes:

1 - The PSL is the USEPA RSL. If there is no USEPA RSL, the DTSC-SL is used. If the CA MCL is lower than the selected value, the CA MCL is used instead.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD. If an LOD is not available, the LOQ will be used.

Definitions:

USEPA MCL - United States Environmnetal Protection Agency Maximum Contaminant Level.

CA MCL - California Maximum Contaminant Level. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

CA PHG - California Public Health Goal. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.html. Accessed 29 April 2024.

DTSC-SL = California Department of Toxic Substances Control May 2022 tapwater screening levels.

N/A = Not available

PSL - Project Screening Level

USEPA RSL = USEPA May 2024 tapwater Regional Screening Level. Target HQ = 1.

Worksheet #17: Sampling Design and Rationale

This worksheet summarizes the rationale for the sample and injection locations and how they will be sampled. Note that precise sampling locations are not described here but will be developed in consultation with the project team based on the results of geophysical and intrusive investigations. The process for sampling, including determining sample locations, is discussed further on **Worksheet #18**.

17.1 GROUNDWATER SAMPLING DESIGN/RATIONALE

Groundwater sampling will be conducted before and after treatment to assess treatment performance and to gather data that will assist with designing a full-scale remedy.

Prior to implementing the injections, one round of baseline samples will be collected. The baseline sampling will include new and existing wells, as follows (**Figure 11.1**):

- Monitoring wells
 - > All monitoring wells listed below will be sampled once.
 - Discrete groundwater samples will be collected from the well listed below and analyzed for as described in Section 18.6.2.
 - EW-1: an existing monitoring well that is within the EW-1 injection area. The location is judgmental in the source area.
 - MW-19: an existing monitoring well that is downgradient of both injection areas. The location is judgmental and is on the perimeter.
 - MW-43: an existing well that is downgradient of the planned injections at MW-43. The location is judgmental and is on the perimeter.
 - MW-50: an existing monitoring well that is side-gradient from both injection areas. The location is judgmental and is on the perimeter.
 - MW-67: a new monitoring well (MW-67) will be placed upgradient of the planned injections at MW-43. The location is judgmental and is on the perimeter of the source area.
- PFMs
 - PFMs will be installed in monitoring wells listed below and sampled once prior to treatment. Samples will be analyzed for as described in Section 18.6.2.
 - > PFMs are considered composite samples as the sample is time-integrated.
 - EW-1: an existing monitoring well that is within the EW-1 injection area. The location is judgmental in the source area.
 - MW-19: an existing monitoring well that is downgradient of both injection areas. The location is judgmental and is on the perimeter.
 - MW-43: an existing well that is downgradient of the planned injections at MW-43. The location is judgmental and is on the perimeter.
 - MW-50: an existing monitoring well that is side-gradient from both injection areas. Understanding mass flux in this area is important for evaluating the treatment design in areas that are outside plume core. The location is judgmental and is on the perimeter.

MW-43 and MW-67 will be used to compare groundwater conditions upgradient and downgradient of the barrier injections. Groundwater samples will be collected before and after treatment to establish baseline and post-treatment VOC concentrations and geochemical conditions to assess the treatment effectiveness

After implementing the injections, performance monitoring will be conducted quarterly for one year (four events). The performance monitoring will consist of the following:

• Discrete samples from new and existing monitoring wells will be collected from each treatment zone, including the source zone (EW-1) and the perimeter (MW-43 and MW-67). These samples will be analyzed as described in **Section 18.6.3**. It is expected that the effects of the treatability study will be obvious and apparent, such that a judgmental approach is adequate to observe whether the injections are effective. The three wells selected for performance monitoring are suitably located to observe the impacts of the injections in both the source and perimeter treatment areas.

17.2 SOIL SAMPLING DESIGN/RATIONALE

Prior to treatment soil samples will be collected from a boring in each treatment zone and the soil type will be qualitatively evaluated. These data will be used to optimize the treatability study injection plan and to design a full-scale alternative in the FS. These sample locations were selected because they represent the areas to be treated. Full-scale injection, if selected, will be based on additional data, as appropriate. Soil samples will be collected from the boring used to install MW-67 (perimeter area) and from boring B-01 (source area) (Figure 11.1).Discrete samples will be collected every two feet throughout the planned vertical treatment zone (15 to 24 feet bgs at B-01 and 3 to 26 feet bgs at MW-67). Based on available boring logs, this distribution is adequate to identify variability with depth.

In addition, one sample of the weathered bedrock will be collected from each new boring (MW-67 at the perimeter and B-01 in the source area). These discrete samples will be collected before treatment and will be analyzed for VOCs (**Table 15.8**) to assess if the weathered bedrock will be an ongoing source of COPCs to groundwater.

17.3 INJECTION LOCATION DESIGN/RATIONALE

The locations of the proposed injections (**Figure 11.1**) were determined using professional judgement, as follows:

- The injections surrounding EW-1 were located in the area of highest groundwater concentrations to evaluate source area treatment. The injection locations may have to be slightly adjusted from what is shown in **Figure 11.1** to avoid the EW-1 vault.
- The injections upgradient of MW-43 were located to evaluate a perimeter type treatment.
- Injection spacing is based on the soil types in existing adjacent borings. Previous experience was used to estimate the radius of influence for these soil types.

17.4 REPORTING

The results of the activities described here will be reported in a Treatability Study Report following the completion of 4 quarters of performance monitoring. The schedule is provided in **Appendix A** (see Subtask 12.3 Treatability Study Report). Following the injections, quarterly progress updates will also be submitted to the Central Valley Water Board via email.
Worksheet #18: Sampling Locations and Methods

This section describes the approach for evaluating groundwater conditions at the Site to achieve the goals of the project (**Worksheet #11**).

18.1 MOBILIZATION

Preparations for mobilization will commence upon approval of the final Work Plan. Upon receipt of document approval, the field team will be notified, coordination with subcontractors will be finalized, and requisite copies of applicable documents will be assembled.

Prior to initiating field activities, all team members will be given site-specific training involving:

- Activities to be performed
- Safe work practices
- Emergency procedures
- Threatened and endangered species awareness

The field team will be briefed each day prior to commencement of field activities. Daily briefings will include a discussion of weather conditions, the previous day's findings (if related to safety issues), emergency response and evacuation procedures. The daily meetings will ensure all project personnel are familiar with the Accident Prevention Plan (APP) / Site Safety and Health Plan (SSHP) (Parsons 2024b), and that all pertinent Activity Hazard Analyses (AHAs) included in the APP/SSHP have been reviewed and discussed.

18.2 VEGETATION CLEARANCE

Prior to sampling, installing a monitoring well, or completing injections, the potential staging areas for any vehicles and/or drill rigs will be evaluated. If grass is present and long enough such that it could contact hot engine parts, the grass will be cut using a handheld string trimmer.

18.3 UTILITY CLEARANCE

Utility clearance must be obtained prior to installing monitoring wells and completing injections to ensure that drilling equipment will not hit overhead or underground utility lines. Underground Service Alert (<u>https://usanorth811.org/</u>) will be called for utility location and marking. In addition, a third-party geophysical subcontractor will conduct precision utility location (PUL), electromagnetic (EM), and/or precision utility location (GPR) surveys to locate underground utilities throughout the work area. Identified utilities will be marked on the ground surface and will be surveyed. Utilities will be located within an approximate 10-foot buffer around the proposed monitoring well(s) and injection areas to accommodate relocation, if needed (**Figure 11.1**). If any underground utilities are present within 5 feet of a monitoring well location, the monitoring well location will be relocated. If any underground utilities are present within 10 feet of an injection point, the overall injection footprint will be evaluated for adjustment.

The PUL survey shall be conducted using a precision electromagnetic pipe and cable locator. Each location will be surveyed in passive mode to detect active utilities emitting a live electrical signal. If active utility pipes or cables are located near the survey areas, then the PUL will be operated in active mode to transmit a signal along the pipe or cable, and the path of the line and a buffer will be located and marked within the survey area.

If necessary, the EM survey will be performed using a time domain EM induction metal detector (EM61, or similar) capable of detecting and resolving the extent of large metallic buried objects up to 12 feet bgs. EM data shall be collected along transect lines at 5-foot spacing.

If necessary, the GPR survey will be conducted using instruments and software with resolutions sufficient to interpret potential buried objects up to 12 feet bgs. The GPR data will be acquired along orthogonal transects at 5-foot spacing, or as required for resolution requirements. The GPR survey will employ a real time display to identify areas potentially requiring greater data coverage, and to quickly adjust field procedures as needed to obtain the best data possible. Raw data from the EM and GPR surveys will be obtained from the geophysical subcontractor.

Locations of utilities will be marked on the ground surface with color indicators for the assumed type of utility. Monitoring wells will be hand-augured (or similar method) to a minimum depth of 5 feet bgs to verify the absence of obstructions. Injections will be completed with a direct-push rig through their entire depth.

18.4 FIELDWORK CONSIDERATIONS

The investigation area is not expected to be constrained by logistical or safety considerations. Heavy or extended rain events may result in access issues for large equipment (i.e., drill rigs, development trucks) due to the undeveloped nature of the investigation area. Access may be restricted based upon biological and cultural resource considerations. USACE will be notified 48-hours prior to investigation activities to evaluate site conditions and train workers as necessary. Biological avoidance and minimization procedures will be implemented as necessary.

18.4.1 FIELD DOCUMENTATION

A field logbook will be kept by the Site Manager/Site Safety and Health Officer. The field logbook is intended to record events during sampling activities in sufficient detail to allow field personnel to reconstruct events that transpired during the project. If task-specific field sheets (e.g., field sampling forms) are used, they will be referenced, but not reiterated, in the logbook.

Documentation of site activities will also include color photographs. Photographs will be taken to document sample locations, important field observations (e.g., stained soil), progress of work, and the procedures used for different sampling activities.

A Daily Status Report (see **Appendix E**) will be submitted by the Site Manager/Site Safety and Health Officer. The form will provide a quick reference for work completed that day, work planned for the next field day, a log of people onsite, record of safety meetings/inspections, equipment and/or material that arrived or left the jobsite and note any investigation-derived waste (IDW) generated. The Daily Status Report will be signed by the Site Manager/Site Safety and Health Officer as verification of the information. When appropriate, the Daily Status Report may include a log of groundwater wells installed/developed, soil vapor probes installed and/or samples collected. Daily Status Reports will include a minimum of two photographs.

18.5 SOIL BORING AND MONITORING WELL INSTALLATION AND AMENDMENT INJECTIONS

18.5.1 SOIL BORINGS AND MONITORING WELLS

Soil borings and groundwater monitoring wells will be installed to support the design and assessment of the treatability study, as shown in **Figure 11.1**.

Prior to drilling, Placer County will be contacted to discuss the substantive requirements of their well installation permitting process, but CERCLA actions are exempt from the administrative requirements (40 CFR 300.400(e)). Written property access agreements will be obtained, borings and monitoring wells will be drilled and installed by a C-57 licensed drilling subcontractor, and the Site Manager will notify Placer County Environmental Health at least two working days in advance of drilling to schedule grout inspections.

Borings and monitoring wells will be drilled and installed under the oversight of a Parsons' field technician. Sampling methods will follow SOP 05. Well installation methods will follow Field SOP SESDGUID-101, except where the SOP potentially conflicts with California Department of Water Resources Bulletin 74-81, subsequent supplements, and Placer County Code Section 13.08. The differences from SOP SESDGUID-101 are as follows:

- Grout: following Placer County's recommendation, neat cement will be used as the grout mix for all wells.
- Well Development: wells will be developed 48 hours after installation to ensure that cement/grout is set and will not be pulled into the well screen during development.

An HSA drill rig will be used to advance 8-inch diameter augers to a depth of approximately 30 feet bgs. The Parsons' field technician will log the lithological descriptions for each borehole as described in ASTM D2488-17. The boring logs will be reviewed by a California licensed geologist. Where possible, the well installation will position the top of the screen interval approximately one foot above the water table. The Parsons' field technician will select the location of the screen interval based on the lithologic information collected, and will verify its placement with the driller. The wells will be screened in the first water-bearing zone (5–30 feet bgs).

An 8-inch diameter hollow stem auger will create an approximately 6-inch annular space. Monitoring wells will be constructed of 2-inch inner diameter, schedule 40, flush-threaded polyvinyl chloride (PVC) casing with 10 foot long 0.02-inch factory-slotted PVC well screens. The filter pack material shall be clean, well-rounded, #3 quartz or silica sand, or equivalent. The sand will extend a minimum of 4-inches below the end cap and approximately 2-feet above the top of screen. Example monitoring well completion diagrams are provided in **Appendix E**.

An annular 2-foot-thick bentonite seal shall be placed above the sand filter pack. The bentonite seal shall be constructed of compressed bentonite pellets. Wells shall be completed with cement/bentonite grout slurry placed above the bentonite seal to just below ground surface. Cement grout will be placed from top down because there will be 5 feet or less of grout between the top of the seal and bottom of the concrete used to set the above-ground well monument.

All equipment used during the installation will be decontaminated prior to the start of drilling (before first use) and before moving to the next location by dry decontamination and steam cleaning (Field SOP 04).

Wells will be developed a minimum of 48-hours after final grout placement using bailing, pumping and/or surging, as described in Field SOP SESDGUID-101. In previous investigations, wells were not able to be developed using pumping methods. Water quality parameters will be monitored during development. Wells will be allowed to recover prior to sampling. Following installation, a lockable, aboveground stove pipe will be constructed to protect the well. The stove pipe will be protected by up to four yellow bollards set in concrete, as necessary.

18.5.2 AMENDMENT INJECTIONS

Injections will not be completed in wetlands, swales, or areas prone to ponding. Injections will be installed at the locations shown in **Figure 11.1** Injections will be completed using a direct-push rig

down to bedrock which is anticipated to be between approximately 30-35 feet bgs, under the oversight of a Parsons field technician. The volume injected into each depth interval will be determined from analytical results and from the PFM data. Prior to mobilization, the volume to be injected in each depth interval will be calculated by Regenesis using their proprietary modeling software to optimize treatment within each interval. The dose will be calculated using the PFM data and will take into account the synergistic effects of the three amendments. Once mobilized to the site, and before injections begin, water levels will be measured in EW-1, MW-19, MW-43, MW-50, and MW-67.

The treatment reagents will be injected into the aquifer using the following "top-down" injection procedure at each location:

- 1. Using a direct push technology (DPT) rig, advance the injection rod to the first planned injection interval. The first injection interval will be the shallowest injection interval. Use a pressure-activated injection tip with a check valve to allow lateral delivery of the reagent(s) and to prevent backflow.
- 2. Once the target injection depth has been reached, connect the reagent(s) delivery hose to the DPT rod header using an injection cap and ensure proper hose restraints are in place to prevent hose whip in the case of fitting or hose failure.
- 3. Follow the manufacturer's instructions for proper mixing and dosing of the amendments.
- 4. Once the reagent(s) delivery hose has been securely attached to the DPT rod header, activate the injection pump and begin injecting the amendments. Use a pressure gauge to monitor the injection pressure. Injection volume(s) will be determined based on changes in tank volume. Due to the physical characteristics of the reagents that commonly plug flow meters, reagent flow cannot be monitored continuously.
- 5. Inject the planned volume of amendments, including PlumeStop®, S-MicroZVI, and BDI Plus®.
- 6. After injecting the planned volume of solution, isolate the DPT rod from the reagent delivery hose by shutting the appropriate isolation valve on the injection cap, depressurize the DPT rod at the injection cap, confirm the pressure has dissipated before removing the injection cap, remove the injection cap from the DPT rod, and then advance the DPT rod to the next injection interval, 2.5 feet below the previous completed injection interval. While depressurizing the DPT rod and proceeding to the next interval, backflow of reagents from the rod may occur and shall be contained. If the amount of reagents is significant, the volume will be recorded to correct the actual amount of reagent(s) injected into that interval.
- 7. Repeat the injection Steps 2 through 7 until the final injection interval has been completed for the injection point.
- 8. Upon completing reagent injection at each point, abandon each injection borehole by backfilling with a neat cement grout. The grout will be pumped through a tremie pipe from the bottom injection interval to within 6 inches of the ground surface.
- 9. Finish the borehole appropriately in accordance with the surrounding surface materials and survey nail set flush-to-grade marking the injection point location for final survey. The boreholes must be finished flush-to-grade.
- 10. Upon completion of the reagent injections, clean the injection equipment and injection rods by circulating hot water and detergent through the pump and delivery hose.
- 11. Repeat the previous steps at each injection point.

Excessive buildup of hydrostatic pressure will be avoided by monitoring the backpressure in each point and adjusting injection parameters such as injection pressure, flow rates, and sequencing of injection points to allow the aquifer time to equilibrate.

All equipment used during the installation will be decontaminated before moving to the next location by dry decontamination and steam cleaning (Field SOP 04).

18.6 SAMPLING

To collect groundwater and soil samples, field staff will follow the sampling route map shown in **Figure 18.1.**

18.6.1 SOIL SAMPLING

Soil samples will be collected from two borings, MW-67 and B-01 (**Figure 11.1**, **Table 18.1**) as described in Field SOP 05. Soil samples will be collected every two feet throughout the planned vertical treatment zone (15 to 24 feet bgs at B-01 and 3 to 26 feet bgs at MW-67). Soil samples from this water bearing zone will be qualitatively evaluated to determine the soil type.

One sample of the weathered bedrock will be collected from each new boring (MW-67 and B-01). These samples will be analyzed for VOCs to assess if the weathered bedrock will be an ongoing source of COPCs to groundwater. Soil samples collected from bedrock will be analyzed for the chemicals listed in **Table 15.8**.

Soil samples will not be collected from the unsaturated zone.

18.6.2 BASELINE GROUNDWATER SAMPLING

Prior to injecting amendments, baseline groundwater samples will be collected from EW-1, MW-19, MW-43, MW-50, and MW-67 (**Figure 11.1**, **Table 18.1**) using low-flow groundwater sampling methods, as described in Field SOP 02. Purge rates will be no more than 200 mL/minute and groundwater elevation during purging and sampling will be monitored to ensure drawdown is no more than 0.3 feet.

Field indicator parameters including temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential will be measured during purging in accordance with Field SOP 02. Total dissolved solids will be estimated from electrical conductivity, which will be measured in the field. After parameter stabilization criteria have been met, groundwater samples will be collected in appropriate containers (**Worksheets #19 & 30**).

Groundwater samples will be analyzed for the chemicals listed in **Tables 15.1**, **15.3** through **15.7**, and the total and dissolved metals listed in **Table 15.2**.

Immediately following the baseline sampling, PFMs will be deployed in EW-1, MW-19, MW-43, and MW-50.

- PFMs consist of a nylon mesh tube filled with a sorbent that is preloaded with alcohol tracers. The PFMs are inserted into groundwater monitoring wells where they passively intercept groundwater flow. As groundwater flows through the PFM, the sorbent retains dissolved contaminants, and the tracers are leached from the sorbent. The concentrations of contaminants and tracers in the media provide a screening-level assessment of the vertical profile of contaminant flux and groundwater flow velocity in each well.
- Each PFM will be ten feet long to cover the entire screened interval of each well. The PFMs will
 be loaded with sorbent every 1.5 feet to evaluate the vertical profile of groundwater flow and
 contaminant mass flux. This will result in a six PFM sorbent samples per well. Each sample will
 be a composite of the sorbent within a given depth interval. Because the PFMs are deployed
 over a period of weeks, the results from the PFMs represent a time-averaged groundwater flow
 and contaminant flux.

• The PFM sorbent will be sampled for volatiles and for alcohol tracers to allow a screening level calculation of contaminant flux and groundwater flow velocities at discrete depth intervals throughout the plume.

Water levels will be measured in each well prior to installing the PFM. The PFMs will be deployed for 4-8 weeks. The PFMs will then be retrieved from the well and the sorbent will be removed and placed in sample jars for analysis. Water levels will be measured immediately upon removing the PFM and again once the samples from all four of the PFMs are collected. The PFM sorbent will be sampled and analyzed for the chemicals listed in **Tables 15.1** and **15.9**.

Project reporting limits and screening levels can be found in Worksheet #15.

18.6.3 PERFORMANCE MONITORING

At least one month after the injections are complete, performance monitoring will begin. Performance monitoring groundwater samples will be collected from EW-1, MW-43, and MW-67 (**Figure 11.1**, **Table 18.1**) using low-flow groundwater sampling methods, as described in Field SOP 02. Purge rates will be no more than 200 mL/minute and groundwater elevation during purging and sampling will be monitored to ensure drawdown is no more than 0.3 feet.

Field indicator parameters including temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential will be measured during purging in accordance with Field SOP 02. Total dissolved solids will be estimated from electrical conductivity, which will be measured in the field. After parameter stabilization criteria have been met, groundwater samples will be collected in appropriate containers (**Worksheets #19 & 30**).

Groundwater samples will be analyzed for the following chemicals:

- 1,1-Dichloroethene
- cis-1,2-Dichloroethene
- trans-1,2-Dichloroethene
- 1,4-Dichlorobenzene
- Benzene
- Ethylbenzene
- Toluene
- Trichloroethene
- Vinyl chloride
- o- and m,p-Xylenes
- Nitrate
- Total organic carbon
- Total and dissolved metals (see Table 15.2)
- Methane, ethane, and ethene

Project reporting limits and screening levels can be found in **Worksheet #15**.

Sampling Location / Location ID ¹	Matrix	Basis/Rationale	Sample Type	Depth	Analytical Groups	Estimated No. of Samples	Sampling SOP	Comments
EW-1, MW-19, MW-43, and MW-50	Water	Judgmental / Assess vertical flux and groundwater velocity in groundwater.	Passive Flux Meter	5-35 feet bgs	VOCs and Alcohol Tracers	24 samples: 6 samples per well, with 1 sampling event total	PFM SOP (Appendix G)	See Sections 17.1 and 18.6.2
EW-1, MW-19, MW-43, MW-50, and MW-67	Water	Judgmental / Assess geochemical conditions in groundwater that will impact treatment design (baseline sampling).	Discrete	5-35 feet bgs	Geochemical parameters, VOCs, nitrate, methane, ethane, ethene, and metals (see Tables 15.1 – 15.7 for list)	5 samples: 1 sample per well, with 1 sampling event total	SOP 02 (Appendix D)	See Sections 17.1 and 18.6.2
EW-1, MW-43, and MW-67	Water	Judgmental / Post-treatment performance monitoring	Discrete	5-30 feet bgs	VOCs, nitrate, methane, ethane, ethene, total organic carbon, and metals	12 samples: 1 sample per well with 4 sampling events total	SOP 02 (Appendix D)	See Sections 17.1 and 18.6.3
MW-67 and B-01	Soil	Judgmental / Assess soil type in each treatment zone to optimize treatment design	Discrete	5-30 feet	Visual Soil Type Evaluation	17 samples, with 1 sampling event total	SOP 05 (Appendix D)	See Sections 17.2 and 18.6.1
MW-67 and B-01	Soil	Judgmental / Assess VOC concentrations in the weathered bedrock	Discrete	20-30 feet	VOCs	2 samples, with 1 sampling event total	SOP 05 (Appendix D)	See Sections 17.2 and 18.6.1

Table 18.1 - Proposed Sampling Locations and Methods

1- Sample numbering is described on Worksheets #26 & 27.

Table 18.1 – Proposed Sampling Locations and Methods

Sampling Location / Location ID ¹	Matrix	Basis/Rationale	Sample Type	Depth	Analytical Groups	Estimated No. of Samples	Sampling SOP	Comments
Definitions: bgs – Below ground	surface	VOCs - 1,1-dichloroethene, 1,4-dichlorobenzene, benzene, cis-1,2-dichloroethene, ethylbenzene, m,p-xylenes, o- xylene, toluene, trans-1,2-dichloroethene, trichloroethene, and vinyl chloride						

18.7 SURVEY REQUIREMENTS

The horizontal location of all newly installed monitoring wells will be surveyed by a licensed surveyor to <1-foot horizontal accuracy and elevations will be surveyed to 0.01-foot vertical accuracy. Horizontal control shall be referenced to the geographic coordinate system (GCS) World Geodetic System of 1984 (WGS84) latitude/longitude in decimal degrees. Vertical control shall be North American Vertical Datum of 1988 (NAVD88). Injection point locations will be measured with a handheld GPS device with a level of precision of ± 3 to 5 meters.

18.8 WASTE MANAGEMENT

Investigation derived solid and liquid wastes (IDW) will be disposed in accordance with the waste management plan (Appendix B).

18.9 BIOLOGICAL MITIGATIONS

USACE (2018) performed an aquatic resource delineation of the Titan 1-A FUDS project site. USACE found seasonal wetlands that are suitable habitat for vernal pool branchiopods, including the federally-endangered Conservancy fairy shrimp, vernal pool tadpole shrimp, and federally-threatened vernal pool fairy shrimp.

Avoidance and Minimization Measures

The following is a list of avoidance and minimization measures to be implemented during all fieldwork.

- All equipment and vehicles will be weed-free and cleaned of attached mud, dirt, and plant materials prior to arriving on-site.
- Erosion and sediment control measures will be implemented and maintained, as necessary.
- Speed limits will be enforced with a maximum speed limit of 15-mph.
- All trash will be enclosed in sealed containers and removed from the Site daily.
- Project activities near/in wetlands will be avoided to the greatest extent practicable.
- Intrusive activities will be scheduled for the dry season, to the extent practicable, to reduce impacts to aquatic resources.
- Driving in wetlands will be avoided to the greatest extent practicable. If streambeds or wetlands cannot be avoided, the use of high-density polyethylene mats is required for heavy equipment and vehicles, even if currently dry (see **Figure 18.1**). Approval must be sought from the USACE Biologist for any work of this kind.
- If intrusive activities are to be performed:
 - Nesting bird surveys will be performed within five days prior to intrusive work commencing by a qualified biologist. The biologist will survey the work area and all potential habitats within 500 feet of the work area, to identify any active nests which may be present. Weekly nesting bird surveys will be conducted to check for potential new nests if intrusive activities last longer than one week. If nesting birds are found during focused surveys, the USACE biologist will be immediately notified and will coordinate with other agencies as needed. The nest location(s) shall be identified on a map. If project activity is within 250 feet of identified nests for raptors and 100 feet for other non-listed birds, the biologist will determine whether project activities are disturbing the nesting birds. If the nesting birds are not being disturbed, project activity will continue. If the nesting birds are being disturbed, project activity will halt within 250 feet of identified nests for raptors and 100

feet for other non-listed birds until the young have fledged (as determined by the biologist) or until the project receives authorization from California Department of Fish and Wildlife (CDFW) and U.S. Fish and Wildlife Service (USFWS) to proceed. Nesting birds within these distances will continue to be monitored at least twice a week when acting normally to ensure their status does not change.

- On the first day of intrusive activities, field personnel shall attend an environmental awareness training. The awareness training shall be conducted by a USACE-approved biologist. A record shall be kept to document that all employees have received the training. New employees shall not begin work on the site without receiving the environmental awareness training. The training shall include the following:
 - Description and status of all listed species with the potential to occur at the site;
 - Description of suitable habitat and designated critical habitat, including any areas of these habitat occurrences at the site;
 - Avoidance and minimization measures to be implemented during activities with penalties for non-compliance;
 - Contact information for the Government biologist(s) and the biologists.
- During all intrusive activities at the Site, a USACE-approved biological monitor will be onsite. The biological monitor will have stop work authority, flag sensitive biological communities for avoidance, and check protected resources each day for indications of disturbance.

Best Management Practices (BMPs) shall be implemented to avoid and minimize effects to water resources during project activities. These BMPs shall include, but are not limited to:

- Parsons will implement and maintain erosion and sediment control measures as necessary and as directed by the Contracting Officer, such that water quality standards are not violated as a result of project activities (Clean Water Act 33 U.S. Code [USC] § 1251 et seq.).
- Equipment maintenance shall occur outside the project site to reduce the possibility of mechanical and chemical waste discharge from entering the water.
- Equipment shall be stored in areas outside the natural surface drainage patterns and away from areas where storm water could pool and percolate to groundwater. Place absorbent pads to catch all leaks from equipment parked overnight.
- Equipment refueling shall occur only in designated areas, with appropriate hazardous material containment measures in place.
- Equipment storage, cleaning, and fueling shall be maintained in a manner to prevent any contaminants from adversely affecting storm water runoff.
- Construction water shall not be allowed to run off the project site.

18.10 ARCHAEOLOGICAL REQUIREMENTS (INADVERTENT DISCOVERY CLAUSE)

18.10.1 PROCEDURES FOR DISCOVERY OF CULTURAL RESOURCES

If previously unidentified cultural resources are discovered during construction, all construction will immediately stop within 100 feet (30 meters) of the discovery and the location of the discovery will be flagged for avoidance. Parsons will notify USACE, and then USACE will notify the Native American Tribes

with interest in the project area. USACE will determine whether the discovery is a potential National Register of Historic Places (NRHP)-eligible resource by evaluating the resource following the criteria in 36 Code of Federal Regulations (CFR) 60.4. If USACE, in consultation with the American Indian tribal governments, determines that the discovery is not an NRHP-eligible resource, the discovery will be documented, and construction may proceed at the direction of the USACE. If the resource is considered an NRHP-eligible resource, the location will be temporarily fenced for protection during construction.

18.10.2 PROCEDURES FOR DISCOVERY OF HUMAN REMAINS

If human remains are discovered during the execution of the project, USACE will follow the California Health and Safety Code Section 7050.5 and Public Resources Code (PRC) Section 5097.98. In addition, USACE will consider and implement, to the extent feasible, the principles adopted in the ACHP's (2023) recommendations. Relevant principles included in the policy statement include but are not limited to respectful treatment of human remains, disturbance of such remains only when necessary, and early consultation with affiliated tribes to manage such resources.

The specific requirements of the PRC and Health and Safety Code are as follows.

- The USACE will notify the Placer County Coroner; the Coroner will then determine if an investigation regarding the cause of death is required (such investigation would be necessary if the find is not archaeological, but modern, Cal. Health and Safety Code Section 7050.5). If the find is archaeological and no investigation is required, the find shall then be treated as an archaeological discovery.
- If the coroner determines that the remains are of Native American origin, the USACE will contact the Native American Heritage Commission (NAHC). The NAHC will designate a most likely descendant (MLD). The MLD will have the power to make recommendations for the reburial or alternate treatment of the remains with appropriate dignity.
- If the MLD and landowner cannot reach an agreement, or the MLD fails to make a recommendation, the landowner will reinter the remains at a location where further disturbance will be avoided and record the location through one of the methods specified in California PRC Section 5097.98.

Worksheets #19 & 30: Sample Containers, Preservation, and Hold Times

This worksheet summarizes the laboratory information and analytical methods for each sampling matrix, including the required sample volume, containers, preservation, and holding time requirements. Laboratory certifications are presented in **Appendix F**. Contact information for the laboratory PMs are provided in **Worksheets #4, 7, & 8**. Details concerning sampling handling, sample shipment, and the laboratory sample receipt address, are included on **Worksheets #26 & 27**.

Table 19.1 – EMAX: Sample Containers, Preservation, and Hold Times: Groundwater and Soil Samples

Laboratory: EMAX

Matrix	Analytical Group and Method	Analytical Method/ SOP Reference	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
Water	VOCs	Preparation Method/SOP: SW5030C / EMAX-5030 Analysis Method/SOP: SW8260C / EMAX-8260	3 x 40mL volatile organic analysis (VOA) vials with septa	40 mL	HCl to pH ≤2, Cool to ≤ 6°C	14 days
Soil	VOCs	Preparation Method/SOP: SW5035A / EMAX-5035 Analysis Method/SOP: SW8260C / EMAX-8260	3 x pre-weighed VOA vials or 5g Encore tubes	5 g	Cool to \leq 6 °C 2 x vials with 5mL deionized water and Sodium Bisulfate 1 x vial with 5mL MeOH	14 days or 48 hours (encores only)
Water	Total and Dissolved Metals	Preparation Method/SOP: SW3050B / EMAX-3050 Analysis Method/SOP: SW6010C / EMAX-6010	1 x 250 mL plastic	250 mL	HNO₃ to pH < 2	180 days

Table 19.1 – EMAX: Sample Containers, Preservation, and Hold Times: Groundwater and Soil Samples

Laboratory: EMAX

Matrix	Analytical Group and Method	Analytical Method/ SOP Reference	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
Water	Dissolved Gases (Methane, Ethane, Ethene, Carbon Dioxide)	Analysis Method/SOP: RSK- 175 / EMAX-RSK175	3 x 40 mL VOA vials with septa	40 mL	HCI to pH ≤2, Cool to ≤ 6°C	14 days
Water	Sulfate and Nitrate	Analysis Method/SOP: SW9056A / EMAX-9056	1 x 250 mL plastic	250 mL	Cool to ≤ 6°C	28 days- for Sulfate 48 hours for Nitrate
Water	Alkalinity	Analysis Method/SOP: SM2320B / EMAX-2320B	1 x 125 mL plastic	125 mL	Cool to \leq 6 ° C	14 days
Water	Hardness	Analysis Method/SOP: SW2340C / EMAX-2340C	1 x 250 mL plastic	250 mL	HNO₃ to pH < 2	180 days
Water	Total Organic Carbon	Analysis Method/SOP: SW9060A/ EMAX-9060	1 x 125 mL plastic	125 mL	HCl or H_2SO_4 to $pH \le 2$ Cool to $\le 6^\circ C$	28 days

Table 19.2 - Regenesis: Sample Containers, Preservation, and Hold Times: Soil

Laboratory: Regenesis

Matrix	Analytical Group	Analytical Method/ SOP Reference	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
Soil	Visual Soil Type Assessment	N/A	Polyethylene, Glass	8 Ounce	Cool to \leq 6 ° C	None

Table 19.3 – EnviroFlux: Sample Containers, Preservation, and Hold Times: PFM Media

Laboratory: EnviroFlux

Matrix	Analytical Group	Analytical Method/ SOP Reference	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
PFM Media	VOCs/alcohol tracers	SW8260C and 8015C/ EnviroFlux PFM SOP	125 mL glass jar	125 mL	Cool to ≤ 4°C	1 month at 4°C

Worksheet #20: Field Quality Control

This worksheet summarizes the field QC samples to be collected and analyzed for the project. The table below shows the relationship between the number of field samples and associated QC samples for each combination of analyte/analytical group and matrix. Note that if additional samples are collected over the estimated number shown, additional QC samples will be collected at the rate shown below.

Matrix	Analytical Group	Method	Estimated No. of Field Samples	Field Duplicates	MS/MSD 1	Source Blanks	Equipment Blanks ^{2, 3}	Trip Blanks ⁴	Total No. of Samples to Lab ⁵
Water	Volatiles	SW8260C	3	1 FD per 10 field samples	1 MS/MSD pair per 20 field samples	1 per rinse water source	1 per no more than 5 consecutive days of sample collection when non-disposable sampling tools are used	1 per cooler	9
Sample C	Count		3	1	2	1	1	1	9
Soil	Volatiles	SW8260C	2	1 FD per 10 field samples	1 MS/MSD pair per 20 field samples	1 per rinse water source	1 per no more than 5 consecutive days of sample collection when non-disposable sampling tools are used	1 per cooler	8
Sample C	Count		2	1	2	1	1	1	8
Soil	Soil Type Evaluation	N/A	12	0	N/A	N/A	N/A	N/A	12
Sample C	Count		12	0	0	0	0	0	12

Table 20.1 – Field Quality Control Sampling per Sampling Event

Table 20.1 – Field Quality Control Sampling per Sampling Event

Matrix	Analytical Group	Method	Estimated No. of Field Samples	Field Duplicates	MS/MSD 1	Source Blanks	Equipment Blanks ^{2, 3}	Trip Blanks ⁴	Total No. of Samples to Lab ⁵
PFM Media	Volatiles and Alcohol Tracers	SW8260C SW8015C	24	1 FD per 10 field samples	1 MS/MSD pair per 20 field samples	1 per rinse water source	1 per no more than 5 consecutive days of sample collection when non-disposable sampling tools are used	1 per cooler	34
Sample C	Count		24	3	4	1	1	1	34

Notes:

1 – MS/MSD pairs are counted as two samples.

2 – Equipment blanks will only be collected if decontaminated equipment comes into contact with the sample matrix.

3 – Assumes both borings are completed and in one day, 3 groundwater samples can be collected in one day, and four PFMs can be retrieved and sampled in one day.

4 – Assumes 1 cooler per event for each type of sample

Definitions:

N/A – Not applicable

MS/MSD – Matrix spike/matrix spike duplicate

TBD – To be determined

Worksheet #21: Field Standard Operating Procedures

The applicable field SOPs to be used during the remedial investigation at the Former Titan 1-A Missile Facility are listed in the below table. Copies of these field SOPs are provided in **Appendix D**.

Table 21.1 – Field Standard Operating Procedures

Reference Number	Title, Revision Date, and/or Number	SOP Originating Organization	Related Equipment Types	Modified for Project? (Y/N)	Comments
SOP 01	Personal Protective Equipment	Parsons	see SOP (Appendix D)	Y	See Appendix D
SOP 02	Low Flow Groundwater Sampling	Parsons	see SOP (Appendix D)	Y	See Appendix D
SOP 03	Water Level Measurement	Parsons	See SOP (Appendix D)	Y	See Appendix D
SOP 04	Field Equipment Decontamination	Parsons	see SOP (Appendix D)	Y	See Appendix D
SOP 05	Direct Push Soil Sampling	Parsons	see SOP (Appendix D)	Y	See Appendix D
SOP 06	Organic Vapor Screening Using a Photoionization Detector / Flame Ionization Detector	Parsons	see SOP (Appendix D)	Y	See Appendix D
SOP 07	Standard Practice for Description and Identification of Soils (Visual-Manual Procedures), D2488-17	ASTM	See ASTM standard	N	See ASTM standard
SESDGUI D-101	Design and Installation of Monitoring Wells, R2	USEPA	see SOP (Appendix D)	N	See Appendix D

Worksheet #22: Field Equipment Calibration, Maintenance, Testing, and Inspection

Table 22.1 summarize the calibration, maintenance, testing, and inspection procedures for field equipment.

Field Equipment	Calibration, Verification, Testing, or Maintenance Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
Photoionization Detector	Check calibration to 100 parts per million isobutylene	Once per day before first use	± 5% of standard value	Recalibrate	Operator	SOP 06
YSI (Yellow Springs Instruments; or equivalent) water quality meter with flow cell	Check calibration against two of the following three traceable standards with nominal pH of 4.0, 7.00 and 10.00	Once per day before first use	± 0.05 pH units	Recalibrate	Sampler	SOP 02
	Check calibration against specific conductance standard	Once per day before first use	± 5% of standard value	Recalibrate	Sampler	SOP 02
	Check calibration against dissolved oxygen (ambient air)	Once per day before first use	± 10% of 100% saturation	Recalibrate	Sampler	SOP 02
	Check calibration against oxygen reduction potential standards	Once per day before first use	± 10% standard value	Recalibrate	Sampler	SOP 02

Table 22.1 – Field Equipment Calibration, Maintenance, Testing, and Inspection

Worksheet #23: Analytical Standard Operating Procedures

The applicable SOPs to be used for preparation and analysis of samples collected are listed in **Tables 23.1** and **23.2** below. The specific analytical method SOPs referenced are provided in **Appendix G**.

Table 23.1 – Analytical Standard Operating Procedures: VOCs (8260C)

Lab SOP Number	Title, Revision Date, and/or Number1	Definitive or Screening Data	Matrix and Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
EMAX-5030	Purge and Trap; Revision 5, 07/19/2022	Definitive	Water: VOCs	None	EMAX	Ν
EMAX-5035	Closed System Purge and Trap, Revision 5, 07/19/22	Definitive	Soil: VOCs	None	EMAX	Ν
EMAX-8260	Volatile Organic Compounds by Gas Chromatography (GC) / Mass Spectrometry (MS); Revision 1, 10/23/15	Definitive	Soil/Water: VOCs	GC-MS	EMAX	N

Notes:

Lab SOP Number	Title, Revision Date, and/or Number ¹	Definitive or Screening Data	Matrix and Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
EMAX- 3050	Acid Digestion, Total Metals for Solids	Definitive	Water: Metals	None	EMAX	N
EMAX- 6010	Inductive Coupled Plasma Emissions Spectrometric Method for Trace Metal Analyses, Revision 9, 08/24/22	Definitive	Water: Metals	Inductive Coupled Plasma Emissions Spectrometer (ICP-ES)	EMAX	N
EMAX- 9056	Ion Chromatography Analysis, Revision 10, 08/31/22	Definitive	Water: Sulfate and Nitrate	Ion Chromatography (IC)	EMAX	N
EMAX- 2320B	Alkalinity, Revision 8, 12/06/22	Definitive	Water: Alkalinity	Titrimetric	EMAX	N
EMAX- 2340C	Total Hardness, Revision 6, 09/12/22	Definitive	Water: Hardness	None	EMAX	N
EMAX- 5310B	Total Organic Carbon, Revision 4, 10/11/17	Definitive	Water: Total Organic Carbon	Total Organic Carbon Analyzer	EMAX	N
EMAX- RSK175	Dissolved Gases, Revision 5, 09/28/22	Definitive	Water : Dissolved Gases (Methane, Ethane, Ethene, Carbon Dioxide)	Gas Chromatography (GC)	EMAX	N

Table 23.2 – Analytical Standard Operating Procedures: Geochemical Parameters

Notes:

Table 23.3 – Analytical Standard Operating Procedures: VOCs and Alcohol Tracers in PFM Solid Samples

Lab SOP Number	Title, Revision Date, and/or Number1	Definitive or Screening Data	Matrix and Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
EnviroFlux PFM SOP	EnviroFlux PFM SOP	Screening	Solid: VOC and alcohols	GC/MS and GC	EnviroFlux	Y

Notes:

able 23.4 – Analytical Standard	Operating Procedures	(Miscellaneous)
---------------------------------	----------------------	-----------------

Lab SOP Number	Title, Revision Date, and/or Number ¹	Definitive or Screening Data	Matrix and Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
EMAX-SM02	Sample Receiving; Revision 12, 04/08/2022	NA	All	NA	EMAX	N
EMAX-SM03	Waste Disposal; Revision 7, 07/19/2022	NA	All	NA	EMAX	Ν

Notes:

Worksheet #24: Analytical Instrument Calibration

Table 24.1 – Analytical Instrument Calibration: VOCs (8260C)

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
GC-MS (Method 8260)	Tune Check	Prior to ICAL and prior to each 12- hour period of sample analysis.	Specific ion abundance criteria of 4- Bromofluorobenzene (BFB) or Decafluorotriphenylphos phine (DFTPP) from method.	Retune instrument and verify.	Analyst	EMAX- 8260 EnviroFlux PFM SOP
GC-MS	Initial	At	Each analyte must meet	Locate the source of the problem. If	Analyst	EMAX-
(Method	(ICAL) for	Instrument	one of the three options	expected response factors (RFS) are		8260
0200)	all analytes	to sample	below.	degradation or perform instrument		EnviroFlux
	(including	analysis	Option 1:	adjustment and/or maintenance to		PFM SOP
	surrogates)	,	Relative standard	correct the problem then repeat initial		
			deviation (RSD) for each	calibration		
			analyte ≤ 15%;	If SPCC is non-compliant, it could be a result of standard degradation or active		
			Option 2: linear least	presence to active sites in the system.		
			squares regression for	Correct the problem and repeat		
			each analyte:	calibration.		
			r² ≥ 0.99;	If CCC is non-compliant, it could be a result of system leaks, or reactive		
			Option 3: non-linear	column sites or standard degradation.		
			least squares regression	Correct the problem and recalibrate.		
			(quadratic) for each	If RSD is non-compliant, check for		
			analyte: r² ≥ 0.99.	outlier and repeat that ICAL point;		

Table 24.1 – Analytical Instrument Calibration: VOCs (8260C)

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
				otherwise perform instrument troubleshooting and repeat calibration.		
GC-MS (Method 8260)	Retention Time window position	Once per ICAL and at the beginning of	Position shall be set using the midpoint standard of the ICAL curve when ICAL is	N/A	Analyst	EMAX- 8260 EnviroFlux
	establishm ent	the analytical sequence.	performed. On days when ICAL is not performed, the initial continuing calibration verification (CCV) is used.			FT M SOF
GC-MS (Method 8260)	Evaluation of relative retention times (RRT)	With each sample.	RRT of each reported analyte within ± 0.06 RRT units.	Correct problem, then rerun ICAL.	Analyst	EMAX- 8260 EnviroFlux PFM SOP
GC-MS (Method 8260)	Initial Calibration Verification (ICV)	Once after each ICAL, analysis of a second source standard prior to sample analysis.	All reported analytes within ± 20% of true value.	Prepare fresh standard and reanalyze second source to rule out standard degradation or inaccurate injection. If problem persists, perform instrument adjustment and/or maintenance, and rerun initial calibration and second source verification standard. If problem continues, new standards may need to be purchased, prepared, and analyzed.	Analyst	EMAX- 8260 EnviroFlux PFM SOP

Table 24.1 – Analytical Instrument Calibration: VOCs (8260C)

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
GC-MS (Method 8260)	CCV	Daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run.	All reported analytes and surrogates within ± 20% of true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV.	Recalibrate, and reanalyze all affected samples since the last acceptable CCV; <i>or</i> Immediately analyze two additional consecutive CCVs. If both pass, samples may be reported without reanalysis. If either fails, take corrective action(s) and re-calibrate; then reanalyze all affected samples since the last acceptable CCV.	Analyst	EMAX- 8260 EnviroFlux PFM SOP

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
GC (RSK-175)	5 point ICAL for all target analytes	At instrument set up, after ICV or CCV failure, prior to sample analysis	≤ 20% RSD or r2 >/= 0.99 for target analytes	Correct the problem then repeat ICAL	Analyst	EMAX-RSK 175
GC (RSK-175)	ICV	Once after each ICAL, and prior to sample analysis.	All reported analytes within ± 25% of true value.	Prepare fresh standard and re- analyze ICV to rule out standard degradation or inaccurate injection. If problem persist perform instrument adjustment and/or maintenance to correct the problem and repeat ICAL.	Analyst	EMAX-RSK 175
GC (RSK-175)	CCV	Before sample analysis, after every 10 field samples and at the end of the analytical sequence	All reported analytes within ± 15% of true value.	Recalibrate, and reanalyze all affected samples since the last acceptable CCV; or Immediately analyze two additional consecutive CCVs. If both pass, samples may be reported without reanalysis. If either fails, take corrective action(s) and re-calibrate; then reanalyze all affected samples since the last acceptable CCV.	Analyst	EMAX- RSK175
GC (RSK-175)	Retention Time window position establishment	Once per ICAL and at the beginning of the analytical sequence.	Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not	NA	Analyst	EMAX- RSK175

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
			performed, the initial CCV is used.			
GC (RSK-175)	Retention Time (RT) window width	At method set-up and after major maintenance (e.g. column change).	RT width is ± 3 times standard deviation for each analyte RT from the 72-hour study or 0.03 minutes, whichever is greater.	NA	Analyst	EMAX- RSK175
ICP (6010C)	ICAL	Daily ICAL prior to sample analysis.	If more than one calibration standard is used, r2 ≥ 0.99.	Locate the source of the problem. Check for standard degradation or perform instrument adjustment and/or maintenance to correct the problem and then repeat initial calibration	Analyst	EMAX- 6010
ICP (6010C)	ICV	Once after each ICAL, analysis of a second source standard prior to sample analysis.	All reported analytes within ± 10% of true value.	Diagnose the problem. Prepare fresh standard and re-analyze to rule out standard degradation or inaccurate injection. If problem persists perform instrument adjustment and/or maintenance to correct the problem and repeat ICAL.	Analyst	EMAX- 6010
ICP (6010C)	CCV	After every 10 field samples, and at the end of the analysis sequence.	All reported analytes within ± 10% of the true value.	Recalibrate, and reanalyze all affected samples since the last acceptable CCV; or Immediately analyze two additional consecutive CCVs. If	Analyst	EMAX- 6010

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
				both pass, samples may be reported without reanalysis. If either fails, take corrective action(s) and re-calibrate; then reanalyze all affected samples since the last acceptable CCV.		
ICP (6010C)	Low Level Calibration Check Standard (low Level CCV)	Daily.	All reported analytes within ± 20% of true value.	Diagnose the problem. Prepare fresh standard and re-analyze to rule out standard degradation or inaccurate injection. If problem persists perform instrument adjustment and/or maintenance to correct the problem and repeat ICAL.	Analyst	EMAX- 6010
ICP (6010C)	Initial and Continuing Calibration Blank (ICB/CCB)	Immediately after the ICV and immediately after every CCV.	The absolute values of all analytes must be $< \frac{1}{2}$ LOQ or $< 1/10$ th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater.	ICB: Correct problem and repeat ICV/ICB analysis. If that fails, rerun ICAL. All samples following the last acceptable Calibration Blank must be reanalyzed. CCBs may not be reanalyzed without reanalysis of the associated samples and CCV(s).	Analyst	EMAX- 6010
ICP (6010C)	Interference Check Solutions (ICS) (also called Spectral	After ICAL and prior to sample analysis.	ICS-A: Absolute value of concentration for all non- spiked project analytes < 1/2 LOQ	Terminate analysis, locate and correct problem, reanalyze ICS, reanalyze all samples.	Analyst	EMAX- 6010

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
	Interference Checks)		(unless they are a verified trace impurity from one of the spiked analytes); ICS-AB: Within ± 20% of true value.			
IC (9056A)	ICAL	ICAL prior to sample analysis.	r2 ≥ 0.99.	Locate the source of the problem. If expected RSD is not met, check for standard degradation or perform instrument adjustment and/or maintenance to correct the problem then repeat initial Calibration.	Analyst	EMAX- 9056
IC (9056A)	ICV	Once after each ICAL, analysis of a second source standard prior to sample analysis.	All reported analytes within established RT windows. All reported analytes within ± 10% of true value.	Prepare fresh standard and re- analyze ICV to rule out standard degradation or inaccurate injection. If problem persists perform instrument adjustment and/or maintenance to correct the problem and repeat ICAL.	Analyst	EMAX- 9056
IC (9056A)	CCV	Before sample analysis; after every 10 field samples; and at the end of the analysis sequence.	All reported analytes within established retention time windows. All reported analytes within ± 10% of true value.	Recalibrate, and reanalyze all affected samples since the last acceptable CCV; or Immediately analyze two additional consecutive CCVs. If both pass, samples may be reported without reanalysis. If	Analyst	EMAX- 9056

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
				either fails, take corrective action(s) and re-calibrate; then reanalyze all affected samples since the last acceptable CCV.		
TOC Analyzer (TOC)	ICAL	Daily before sample analysis	Correlation coefficient (r) ≥ 0.995	Correct problem and re-calibrate prior to sample analysis.	Analyst	EMAX- 9060
TOC Analyzer (TOC)	ICV	Once after each ICAL.	% recovery within ± 10% of true value.	Reanalyze ICV to rule out bad injection and/or standard degradation. Otherwise, repeat ICAL	Analyst	EMAX- 9060
TOC Analyzer (TOC)	CCV	Every 15 samples and at the end of analysis sequence.	% recovery within ± 10% of true value.	Reanalyze CCV to rule out bad injection and/or standard degradation. Otherwise repeat calibration.	Analyst	EMAX- 9060
Auto-Titrator (Alkalinity)	ICAL	Daily before sample analysis	±0.05 pH units	Correct problem and re-calibrate prior to sample analysis.	Analyst	EMAX- 2320B

Table 24.3 -	 Analytical 	Instrument	Calibration:	Alcohol	Tracers
--------------	--------------------------------	------------	---------------------	---------	----------------

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action	Personnel Responsible for Corrective Action	SOP Reference
GC (PFM- Alcohol Tracers)	ICAL	At instrument set-up, prior to sample analysis.	\leq 20% RSD or r ² \geq 0.990 for target analytes	Correct problem and recalibrate prior to sample analysis.	Analyst	EnviroFlux PFM SOP
GC (PFM- Alcohol Tracers)	ICV	Once after each ICAL, and prior to sample analysis.	70-130% for all target analytes. Analytes exceeding and associated data will be flagged and narrated.	Correct problem, rerun check. If problem persists, repeat ICAL.	Analyst	EnviroFlux PFM SOP
GC (PFM- Alcohol Tracers)	CCV	Before sample analysis, after every 10 field samples and at the end of the analytical sequence.	70-130% for all target analytes. Analytes exceeding and associated data will be flagged and narrated.	Correct problem, rerun check. If problem persists, repeat ICAL.	Analyst	EnviroFlux PFM SOP
GC (PFM- Alcohol Tracers)	Retention Time window position establishment	Once per ICAL and at the beginning of the analytical sequence.	Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.	NA	Analyst	EnviroFlux PFM SOP
GC (PFM- Alcohol Tracers)	Retention Time (RT) window width	At method set-up and after major maintenance (e.g. column change).	RT width is ± 3 times standard deviation for each analyte RT from the 72-hour study or 0.03 minutes, whichever is greater.	NA	Analyst	EnviroFlux PFM SOP

Worksheet #25: Analytical Instrument and Equipment Maintenance, Testing, and Inspection

Tables 25.1 and **25.2** provides information on analytical instruments and equipment, maintenance, testing, and inspection. To ensure that the analytical instruments and equipment are available and in working order when needed, all laboratory analytical equipment will undergo maintenance and testing procedure in accordance with the laboratory SOPs (provided in **Appendix G**).

Table 25.1 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: VOCs

Analytical Method: 8260C

Instrument/	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP
Equipment	Activity	Activity	Activity		Criteria	Action	Person	Reference
GC/MS	Parameter Set-up	Physical Check	Examples: Check that the autosampler is functioning as expected. Check that temperature program is set at the most recently determined optimum condition.	Initially; prior to each use	Autosampler must move to the expected position when activated. Refer to instrument optimize temperature program setup.	Reset to SOP set- up, if parameter checks reveal deviations. Notate all adjustments in Daily Maintenance Log. Examples: Reset autosampler, if problem persist perform autosampler troubleshooting prior to instrument use. Reset to optimized temperature setup.	Analyst	EMAX- 8260

Table 25.1 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: VOCs

Analytical Method: 8260C

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
GC-MS	Replace hydrocarbon traps and oxygen traps on helium and hydrogen gas lines; Replace chemical traps; Replacing converter tube in gas purifier system	Check oxygen/ moisture indicator (OM-1) tube for a color change	Check GC system for high detector noise and reduced detector response.	As needed	N/A	N/A	Analyst or certified instrument technician	EMAX- 8260
GC/MS	Traps	Instrument performance – failing CCV	Change trap	When responses start to drop; failing CCV	Lack of moisture; CCV pass	Replace and rebake traps; reanalyze CCV or recalibrate instrument	Analyst	EMAX- 8260

Table 25.1 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: VOCs

Analytical Method: 8260C

Instrument/	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP
Equipment	Activity	Activity	Activity		Criteria	Action	Person	Reference
GC/MS	Detector maintenance	Column change, failing tune	Change detector and/or pump oil	Oil level/ quality visually examined monthly; oil physically changed every 6 months	Tune passes; scan does not indicate presence of air/water	Refill or exchange the oil; clean parts; reanalyze tune	Analyst	EMAX- 8260

Table 25.2 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: Geochemical Parameters

Analytical Methods: 6010C, RSK-175, 9056A, 9060A, and 2320B

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
GC ICP IC	Parameter Set-up	Physical Check	Various - Check Autosampler, settings, temperature programs, etc.	Initially, prior to each use.	Set-up in accordance to SOP guides.	Reset to SOP requirements. Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- RSK175 EMAX- 6010 EMAX- 9056
GC	Preventative maintenance	Physical check	Inspect and clean syringe. Check instrument parameters to ensure normal operating conditions. Change liner as necessary. Clean injection port as necessary. Check instrument performance (e.g., Daily calibration check, instrument blank	Daily, prior to analysis	No defects	Clean/ replace as needed. Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- RSK175
Table 25.2 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: Geochemical Parameters

Analytical Methods: 6010C, RSK-175, 9056A, 9060A, and 2320B

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
ICP	Preventative maintenance	Autosampler	Inspect and clean injection line. Check autosampler response.	Daily, prior to analysis.	No defects	Clean/ replace as needed. Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- 6010
ICP	Preventative maintenance	System Cleaning	Remove dust from fan and vent	Every 6 months or as needed	No defects	Clean as needed Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- 6010
IC	Parameter Set-up and daily check	Physical Check	Check pressure, effluent detector, flowrate are at proper settings. Check pump for leaks and spills. Check air lines for crimping and discoloration. Empty waste container if needed.	Daily, prior to each use.	Set-up in accordance to SOP guides. Performance checks within limits.	Reset to SOP requirements. Repair leaks as necessary. Relocate pinched lines and/or replace damaged lines. Document all adjustments in Daily	Analyst	EMAX- 9056

Table 25.2 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: Geochemical Parameters

Analytical Methods: 6010C, RSK-175, 9056A, 9060A, and 2320B

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
			Detector maintenance- inspect flow cell for leaks.			Maintenance Log.		
TOC Analyzer	Daily Check	Physical check	Examples: Check Lamp stability, Photometric noise, ensure sufficient instrument warm-up (min 15 minutes), verify proper wavelength.	Daily, prior to each use	No physical defects and performance checks within limits.	Reset to SOP set- up, if parameter checks reveal deviations. Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- 9060
Auto-titrator	Daily Check	Physical Check	Various - Check Autosampler, settings, programs, etc.	Daily, prior to each use.	Set-up in accordance to SOP guides.	Reset to SOP requirements. Document all adjustments in Daily Maintenance Log.	Analyst	EMAX- 2320B

Table 25.3 – Analytical Instrument and Equipment Maintenance, Testing, and Inspection: PFM- Volatiles and Alcohol Tracers

Analytical Method: 8260C and 8015C

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
GC/MS (8260C)	Clean sources, maintain vacuum pumps	Tunning	Instrument performance and sensitivity	Service vacuum pumps twice per year, other maintenance as needed	Tune and CCV pass criteria	Recalibrate instrument	Analyst	PFM SOP
GC/MS (8260C)	Mass selective detector ion source cleaning	ICAL and CCV	Instrument performance and sensitivity	When tune difficulties or fluctuating internal standard areas are encountered	System performance passes	Re-clean or replace source parts	Analyst	PFM SOP
GC (8015C))	Replace GC injector septa and glass insert	NA	Instrument performance and sensitivity	Maximum of 150 injections	System performance passes	Replace GC injector septa and glass insert	Analyst	PFM SOP

Worksheets #26 & 27: Sample Handling, Custody, and Disposal

26.1 SAMPLE NUMBERING

A sample numbering system will be implemented to identify each sample collected during the investigation. This numbering system will ensure that each sample is uniquely labeled and will provide a tracking procedure to allow retrieval of information about each sample collected. QC samples will be numbered using the same sequential system and notes will be made in the field notebook to record which samples are QC samples.

Groundwater and soil samples will be numbered using the following format:

Property-[location type][location number]_[upper depth]-[lower depth]_[time frame]_[QC]

where:

- Property = up to five character site name from which the sample was collected; "T1AMF" = Former Titan 1-A Missile Facility.
- Location type = "MW" for monitoring well groundwater, "PFM" for passive flux meter media, and "B" for boring.
- Location number = two-digit sequential sample number (including leading zeroes, as necessary) that identifies the monitoring well or soil boring location number.
- Upper Depth = two- or three-digit number that signifies the top of the depth interval the sample was collected from, if applicable.
- Lower Depth = two- or three-digit number that signifies the bottom of the depth bgs interval the sample was collected from, if applicable.
- Time Frame = month and year sampling occurred using a three-letter abbreviation for month, and two-digit year; e.g., MAR22.
- QC = Quality Control (QC) indicator can be used to indicate field duplicates ("_FD"), matrix spikes ("_MS"), matrix spike duplicate ("_MSD").
- If a sample is recollected, "_R" will be added to the end of the sample ID.

Using this system, the sample number "T1AMF-MW019_MAR23" would indicate a sample collected from monitoring well MW19 in March 2023, while the sample number "T1AMF-B01_01-02_MAR23" would indicate a soil sample collected from boring B-01 from a depth of 1 to 2 feet bgs in March 2023.

Trip blanks, equipment blanks, and other blanks not tied to specific locations, will be given unique names every event (e.g., TripBlank1 cannot be used more than once in a particular project). Blank samples will be numbered using the following format:

Sample type-[number]_[time frame]

- Sample type = "TB" for trip blank, "EB" = equipment blank, and "AB" for ambient blank.
- Sample number = sequential sample number unique to that day which identifies that specific sample, so the third TB collected would be listed as sample "003."

• Time Frame = month and year sampling occurred using a three-letter abbreviation for month, and two-digit year; e.g., MAR23.

26.2 SAMPLE HANDLING

To ensure sample authenticity and data defensibility, proper sample handing procedures will be followed from the time of sample collection to final sample disposal. Sample handling procedures are described in **Section 26.4**.

The Parsons field team will be responsible for completing the sample bottle label and Chain of Custody (CoC) forms, sample collection, on-site sample control, sample packing, and coordination of sample shipment with the laboratory. Samples will be sent to the appropriate laboratory via FedEx overnight.

The laboratory sample receipt staff and/or custodian will acknowledge the sample receipt upon arrival. The laboratory technicians will inspect the samples upon receipt and note any issues or discrepancies. All issues, discrepancies, or problems with the samples will be communicated to the Project Chemist within 24 hours of sample receipt. The laboratory staff will prepare and analyze the field samples in accordance with this UFP-QAPP and the applicable laboratory SOPs. The field samples and all extracts/digestates will be stored at the laboratory for 30 days after the final report has been submitted to Parsons Team. The laboratory hazardous waste manager will be responsible for the final sample disposal upon notice from the Parsons Team, Parsons' Project Chemist or designee. Sample disposal will be performed in accordance with all local, state, and federal laws and regulations.

Table 26.1 – Responsibilities for Sample Handling, Custody, and Disposal

Sample Collection, Packaging, and Shipment

Sample Collection (Personnel/Organization): Field Sampler/Parsons

Sample Packaging (Personnel/Organization): Field Sampler/Parsons

Coordination of Shipment (Personnel/Organization): Project Chemist/Parsons

Type of Shipment/Carrier: Overnight/FedEx1

Sample Receipt and Analysis

Sample Receipt (Personnel/Organization): Sample Receipt Staff/EMAX, Regenesis, and EnviroFlux

Sample Custody and Storage (Personnel/Organization): Laboratory Staff/EMAX, Regenesis, and EnviroFlux

Sample Preparation (Personnel/Organization): Laboratory Technician/EMAX, Regenesis, and EnviroFlux

Sample Determinative Analysis (Personnel/Organization): Laboratory Technician/EMAX, Regenesis, and EnviroFlux

Sample Archiving

Field Sample Storage (No. of days from sample collection): 60 days

Sample Extract / Digestate Storage (No. of days from extraction/digestion): 30 days

Table 26.1 – Responsibilities for Sample Handling, Custody, and Disposal

Sample Disposal
Personnel/Organization: Laboratory Hazardous Waste Manager/EMAX, Regenesis, and EnviroFlux
Number of Days from Analysis: 60 days
Notes:

1 FedEx will primarily be used to ship samples. However, other overnight carriers may also be used during the course of this project.

26.3 SAMPLE LABELING

Sample labels will include, at a minimum, project name, project number, sample identification, date/time collected, analysis group or method, preservative, and sampler's name. Labels will be taped to the sample container prior to sample collection, unless pre-tared, to ensure that they do not separate. For pre-tared containers the labels on the container will be completed but not taped and the containers will be placed inside sealable plastic bags. An additional sample label will be affixed to the plastic bag.

26.4 FIELD SAMPLE CUSTODY PROCEDURES (SAMPLE COLLECTION, PACKAGING, SHIPMENT, AND DELIVERY TO LABORATORY)

Upon collection, all samples will be placed on ice or refrigerated and will be kept cool (\leq 6°Celsius) until the sample has been packaged to ship to a laboratory facility. Once the samples have been collected, the following guidelines will be used to prepare the sample containers for shipment to the laboratory:

- When the sampling team returns from sample collection with completed samples stored on ice, the sample cooler will be submitted to the on-site sample coordinator for processing.
- The sample coordinator will verify that all sample documentation is correct. Each sample will be placed into a clean zip-top bag. Each sample bag will be individually labeled with the unique sample ID using a permanent marker and then placed in the cooler.
- Wet ice will be used to maintain sample temperature during shipping. All ice used should be double bagged in well-sealed zip-top bags. A temperature blank will be included in each cooler. Samples will be carefully packed to minimize breakage and leakage.
- Trip blanks (one set) should be included in each cooler that contains samples for volatile analysis.
- The sample coordinator will maintain custody of the samples until they are shipped to the commercial laboratory facility for analysis. Upon delivery, the laboratory will sign for receipt of the samples on the CoC, inspect each cooler and sample, and record the status of the samples, including any noncompliance issues or discrepancies.
- A custody seal or locks will be used on the sample coolers in order to control access and reduce the chances of sample tampering.
- Shipping labels will be strongly adhered to the sample cooler. The project coordinator will email the Project Chemist with the applicable CoCs and tracking number information each day samples are shipped.

The following addresses will be used for sample shipment:

- EMAX: EMAX Laboratories, 3051 Fujita St., Torrance, California 90505; telephone # 310-618-8889
- Regenesis: Regenesis, Chris Lee, 1011 Calle Sombra, San Clemente, CA 92673; telephone # 262-455-0928
- EnviroFlux: Jay Cho, 1140 NW. 8th Ave Suite 20, Gainesville, Florida 32601; telephone # 352-328-8759

26.5 LABORATORY SAMPLE CUSTODY PROCEDURES (RECEIPT OF SAMPLES, ARCHIVING, DISPOSAL)

All laboratory sample receipt, internal custody, sample archiving, and disposal procedures shall be completed in accordance with the laboratory specific SOPs. All documentation shall be available upon request or during a review of the laboratory for inspection.

Upon opening a cooler containing soil or groundwater samples at the analytical laboratory, the receiving clerk shall sign the CoC and take the temperature using the temperature blank (if absent, a representative sample container shall be used). The sample containers in the cooler shall be unpacked and checked against the client's CoC. Any discrepancies between the samples received, sample labels, and/or CoC shall be noted on a sample receipt form. All cooler temperatures and the status of any broken or damaged sample containers shall be noted on the sample receipt form. The laboratory shall contact the Parsons' Project Chemist or designee immediately upon discovery of non-compliant temperatures, broken or damaged sample containers, or any other issues that may possibly impact sample analysis and/or data quality.

Upon opening a package containing samples at the analytical laboratory, the receiving clerk shall sign the CoC. The sample containers shall be unpacked and checked against the client's CoC. Any discrepancies between the samples received, sample labels, and/or CoC shall be noted on a sample receipt form. The status of any broken or damaged sample containers shall be noted on the sample receipt form. The laboratory shall contact the Parsons' Project Chemist or designee immediately upon discovery of broken or damaged sample containers, or any other issues that may possibly impact sample analysis and/or data quality.

26.6 SAMPLE IDENTIFICATION PROCEDURES

The field logbook will identify the sample ID with the location, depth, date/time collected, and the parameters requested. This information will be communicated to the laboratory via the CoC.

The laboratory will assign each sample shipment to a unique sample delivery group (SDG) number. The laboratory shall log in the samples received and assign each field sample a laboratory sample identification based on the designated SDG and the information on the CoC. The laboratory shall send (via email) the sample login forms generated by the Laboratory Information Management System (LIMS) along with the signed CoCs and sample receipt checklist to the Parsons' Project Chemist or designee as soon as possible after sample receipt.

The sample ID, collection date and time, SDG number, and laboratory receipt date will be uploaded to the FUDSChem database in accordance with the Sample Event Management section of the FUDSChem User Manual (Environmental Synectics 2023). Field data collected will be uploaded to FUDSChem in accordance with Section 6 of the FUDSChem User Manual.

26.7 CHAIN-OF-CUSTODY PROCEDURES

CoC forms will include, at a minimum, laboratory contact information, client contact information, sample information, and relinquished by/received by information. Sample information will include sample identification, date/time collected, number and type of containers, preservative information, analysis method, and comments. The CoC will also have the sampler's name and signature. The CoC will link the location of the sample from the field logbook to the laboratory receipt of the sample. The laboratory will use the sample information to populate the LIMS database for each sample.

26.8 NON-CONFORMANCE

The laboratory PM or designee will contact the Project Chemist to resolve any issues encountered during sample receipt and login.

26.9 LABORATORY SAMPLE HANDLING PROCEDURES

All laboratories will obtain representative subsamples for soil samples using the California ELAPapproved techniques detailed in the associated laboratory SOPs. All laboratory SOPs are listed in **Worksheet #23** and included in **Appendix G** of this document.

Worksheet #28: Analytical Quality Control and Corrective Action

Tables 28.1 and **28.2** provide information on the QC samples, frequency, method or SOP QC acceptance limits, Corrective Actions, person responsible for the Corrective Actions, and measurement performance criteria.

Table 28.1 – Analytical Quality Control and Corrective Action: Soil and Water, Volatile Organic Compounds

Laboratory: EMAX Matrix: Soil and Water Analytical Group: Volatile Organic Compounds Analytical Method/ SOP Reference: SW8260C / EMAX-8260

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Internal Standard Stanple, standard and QC sample.	Every field	Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL;	Inspect mass spectrometer and GC for malfunctions and correct problem.			DoD (2021)
	standard and QC sample.	EICP area within - 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used.	Reanalysis of samples analyzed while system was malfunctioning is mandatory.	Analyst	Sensitivity	QSM V5.4 criteria
Method Blank (MB)	One per preparato ry batch.	No analytes detected > $\frac{1}{2}$ LOQ or > $\frac{1}{10}$ the amount measured in any sample or $\frac{1}{10}$ the regulatory limit,	Correct problem. If required, reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/ Sensitivity	DoD (2021) QSM V5.4 criteria

Table 28.1 – Analytical Quality Control and Corrective Action: Soil and Water, Volatile Organic Compounds

Laboratory: EMAX Matrix: Soil and Water Analytical Group: Volatile Organic Compounds Analytical Method/ SOP Reference: SW8260C / EMAX-8260

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
		whichever is greater. Common contaminants must not be detected > LOQ.				
LCS	One per preparato ry batch.	Criteria listed in Table 28.1.1	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/ Precision - Analytical	DoD (2021) QSM V5.4 criteria
MS/MSD	One per preparato ry batch.	Criteria listed in Table 28.1.1	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and extract / reanalyze the sample.	Analyst	Accuracy/ Precision - Analytical	DoD (2021) QSM V5.4 criteria
Surrogate Spike	All field and QC samples.	Criteria listed in Table 28.1.1	Correct problem, then reprep and reanalyze all failed samples for all surrogates in the associated preparatory	Analyst	Accuracy	DoD (2021) QSM V5.4 criteria

Table 28.1 – Analytical Quality Control and Corrective Action: Soil and Water, Volatile Organic Compounds

Laboratory: EMAX Matrix: Soil and Water Analytical Group: Volatile Organic Compounds Analytical Method/ SOP Reference: SW8260C / EMAX-8260

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
			batch, if sufficient sample material is available. If obvious chromatographic interference with surrogate is present, reanalysis may not be necessary.			

Table 28.1.1 – Analytical Quality Control and Corrective Action: Water, Volatile Organic Compounds (SW8260C)

Laboratory: EMAX

Matrix: Water

Analytical Group: Volatile Organic Compounds (SW8260C)

Apolito		MS/MSD and LCS/LCSD		
Analyte	CAS NO.	%R	RPD	
1,1-Dichloroethene	75-35-4	71-131	20	
1,4-Dichlorobenzene	106-46-7	79-118	20	
Benzene	71-43-2	79-120	20	
cis-1,2-Dichloroethene	156-59-2	78-123	20	
Ethylbenzene	100-41-4	79-121	20	
m,p-Xylene	179601-23-1	80-121	20	
o-Xylene	95-47-6	78-122	20	
Toluene	108-88-3	80-121	20	
trans-1,2-Dichloroethene	156-60-5	75-124	20	
Trichloroethene	79-01-6	79-123	20	
Vinyl chloride	75-01-4	58-137	20	
1,2-Dichloroethane-d4 (S)	17060-07-0	81-118	N/A	
4-Bromofluorobenzene (S)	460-00-4	85-114	N/A	
Dibromofluoromethane (S)	1868-53-7	80-119	N/A	
Toluene-d8 (S)	2037-26-5	89-112	N/A	

Definitions:

(S) indicates a surrogate compound. RPD is not applicable for surrogate compounds.

Table 28.1.2 – Analytical Quality Control and Corrective Action: Soil, Volatile Organic Compounds (SW8260C)

Laboratory: EMAX

Matrix: Soil

Analytical Group: Volatile Organic Compounds (SW8260C)

Apolito		MS/MSD and LCS/LCSD		
Analyte	CAS NO.	%R	RPD	
1,1-Dichloroethene	75-35-4	70-131	20	
1,4-Dichlorobenzene	106-46-7	75-120	20	
Benzene	71-43-2	77-121	20	
cis-1,2-Dichloroethene	156-59-2	77-123	20	
Ethylbenzene	100-41-4	76-122	20	
m,p-Xylene	179601-23-1	77-124	20	
o-Xylene	95-47-6	77-123	20	
Toluene	108-88-3	77-121	20	
trans-1,2-Dichloroethene	156-60-5	74-125	20	
Trichloroethene	79-01-6	77-123	20	
Vinyl chloride	75-01-4	56-135	20	
1,2-Dichloroethane-d4 (S)	17060-07-0	71-136	N/A	
4-Bromofluorobenzene (S)	460-00-4	79-119	N/A	
Dibromofluoromethane (S)	1868-53-7	78-119	N/A	
Toluene-d8 (S)	2037-26-5	85-116	N/A	

Definitions:

(S) indicates a surrogate compound. RPD is not applicable for surrogate compounds.

Table 28.2 – Analytical Quality Control and Corrective Action: Water, Dissolved Gases

Laboratory: EMAX Matrix: Water Analytical Group: Dissolved Gases Analytical Method/SOP Reference: RSK-175 / EMAX-RSK175

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per preparatory batch.	No analytes detected > $\frac{1}{2}$ LOQ or > $\frac{1}{10}$ the amount measured in any sample or $\frac{1}{10}$ the regulatory limit, whichever is greater.	Correct problem. If required, reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/ Bias - Contaminati on	DoD (2021) QSM V5.4 criteria
Laboratory Control Sample (LCS)	One per preparatory batch.	Criteria listed in Table 28.2.1	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/ Bias	DoD (2021) QSM V5.4 criteria
MS/MSD or MD	Project designated sample matrix QC.	Criteria listed in Table 28.2.1	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and extract / reanalyze the sample.	Analyst	Interferences - Accuracy/ Bias - Precision	DoD (2021) QSM V5.4 criteria

Table 28.2.1 – Analytical Quality Control and Corrective Action: Water, Dissolved Gases

Laboratory: EMAX

Matrix: Water

Analytical Group: RSK-175

Analyte	CAS No.		LCS/LCSD MS/MSD		
		%R	RPD		
Ethane	74-80-0	74-131	30		
Ethene	74-85-1	72-133	30		
Methane	74-82-8	73-125	30		
Carbon Dioxide	124-38-9	80-122	30		

Table 28.3 – Analytical Quality Control and Corrective Action: Water, Metals

Laboratory: EMAX Matrix: Water Analytical Group: Metals Analytical Method/SOP Reference: SW6010C / EMAX-6010

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per preparatory batch.	No analytes detected > $\frac{1}{2}$ LOQ or > $\frac{1}{10}$ the amount measured in any sample or $\frac{1}{10}$ the regulatory limit, whichever is greater.	Correct problem. If required, reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/Bias - Contamination	DoD (2021) QSM V5.4 criteria
Laboratory Control Sample (LCS)	One per preparatory batch.	Criteria listed in Table 28.3.1	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/Bias	DoD (2021) QSM V5.4 criteria
MS/MSD or MD	Project designated sample matrix QC.	Criteria listed in Table 28.3.1	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and	Analyst	Interferences - Accuracy/Bias - Precision	DoD (2021) QSM V5.4 criteria

Table 28.3 – Analytical Quality Control and Corrective Action: Water, Metals

Laboratory: EMAX Matrix: Water Analytical Group: Metals Analytical Method/SOP Reference: SW6010C / EMAX-6010

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
			extract / reanalyze the sample.			
Dilution Test	One per preparatory batch if MS or MSD fails (using the same sample as used for the MS/MSD if possible).	Five-fold dilution must agree within \pm 10% of the original measurement. Only applicable for samples with concentrations > 50 x LOQ (prior to dilution). Use along with MS/MSD and PDS data to confirm matrix effects	Discuss in the case narrative	Analyst	Accuracy / Bias	DoD (2021) QSM V5.4 criteria
Post Digestion Spike (PDS)	One per preparatory batch if MS or MSD fails (using the same sample as used for the MS/MSD if possible).	Recovery within 80- 120% Criteria applies for samples with concentrations <50 X LOQ prior to dilution	Discuss in the case narrative	Analyst	Interferences- Accuracy/Bias Precision	DoD (2021) QSM V5.4 criteria

Table 28.3.1 – Analytical Quality Control and Corrective Action: Water, Metals

Laboratory: EMAX

Matrix: Water

Analytical Group: Metals

Analyte	CAS No.	LCS/LCSD MS/MSD		
		%R	RPD	
Aluminum	7429-90-5	86-115	20	
Calcium	7440-70-2	87-113	20	
Iron	7439-89-6	87-115	20	
Magnesium	7439-95-4	85-113	20	
Manganese	7439-96-5	90-114	20	

Table 28.4 – Analytical Quality Control and Corrective Action: Water, Anions

Laboratory: EMAX Matrix: Water Analytical Group: Anions (Sulfate and Nitrate) Analytical Method/SOP Reference: SW9056A / EMAX-9056

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per preparator y batch.	No analytes detected > 1/2 LOQ or > 1/10 the amount measured in any sample or 1/10 the regulatory limit, whichever is greater.	Correct problem. If required, reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/ Bias – Contamina- tion	DoD (2021) QSM V5.4 criteria
Laboratory Control Sample (LCS)	One per preparator y batch.	% Recovery: Sulfate = 87-112% Nitrate = 88-111%	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/ Bias	DoD (2021) QSM V5.4 criteria
MS/MSD or MD	Project designated sample matrix QC.	% Recovery: Sulfate = $87-112\%$ Nitrate = $88-111\%$ RPD $\leq 15\%$	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and extract / reanalyze the sample.	Analyst	Interferen- ces - Accuracy/ Bias - Precision	DoD (2021) QSM V5.4 criteria

Table 28.5 – Analytical Quality Control and Corrective Action: Water, Total Organic Carbon (TOC)

Laboratory: EMAX Matrix: Water Analytical Group: TOC Analytical Method/SOP Reference: SW9060A / EMAX-9060

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per preparatory batch.	No analytes detected > LOQ	Correct problem. Reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/ Bias - Contamination	Per SOP: All analytes <loq< td=""></loq<>
Laboratory Control Sample (LCS)	One per preparatory batch.	% Recovery: 80- 120%	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/ Bias	Per SOP: %Rec: 80- 120%
MS/MD	Project designated sample matrix QC.	% Recovery: 75-125% RPD ≤ 20%	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and extract / reanalyze the sample.	Analyst	Interferences - Accuracy/ Bias - Precision	Per SOP: % Rec: 75- 125% RPD ≤ 20%

Table 28.6 – Analytical Quality Control and Corrective Action: Water, Alkalinity and Hardness

Laboratory: EMAX Matrix: Water Analytical Group: Alkalinity Analytical Method/SOP Reference: SW2320B and SW2340C / EMAX-2320B and EMAX-2340C

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per preparatory batch.	No analytes detected > LOQ	Correct problem. Reprep and reanalyze MB and all samples processed with the contaminated blank.	Analyst	Accuracy/ Bias - Contamination	Per SOP: All analytes <loq< td=""></loq<>
Laboratory Control Sample (LCS)	One per preparatory batch.	% Recovery: 80- 120%	Correct problem, then reprep and reanalyze the LCS and all samples in the associated preparatory batch for failed analytes, if sufficient sample material is available.	Analyst	Accuracy/ Bias	Per SOP: %Rec: 80- 120%
Sample Duplicate	Project designated sample matrix QC.	RPD ≤ 20%	If result is indicative of matrix interference, discuss in case narrative. Otherwise check for possible source of error, and extract / reanalyze the sample.	Analyst	Interferences - Accuracy/ Bias - Precision	Per SOP: RPD ≤ 20%

Table 28.7 – Analytical Quality Control and Corrective Action: PFM Volatiles and Alcohol Tracers

Laboratory: EnviroFlux Matrix: PFM Analytical Group: Volatiles and Alcohol Tracers Analytical Method/SOP Reference: SW8260C and SW8015C / PFM SOP

QC Sample	Frequency & Number	Analytical/Prep Method and SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator	Measurement Performance Criteria
Method Blank (MB)	One per batch of 20 samples.	No analytes detected > method reporting limit (or LOQ)	Correct problem. If required, re-prep and reanalyze method blank and all QC samples and field samples processed with the contaminated blank.	Analyst	Accuracy/ Bias – Contamina- tion	No analytes detected > method reporting limit
Laboratory Control Sample (LCS)	One per batch of 20 samples	QC acceptance criteria +/- 20 of true value for all QA/QC analytes and target analytes	 Reanalyze Identify and correct problem Qualify data 	Analyst	Accuracy/ Bias	QC acceptance criteria +/- 20 of true value for all QA/QC analytes and target analytes
Surrogate	All field and QC samples	70-130%	Identify and correct problem. If necessary, re- prepare and reanalyze associated samples. If matrix effect is verified, reanalysis is not needed. Discuss in narrative.	Analyst	Accuracy	70-130%

Worksheet #29: Project Documents and Records

29.1 PROJECT DOCUMENTS AND RECORDS FOR FIELD-RELATED TASKS

The table below lists the data quality-related documentation prepared to support the semi-annual sampling and reporting.

Table 29.1 -	- Project	Documents	and	Records	for	Field-F	Related	Tasks
--------------	-----------	------------------	-----	----------------	-----	----------------	---------	--------------

Document/ Record	Purpose	Related Definable Feature of Work	Primary Generator	Completion/ Update Frequency
Site manager's logbook	Record all important events	ALL	Site Manager	Daily
Daily status reports	Report notable events to project team	ALL	Site Manager	Daily
Safety/quality compliance check list	Focus the process for and record the results of safety/quality compliance reviews	ALL	Site Safety and Health Officer (SSHO), Project QC Manager	During review
Sampling Logbook	Record important sampling information including equipment calibration	ALL Sampling Definable Features of Work	Sampler	When sampling activities occur
Soil boring log	Record boring/sampling methods, lithology, field observations/ screening results, and soil sample information.	Soil borings and soil sampling	Project Geologist	During soil boring/ sampling
Monitoring well completion log	Document monitoring well construction details.	Monitoring well construction	Project Geologist	During well installation
Monitoring well development log	Document groundwater monitoring well development activities.	Monitoring well development	Project Geologist	During well development activities

Document/ Record	Purpose	Related Definable Feature of Work	Primary Generator	Completion/ Update Frequency
Groundwater sample log (low- flow)	Document groundwater sampling activities using low-flow sampling methods.	Low-flow groundwater sampling	Sampler	During low-flow groundwater sampling activities
Soil sample log	Document soil sampling activities	Soil sampling	Sampler	During soil sampling activities
PFM sampling	Document PFM sampling activities	PFM sampling	Sampler	During PFM sampling activities
Field change request form	Record non-critical (i.e., minor) deviations from the QAPP (<i>"non-critical" deviations</i> are defined as those that will not impact project objectives)	ALL	Site Manager	As needed
Root cause analysis	Document MPC failures and causes, as well as corrective actions taken, actions taken to prevent recurrence, and actions taken to monitor effectiveness of corrective action	ALL	Site Manager with support from Project QC Manager, and other discipline QC leads.	If MPC failures are noted
Waste tracking log	Track waste generated, drum numbers, whether the drum has been sampled, and its classification.	Waste characterization sampling and waste management	Site Manager	As needed
Waste transportation and disposal log	Track the shipment and disposal of drums containing waste.	Waste characterization sampling and waste management	Site Manager	As needed

Table 29.1 – Project Documents and Records for Field-Related Tasks

29.2 PROJECT DOCUMENTS AND RECORDS FOR ANALYTICAL-RELATED TASKS

29.2.1 ANALYTICAL RECORDS

29.2.1.1 Hard Copy Analytical Data Deliverables

The laboratory data reports will contain information included in **Tables 29.2** and **29.3** below. All items applicable to the reported method will be provided in the Stage 4 data package. A portable document format (PDF) version of all data will be provided as part of the laboratory data deliverable. Supporting raw data information is required and will also be included in the PDF submittal. The analytical data deliverables will be stored by Parsons.

Table 29.2 - Analytical Data Deliverables

Case narrative – A detailed case narrative per analytical fraction is required and will include explanation of any non-compliance and/or exceptions and corrective action. Exceptions will be noted for receipt, holding times, methods, preparation, calibration, blanks, spikes, surrogates (if applicable), and sample exceptions.

Signed release statement

Sample identification cross reference sheet (laboratory assigned IDs and associated client IDs)

Completed CoC and any sample receipt information

Sample preparation (extraction/digestion) logs

Copies of non-conformance memos and Corrective Action Reports

IDW soil sample results will be reported in wet weight.

The data for this project will be collected and documented in such a manner that will allow the generation of data packages that can be used by an external data reviewer to reconstruct the analytical process. The data provided by the laboratory must be legible and properly labeled and must be compliant with requirements stated in the DoD (2021) QSM version 5.4.

Table 29.3 – Method-Specific Data

Sample Results
Surrogate recovery summary (w/ applicable control limits)
MS/MSD accuracy and precision summary ¹
LCS accuracy summary
Method blank summary
Initial and continuing calibration blanks
Instrument tuning summary (including tuning summary for applicable initial calibrations [ICALs])
Interference check standard summary
ICAL summary (including concentration levels of standards)
Secondary source verification summary

Table 29.3 – Method-Specific Data

Continuing calibration verification summary
IS summary (including applicable ICALs)
Sample preparation (extraction/digestion) logs
Analytical batch sequence / run log
Laboratory duplicate summary ¹
Compound identification summary / ion spectra
Performance check / Sensitivity Check
Instrument or method detection limit summary
ICP Interelement correction factors
High-level check standard
Low-level calibration check standard
Confirmation analyses (if required)
All supporting raw data associated with items listed above

Notes:

¹ RPD shall be calculated using concentration.

29.2.1.2 SEDD 2a Electronic Data Deliverables

The laboratory will provide a validated electronic deliverable in Staged Electronic Data Deliverable (SEDD) 2a format compatible with the FUDSChem database (USACE 2019, 2023). The laboratory shall load the SEDD into the FUDSChem database, check it for compliance to the electronic UFP-QAPP (eQAPP), and notify the contractor of SEDD certification by the FUDSChem database administrator. Data in the electronic submittal must agree completely with the data in the hard copy report.

29.2.1.3 Data Assessment Records

Data assessment records include, but are not limited to, the following:

Table 29.4 - Data Assessment Records

Document	Where Maintained
FUDSChem eQAPP	FUDSChem
Field notebooks	Electronic PDF copies in the project file. Hard copy (bound notebook) in the project file. Archived at project closeout.
CoC records	Electronic PDF copies in the project file. Hard copy in the project file. Archived at project closeout.
Air bills	Hard copy in the project file. Archived at project closeout.
Telephone logs	Hard copy in the project file. Archived at project closeout.

Table 29.4 - Data Assessment Records

Document	Where Maintained
Corrective action forms	Electronic PDF copies in the project file. Hard copy in the project file. Archived at project closeout.
Electronic field data deliverables	Loaded in the field database then transferred to the structured query language (SQL) data warehouse as the final repository.
Various field measurements	Recorded in field notebook and stored in SQL data warehouse.
All field equipment calibration information	Recorded in field logbook.
Pertinent telephone conversations	Recorded in field logbook.
Field equipment maintenance records	Reviewed by the Field Team Lead.
Sample receipt, custody, and tracking records	Electronic PDF copies in the project file.
Standard traceability logs	Included in data package PDF. Archived at project closeout.
Equipment calibration logs	Included in data package PDF. Archived at project closeout.
Sample prep logs	Included in data package PDF. Archived at project closeout.
Run logs	Included in data package PDF. Archived at project closeout.
Equipment maintenance, testing, and inspection logs	Maintained by the laboratory. Available upon request.
Reported field sample results	Included in data package PDF. Archived at project closeout.
Reported results for standards, QC checks, and QC samples	Included in data package PDF. Archived at project closeout.
Instrument printouts (raw data) for field samples, standards, QC checks, and QC samples	Included in data package PDF. Archived at project closeout.
Sample disposal records	Maintained by the laboratory.
Extraction/cleanup records	Included in data package PDF. Archived at project closeout.
Field sampling review checklists	Included in data package PDF. Archived at project closeout.
FUDSChem Electronic data deliverables (EDDs)	Validated EDDs will be uploaded to the FUDSChem system by the laboratory.
Data validation reports	Electronic PDF copies in the project file.
FUDSChem data validation	FUDSChem

Worksheet #31, 32, & 33: Assessments and Corrective Action

31.1 PLANNED PROJECT ASSESSMENTS

This table provides information on the required periodic assessments that will be performed during the project to ensure the planned project activities are implemented in accordance with this UFP-QAPP. The type, frequency, and responsible parties of planned assessment activities to be performed for the project are summarized in the table below. Data will be reviewed internally by the contractor before being provided for external review.

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment	Person(s) Responsible for Responding to Assessment Findings	Person(s) Responsible for Identifying and Implementing Corrective Actions	Person(s) Responsible for Monitoring Effectiveness of Corrective Actions
Preparatory QC Meeting	Prior to beginning of each field mobilization.	Internal	Parsons	Parsons PM will organize and perform the meeting.	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Parson PM or designee.
Preparatory Meeting Inspection Report	With each Preparatory QC Meeting	Internal	Parsons	Site Manager or designee	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Site Manager or designee

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment	Person(s) Responsible for Responding to Assessment Findings	Person(s) Responsible for Identifying and Implementing Corrective Actions	Person(s) Responsible for Monitoring Effectiveness of Corrective Actions
Initial QC Meeting	Shortly after each field mobilization	Internal and External	Parsons, government personnel, and subcontractors, as warranted.	Site Manager	Site Manager, Field Team Manager or other QC Personnel as appropriate based on findings.	Site Manager, Field Team Managers or other QC Personnel as appropriate based on findings.	Parson PM or designee.
Initial Meeting Inspection Report	With each Initial QC Meeting	Internal	Parsons	Site Manager or designee	Field Team Manager or other QC Personnel as appropriate based on findings.	Field Team Managers or other QC Personnel as appropriate based on findings.	Site Manager or designee
Ongoing QC and Corrective Action Inspections	Periodically during field mobilization	Internal	Parsons	Site Manager or designee	Field Team Manager or other QC Personnel as appropriate based on findings.	Field Team Managers or other QC Personnel as appropriate based on findings.	Site Manager or designee

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment	Person(s) Responsible for Responding to Assessment Findings	Person(s) Responsible for Identifying and Implementing Corrective Actions	Person(s) Responsible for Monitoring Effectiveness of Corrective Actions
Ongoing QC and Corrective Action Report	With each Ongoing QC and Corrective Action Inspections	Internal	Parsons	Site Manager or designee	Field Team Manager or other QC Personnel as appropriate based on findings.	Field Team Managers or other QC Personnel as appropriate based on findings.	Site Manager or designee
Completion Inspection	At the end of each field mobilization.	Internal	Parsons	Parsons PM	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Parson PM or designee.
Completion Inspection Report	With each Completion Inspection	Internal	Parsons	Parsons PM or designee	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Site Manager, Other Field Management or other QC Personnel as appropriate based on findings.	Parsons PM or designee

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment	Person(s) Responsible for Responding to Assessment Findings	Person(s) Responsible for Identifying and Implementing Corrective Actions	Person(s) Responsible for Monitoring Effectiveness of Corrective Actions
Field Procedure Assessment and QAPP Compliance	Once per project during field activities	Internal	Parsons	Corporate QC Manager	Project QC Manager	Project QC Manager	Site Manager
Health & safety (H&S) Review	Once per project during field activities	Internal	Parsons	Project H&S Manager	SSH0	SSH0	Site Manager Project H&S Manager
Field Record Verification	Once per field mobilization	Internal	Parsons	Project QC Manager	Site Manager and/or appropriate discipline manager	Site Manager and/or appropriate discipline manager	Project QC Manager
Review Geospatial Data	For each GIS data submittal	External (see QASP)	USACE	Applicable USACE staff	Parsons' PM and GIS Manager	Parsons' GIS Manager	Parsons' PM
Field Activities	See Quality Assurance Surveillance Plan (QASP)	External (see QASP)	USACE	Applicable USACE staff	Parsons' PM and relevant personnel	Site Manager and other relevant personnel	Parsons' QC Manager
Sampling and Analysis	See QASP	External (see QASP)	USACE	USACE Project Chemist	Parsons' PM and Project Chemist or designee	Parsons' Project Chemist and Sampling Lead	Parsons' Project Chemist and Sampling Lead

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment	Person(s) Responsible for Responding to Assessment Findings	Person(s) Responsible for Identifying and Implementing Corrective Actions	Person(s) Responsible for Monitoring Effectiveness of Corrective Actions
Offsite Laboratory Technical Systems Review	All laboratories utilized over the duration of this project must have and maintain California and DoD ELAP accreditations throughout the life of the project. The laboratory must be re-evaluated and receive recertification prior to the expiration of the current accreditation period of performance.	External	Third-party DoD Accrediting Body	Third-party DoD Accrediting Body	Laboratory QA Manager	Laboratory QA Manager	Laboratory QA Manager, Project Chemist

31.2 ASSESSMENT FINDINGS AND CORRECTIVE ACTION RESPONSES

Based on the findings of project assessments, corrective action may be required. A "corrective action" is defined as an action taken by a project to eliminate the cause(s) of nonconformity to prevent recurrence. For assessment findings that require corrective action, deficiencies will be documented and communicated to the appropriate project personnel. Corrective action will then be implemented, and a follow-up assessment will be performed to verify the results of the corrective action. Procedures for handling UFP-QAPP deviations during each type of assessment are summarized in the table below.

Table 31.2 – Assessment Findings and Corrective Action Responses

Assessment Type	Nature of Deficiencies Documentation	Individual(s) Notified of Findings	Time Frame of Notification	Nature of Corrective Action Response Documentation	Individual(s) Receiving Corrective Action Response	Time Frame for Response
Field Procedure Assessment and QAPP Compliance	Internal memo	Project QC Manager	1 business day	Internal e-mail	Site Manager	1 business day
Field Documentati on Reviews	Internal memo	Field Task Lead	3-5 business days	Internal e-mail	Site Manager	3-5 business days
H&S Compliance Inspection	Written compliance inspection report	Site Manager/ SSHO	3-5 business days	Letter or memo	PM H&S Manager	24 hours after notification
Preparatory QC Meeting	Preparatory Meeting Inspection Report	Parsons PM; Site Manager; other appropriate site management.	1-2 business days	Report Form and meeting minutes	Parsons PM; Parsons Site Manager, USACE PM	3–5 business days
Initial QC Meeting	Initial Meeting Inspection Report	Parsons PM; Site Manager; other appropriate site management.	1-2 business days	Report Form and meeting minutes	Parsons PM; Parsons Site Manager; USACE PM	3–5 business days

Assessment Type	Nature of Deficiencies Documentation	Individual(s) Notified of Findings	Time Frame of Notification	Nature of Corrective Action Response Documentation	Individual(s) Receiving Corrective Action Response	Time Frame for Response
Ongoing QC and Corrective Action Inspections	Ongoing QC and Corrective Action Report	Parsons PM; Site Manager; other appropriate site management.	1-2 business days	Report Form and Internal e-mail	Parsons PM; Parsons Site Manager; Department of Toxic Substances Control (DTSC) and CVRWQCB will receive a copy as part of the weekly project updates	3–5 business days
Completion Inspection	Completion Inspection Report	Parsons PM; Site Manager; other appropriate site management.	1-2 business days	Report Form and Internal e-mail	Parsons PM; Parsons Site Manager	3–5 business days

Table 31.2 – Assessment Findings and Corrective Action Responses

31.3 QUALITY ASSURANCE MANAGEMENT REPORTS

In order to demonstrate that DQOs have been achieved, periodic QA management reports will be prepared to ensure that the project stakeholders are updated on project status and the results of all QA assessments. The frequency and type of planned QA management reports, the delivery date, the personnel responsible for report preparation, and the report recipients are identified in the table below.

Table 31.3 -	Quality	Assurance	Management Reports	5
--------------	---------	-----------	---------------------------	---

Type of Report	Frequency	Projected Delivery Date(s)	Primary Person(s) Responsible for Report Preparation	Report Recipient(s)
Daily Field Report	At the end of each sampling day	TBD	Field Team Lead or designee	Recipients listed in the Distribution Memo (see Worksheet #3)
Data Validation Report	Upon completion of data package review and validation	TBD	Third-party data validation company	Recipients listed in the Distribution Memo (see Worksheet #3)
Data Usability Report (DUR)	Once after all data are generated and validated	TBD	Parsons' Project Chemist or designee	Recipients listed in the Distribution Memo (see Worksheet #3)
Final Project Report	Once after all data are generated, validated, and evaluated	TBD	Parsons	Recipients listed in the Distribution Memo (see Worksheet #3)

Worksheet #34: Data Verification & Validation Inputs

This worksheet lists the inputs that will be used during data verification and validation (**Tables 34.1** and **34.2**). Inputs include planning documents, field records, and laboratory records. Data verification is a check that all specified activities involved in collecting and analyzing samples have been completed and documented and that the necessary records (objective evidence) are available to proceed to data validation. Data validation is the evaluation of conformance to stated requirements, including those in the contract, methods, SOPs and the QAPP. Data validation includes evaluation of the data against the project specific MPCs (**Worksheet #12**). Data verification and validation procedures and responsibilities are described on **Worksheet #35** and **Worksheet #36**, respectively. Once verification and validation have been completed, a usability assessment is conducted to evaluate whether process execution and resulting data meet DQOs. Usability assessment procedures are described on **Worksheet #37**.

Description	Verification (completeness)	Validation (conformance to specifications)
Field Records		
Site manager logbook (content and legibility check)	X	
Daily status reports	X	
Team leader logbook(s) (content and legibility check)	X	
Field change request form	X	
Root cause analysis	X	
SOP checklists	X	Х
Sample log	X	
Drilling log	X	
Equipment calibration log	X	

Table 34.1 – Verification and Validation Inputs for Field-Related Tasks
Table 34.2 – Verification and Validation Inputs for Analytical-Related Tasks

Description	Verification (completeness)	Validation (conformance to specifications)
Planning Documents/Records		
Approved UFP-QAPP	Х	
Laboratory subcontract	x	
Field SOPs	X	
Laboratory SOPs	x	
Field Records		
Field logbooks	Х	
CoC forms	X	
Change orders/deviations, when applicable	Х	
Field corrective action reports, when applicable	Х	
Analytical Data Package (including but not limited to the follow	wing items)	
Cover sheet (laboratory identifying information)	Х	Х
Case narrative	Х	Х
CoC and shipping forms	Х	Х
Sample condition upon receipt records	Х	Х
Sample chronology (i.e., dates/times of receipt, preparation, and analysis)		х
Communication records	X	
LOD/LOQ verification	X	X
Detection and quantitation limits		X
Standards traceability		X
Instrument calibration records		Х
Definition of laboratory qualifiers	X	X
Analytical sample results	x	Х
QC sample results	Х	X
Raw data, including manual integrations when applicable ¹		X
Electronic data deliverable ²		X

Table 34.2 – Verification and Validation Inputs for Analytical-Related Tasks

Description	Verification (completeness)	Validation (conformance to specifications)
Corrective action reports, when applicable	Х	Х

Notes:

- ¹ When manual integrations are performed, raw data records shall include a complete inspection trail for those manipulations (i.e., the chromatograms obtained before and after the manual integration must be retained). This requirement applies to all analytical runs including calibration standards and QC samples. The person performing the manual integration must sign and date each manually integrated chromatogram and record the rationale for performing the manual integration.
- ² Electronic deliverables shall be submitted in SEDD 2A format compatible with the FUDSChem database (USACE 2019, 2023). The laboratory shall load the SEDD into the FUDSChem database, check it for compliance to the eQAPP, and notify the contractor of SEDD certification by the FUDSChem database administrator. In addition, a separate SEDD 2A EDD shall be submitted to the contractor via email. Data in the electronic copy must agree completely with the data in the hard copy report.

Worksheet #35: Data Verification Procedures

"Verification" is a completeness check that is performed before the data review process is conducted to determine whether the required information is available for validation. It involves a review of all data inputs to ensure that they are present. This step of the data review process answers whether or not the required data inputs are present. "Validation" is performed to identify and qualify data that do not meet the MPCs specified on **Worksheet #12**. Data requiring validation are summarized on **Worksheet #34**. The tables below show what data inputs are required for data validation as well as the processes used to conduct the validation.

Table 35.1 – Verification Procedures for Field-Related Tasks

Verification Input	Description of Verification Process	Internal/ External	Responsible for Verification
Site manager logbook	Confirm logbooks on file cover entire duration of field effort.	Internal	Site Manager
Daily status reports	Confirm Daily Status Reports on file cover entire duration of field effort.	Internal	Site Manager
Field notebooks	Field notebooks will be reviewed internally on a weekly basis initially, moving to a monthly review, and placed into the project file for archival at project closeout.	Internal	Site Manager
Team leader logbook(s)	Confirm logbooks on file cover entire duration of field effort.	Internal	Site Manager
Field change request form (when applicable)	Confirm that a Field Change Request on file for each QAPP change due to minor field-based QAPP revisions.	Internal	Site Manager
Root cause analyses (when applicable)	Confirm Root Cause Analyses on file for all applicable MPC failures.	Internal	Project QC Manager /Contractor
SOP checklists	Confirm all SOP checklists are on file and cover entire duration of field work.	Internal	Project QC Manager
Sample log	Verify that all sample logs are on file for all samples.	Internal	Project QC Manager
Drilling log	Verify that all drilling logs are on file for all soil borings (Direct Push).	Internal	Project QC Manager

Table 35.2 – Verificat	ion Procedures for	Analytical Related Tasks
------------------------	--------------------	---------------------------------

Verification Input	Description of Verification Process	Internal/ External	Primary Person(s) Responsible
Cover sheet	Confirm the cover sheet includes laboratory identifying information, contact information, assigned sample delivery group number, date issued, project name, and laboratory approval signature.	External and Internal	Laboratory PM or QA Manager Parsons Project Chemist
Case narrative	Confirm the case narrative documents all non-conformance issues related to the samples and analytical data contained in the report.	External and Internal	Laboratory PM Parsons Project Chemist
CoC and shipping forms	CoC forms and shipping documentation will be reviewed internally upon their completion and verified against the packed sample coolers they represent A copy of the CoC retained in the site file, and the original and remaining copies taped inside the cooler for shipment.	Internal	Site Manager Parsons Project Chemist
Sample condition upon receipt	Any discrepancies, missing, or broken containers will be communicated to the Project Chemist or designee along with the laboratory login information.	External	Laboratory Sample Receipt Staff Parsons Project Chemist
Definition of laboratory qualifiers	Definitions of all laboratory applied data qualifiers must be included in the data package.	External and Internal	Laboratory PM, Parsons Project Chemist
Analytical sample results	Review analytical sample results for completeness against the requested parameters listed on the CoC.	External and Internal	Laboratory PM, Parsons Project Chemist or designee
QC sample results	Ensure all QC associated with sample analysis is included. (Laboratory should NOT include MS/MSD data associated with non-project samples.)	External and Internal	Laboratory PM, Parsons Project Chemist or designee
Corrective action reports	Corrective Action reports will be reviewed by the Project Chemist or PM and placed into the project file for archival at project closeout.	External	Laboratory PM or QA Manager Parsons' Project Chemist or designee

Worksheet #36: Data Validation Procedures

Data Validation is performed to identify and qualify data that do not meet the MPCs specified on **Worksheet #12**. Data requiring validation are summarized on **Worksheet #34**. The following tables show what data inputs are required for data validation as well as the processes used to conduct the validation. Data validation will be performed in accordance with the DoD's (2019) "General Data Validation Guidelines" and any published modules.

Validation Input	Description of Validation Process	Responsible for Validation
Daily Instrument Test Report	Ensure the results of all relevant MPCs are attained and correctly documented in the deliverable.	QC Manager
SOP checklists	Ensure the correct procedures have been followed in accordance with defined SOPs .	QC Manager

Table 36.1 – Validation Procedures for Field-Related Tasks

Table 36.2 - Validation Procedures for Analytical-Related Tasks

Validation Input	Description of Validation Process	Primary Person(s) Responsible
Instrument calibration records	Ensure instrumentation was properly calibrated prior to sample analysis.	Parsons Project Chemist
Standard traceability	Verify all chemicals, spikes, and solvents used in the analysis are traceable back to the associated American Society for Testing and Materials standard.	Third-party data validation company
Raw data (including manual integrations when applicable)	Verify the accuracy of instrument print-outs and spot check the calculations performed by the instrument software. Review all manual integrations to ensure they were performed properly and that all required documentation was provided.	Parsons Project Chemist
Sample chronology	ronology Calculate preparation and analytical holding times and compare to method requirements.	
Detection / quantitation limits	Ensure that the reported sample detection limits, LODs, and LOQs met the project sensitivity requirements specified in the project QAPP.	Parsons Project Chemist
Electronic data deliverable	Verify the EDD is error free and agrees with the hard copy report.	Parsons Project Chemist

Notes:

Items listed in this table are in addition to those detailed in **Table 35.2**.

36.1 DATA VALIDATION

Stage 4 data validation will be performed by Parsons Project Chemist on a minimum of ten percent (10%) of the data, excluding IDW. Stage 4 DoD (2021) QSM compliant data packages are required for all data with the exception of that associated with IDW. IDW data will be reviewed at Stage 1. Stage 2b data verification will be performed on all remaining data. If significant issues are noted during the verification process, escalation to higher stages of data validation may be warranted. The decision to perform validation at a higher stage than the minimum required may be made by the Parsons' project chemist or designee, the Parsons' PMs, the USACE Project Chemist, or the USACE PM. The stages of data validation are defined by DoD (2019).

Data selected for Stage 4 validation will include each parameter and matrix.

In addition to the required data packages in PDF format, the laboratory shall submit data using the SEDD format in accordance with the FUDSChem requirements (USACE 2019, 2023). Parsons project chemist or designee will electronically validate the data using FUDSChem. The FUDSChem outputs will be reviewed against the laboratory PDF report, supplementing with manual review where necessary. Upon completion of data validation, Parsons' project chemist will generate a written report summarizing all findings.

Analytical Group/Method:	All Chemical Analyses
Data Deliverable Requirements:	Stage 4 validation package (including raw data and Contract Laboratory Program-like forms) and EDD
Analytical Specifications:	Per UFP-QAPP and DoD (2021) QSM version 5.4
Measurement Performance Criteria:	Per UFP-QAPP (Worksheet #12)
Validation Code ¹ and Percent of Data Packages to be Validated:	100% Stage 2B (S2BVEM) + 10% Stage 4 (S4VEM) (IDW at 100% Stage 1 (S1VM))
Percent of Raw Data Reviewed:	100%
Percent of Results to be Recalculated:	10%
Validation Procedure:	Per UFP-QAPP and DoD General Data Validation Guidelines, Rev 1 (Nov 2019) Data Validation Guideline Modules 1, 2, and 4.
Data Qualifiers:	See Table 36.4 below
Electronic Validation Program/Version:	SEDD 2A format using latest version of the Automated Data Review.net (ADR.net) software compatible with the FUDSChem database ²
Record Retention for Data Validation Records	5 years

Table 36.3 - Overview of Analytical Data Validation for All Analytes

Note:

1 – S2BVEM = Stage 2b Validation Electronic and Manual; S4VEM = Stage 4 Validation Electronic and Manual; S1VM = Stage 1 Validation Manual.

2 - The laboratory shall load the SEDD into the FUDSChem database, check it for compliance to the eQAPP, and notify the contractor of SEDD certification by the FUDSChem database administrator.

Data Qualifiers	Definitions
U	The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result was an estimated value with an unknown bias.
J +	The result was an estimated quantity, but the result may be biased high.
J -	The result was an estimated quantity, but the result may be biased low.
UJ	The analyte was not detected and was reported as less than the LOD. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data are recommended.

Table 36.4 – Data Validation Codes and Definitions

Note: Detected analytes shall be reported to the DL. All detections between the DL and LOQ shall be qualified "J" as estimated. All non-detect results will be reported as non-detect at the LOD, as per DoD (2021) QSM version 5.4. Stage 4 validation includes re-quantification and recalculation on 10% of the samples per Sample Delivery Group, per analytical suite. If the SDG is analyzed on multiple instruments, then each instrument should be included in the calculations. More specifically, a minimum of 10% of the laboratory standards (instrument QC), field QC samples, field samples (prioritizing project specific target analyte detects, diluted samples, manual integrations, and any samples requiring re-analysis), and batch QC samples.

Worksheet #37: Usability Assessment

The data usability assessment is an evaluation based on the results of data verification and validation in the context of the overall project decisions or objectives. The assessment determines whether the project execution and resulting data meet the project DQOs (see **Worksheet #11**) and MPCs (see **Worksheet #12**). All types of data will be considered with the goal of assessing whether the final, qualified results support the decisions to be made with the data.

The following sections summarize the processes to determine whether the collected data are of the right type, quality, and quantity to support the environmental decision-making for the project and describes how data quality issues will be addressed and how limitations of the use of the data will be handled.

37.1 USABILITY ASSESSMENT FOR FIELD-RELATED DATA

37.1.1 SUMMARY OF USABILITY ASSESSMENT PROCESSES

Field-related data gaps may be present if (1) data are not collected, (2) data are not evaluated with regard to the necessary parameters, or (3) data are determined to be unusable. The need for further investigation or corrective action will be determined on a case-by-case basis, depending on whether data can be recovered, extrapolated from other data, and/or whether the missing data are needed based on the results of other recorded data.

The data usability assessment for field-related data will follow the following process:

- Review the project objectives and sampling design:
 - > Are the DQOs (Worksheet #11) and MPCs (Worksheet #12) still applicable?
 - > If the DQOs or MPCs have been changed, have the changes been documented?
 - Is the sampling design consistent with project objectives?
- Review the data verification and validation outputs:
 - > Have the data been verified as described on **Worksheet #35**?
 - > Have the data been validated as described on Worksheet #36?
- Document data usability and draw conclusions:
 - > Have the DQOs been achieved?
 - > Can the data be used as intended?
 - Are there limitations on data use?
 - Have the data been collected in accordance with the underlying assumptions in the analytical methods and sample collection procedures in applicable USEPA and State guidance?

The Site Manager, Project QC Manager, and other technical personnel as necessary will review project data to ensure that the collected data achieve the DQOs and MPCs specified in this UFP-QAPP. During data validation (**Worksheet #36**), non-conformances will be documented, and data will be qualified accordingly. All data are usable as qualified, with the exception of rejected data. The data are considered usable if the relevant MPCs are achieved and both the verification and validation steps are considered to have yielded acceptable data. During verification and validation steps, data may be

qualified due to QC issues. Qualifiers are typically intended to indicate minor QC deficiencies, which will not affect the usability of the data. When major QC deficiencies are encountered, the acceptance or rejection of the data should be decided by the project team (including the project chemist). If data are rejected it will not be considered usable for making project decisions. Deviations from the UFP-QAPP will be reviewed to assess whether corrective action is warranted and to assess impacts on achievement of DQOs.

If samples were not collected in accordance with the underlying assumptions in the analytical methods and sample collection procedures in applicable USEPA and State guidance, that will be stated in data usability assessment, along with potential impacts to the data quality.

37.1.2 USABILITY ASSESSMENT DOCUMENTATION FOR FIELD WORK

All results will be reported for an overall quality assessment in the Field Data Completion Checklist (see **Table 37.1**), which will be completed at the end of the field effort. The Field Data Completion Checklist will document the Usability Assessment based on the five-step process described above. The assessment will include whether each field-related data element has been verified according to **Worksheet #35** and validated according to **Worksheet #36**, whether the DQOs (**Worksheet #11**) have been attained, and whether the data can be used as intended.

37.2 USABILITY ASSESSMENT FOR ANALYTICAL DATA

37.2.1 SUMMARY OF USABILITY ASSESSMENT PROCESSES

Analytical data gaps may be present if (1) data are not collected, (2) data are not evaluated with regard to the necessary parameters, or (3) data are determined to be unusable. The need for further investigation or corrective action will be determined on a case-by-case basis, depending on whether data can be recovered, extrapolated from other data, and/or whether the missing data are needed based on the results of other recorded data.

The Parsons' Project Chemist or designee will evaluate the sensitivity of the data collected to determine whether the required DLs, LODs, and LOQs were met. Data will be further evaluated to determine whether the reported DL, LOD, and LOQ are sufficient to meet the associated PQLGs. Sensitivity of target compounds may be affected by matrix interference, high levels of target or non-target analytes, sample volume available for collection, etc. If the sensitivity requirements are not met for a particular analyte (i.e., LOD is greater than the PQLG), the Parsons Team will evaluate whether the data can still be used for project decisions. The following approach will be used to evaluate data usability when the LOD is greater than the PQLG. For analytes that are site-related, the LOD will become the de facto PQLG, and the Parsons team will use a "weight of evidence" approach to evaluate the likelihood of the chemical's presence. This approach will take a holistic approach to consider data that does meet sensitivity requirements to evaluate the likelihood that analytes that do not meet the sensitivity requirements may be present at concentrations greater than the PQLG. In the absence of any information that indicates the potential presence of the analyte, such as the presence of the compound in other media or the presence of breakdown products, the Parsons Team will conclude that the analyte was not present, and thus data are usable for decision making.

For both the water and soil matrices, the majority of the volatile laboratory limits meet the PQLGs. However, benzene, 1,4-dichlorobenzene, trichloroethene, and vinyl chloride have LODs greater than the applicable PQLGs. For benzene, 1,4-dichlorobenzene, and trichloroethene, however, the DL is below the Project Screening Level (PSL). Therefore, data usability will not be impacted. For these analytes, the approach listed above will be used to evaluate data usability.

The laboratory limits that exceed PQLGs are highlighted yellow in **Worksheet #15**.

Table 37.1 – Field Data Completion Checklist

STEP 1: PROJECT OBJECTIVES AND SAMPLING DESIGN					
Evaluation		Yes/No	Reference ¹	Comments ²	
Are the DQOs and MPCs still application	able?				
If DQOs or MPCs have been change changes documented?	ed, are the				
Is the sampling design consistent w objectives?	ith project				
STEP 2: REVIEW THE DATA VERIFICATION	ON AND VALIDA	TION OUTPUTS			
Data Input	Verified (Yes/No)	Validated (Yes/No)	Reference ¹	Comments ²	
Site Manager Logbook		N/A			
Daily Status Reports		N/A			
Field Change Request Form		N/A			
Root Cause Analysis		N/A			
Photograph Log		N/A			
Daily Instrument Test Report					
SOP Checklists					
STEP 3: DOCUMENT DATA USABILITY AND DRAW CONCLUSIONS					
Evaluation		Yes/No	Reference ¹	Comments ²	
Have the DQOs been achieved?					
Can the data be used as intended?					
Are there limitations on data use?					

Notes:

N/A – Not applicable; data validation not required (see **Worksheet #34**).

- 1 The reference field lists the primary location in the UFP-QAPP where related data are presented, along with any sections of the report where the validation of that data are discussed.
- 2 The comments field presents a brief explanation of any data verification or validation issues. Note that any such issues will be further explained in reports.

The Parsons' Project Chemist or designee will evaluate data usability based on the validation reports and laboratory data to determine whether the data are usable for the purposes of this project based on the requirements of this UFP-QAPP and the project DQOs.

The Parsons' multi-disciplinary project team will ensure that the collected data meet the MPCs specified in this UFP-QAPP. During data validation (**Worksheet #35**), non-conformances will be documented, and data will be qualified accordingly. All data are usable as qualified, with the exception

of rejected data. Estimated and/or biased results are usable. The data are considered usable if the relevant MPCs are achieved and both the verification and validation steps are considered to have yielded acceptable data. During verification and validation steps, data may be qualified using the qualifiers specified in **Table 36.4** of this document. Qualifiers are applied to data points impacted by deficiencies in the associated QC samples, systematic quality issues, or matrix-specific problems. All qualifiers added, removed, or changed will be documented in the data validation reports. When major QC deficiencies are encountered, the acceptance or rejection of the data should be decided by the project team (including the project chemist). If data are rejected it will not be considered usable for making project decisions. Deviations from the UFP-QAPP will be reviewed to assess whether corrective action is warranted and to assess impacts on achievement of PQOs.

37.2.2 PERSONNEL RESPONSIBLE FOR PERFORMING USABILITY ASSESSMENT

The following personnel are responsible for performing usability assessments:

- Parsons PM
- Parsons Site Manager
- Parsons Project Chemist or designee
- Multi-disciplinary Parsons Project Team
- Parsons risk assessors, statisticians, and other project personnel, as necessary

37.2.3 IMPACTS OF QUALIFIED DATA AND PLAN DEVIATIONS

Parsons will utilize all data not rejected during validation to implement and assess the effectiveness of ISCR and EAB. Parsons will work with USACE and project regulators if there is a concern about the statistical validity of the sample results or to determine if sample locations with rejected data need to be re-sampled.

37.2.4 USABILITY ASSESSMENT DOCUMENTATION

The DUA will be completed using the DUA tool and checklist in FUDSChem. The DUA will evaluate whether the data meets the overall goals of the project, as outlined in the DQOs. A DUA will be prepared to document the data validation findings for all data, excluding IDW, and will be documented in the semi-annual sampling reports.

References

- ACHP (Advisory Council on Historic Preservation). 2023. Policy Statement on Burial Sites, Human Remains, and Funerary Objects. March
- AEG (Applied Engineering and Geology). 2012. Report of Soil Vapor Survey, Crocker Knoll Property, Oak Tree Lane, Lincoln, Placer County, California. September.
- AEG (Applied Engineering and Geology). 2015a. Report of Groundwater Investigation, Crocker Knoll Property, Oak Tree Lane, Lincoln, Placer County, California. October.
- AEG (Applied Engineering and Geology). 2015b. Report of Soil Vapor Survey, Oak Tree Lane Property, 500 Oak Tree Lane, Lincoln California. January.
- AEG (Applied Engineering and Geology). 2016. Report of Groundwater Investigation, Former Titan 1-A Missile Facility, Oak Tree Lane, Lincoln, Placer County, California. September.
- Ahtna (Ahtna Environmental). 2020. Fourth Quarter 2019 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. October.
- Ahtna (Ahtna Environmental). 2021a. Second Quarter 2020 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. March.
- Ahtna (Ahtna Environmental). 2021b. Third Quarter 2020 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. March.
- Ahtna (Ahtna Environmental). 2021c. Fourth Quarter 2020 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. September.
- Ahtna (Ahtna Environmental). 2022a. First Quarter 2021 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. February.
- Ahtna (Ahtna Environmental). 2022b. Second Quarter 2021 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. February.
- Ahtna (Ahtna Environmental). 2022c. Third Quarter 2021 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. July.
- Ahtna (Ahtna Environmental). 2022d. Fourth Quarter 2021 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. November.
- Ahtna (Ahtna Environmental). 2023a. First Quarter 2022 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. March.

- Ahtna (Ahtna Environmental). 2023b. Second Quarter 2022 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. March.
- Ahtna (Ahtna Environmental). 2023c. Third Quarter 2022 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. April.
- Ahtna (Ahtna Environmental). 2023d. Fourth Quarter 2022 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. May.
- Ahtna (Ahtna Environmental). 2023e. First Quarter 2023 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB), Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California. FUDS Project J09CA1108-01. Final. June.
- Ahtna (Ahtna Environmental). 2023f. Supplemental Remedial Investigation and Feasibility Study Report, Beale Air Force Base (AFB) Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California, FUDS Project J09CA1108-01. Draft. June.
- Brown and Caldwell. 2003. Titan 1-A Missile Facility, 2002 Annual Groundwater Monitoring Report. November.
- Brown and Caldwell. 2004a. Human Health and Ecological Risk Assessment.
- Brown and Caldwell. 2004b. Continuing Remediation Investigation Report, , Titan 1-A Missile Facility, Lincoln, California. June.
- Brown and Caldwell. 2004c. Titan 1-A Missile Facility, 2003 Annual Groundwater Monitoring Report. June.
- Brown and Caldwell. 2005. Titan 1-A Missile Facility, Technical Memorandum for Underground Storage Tank Investigation.
- Brown and Caldwell. 2006. Titan 1-A Missile Facility, 2006 Annual Groundwater Monitoring Report.
- Brown and Caldwell. 2007. Feasibility Study Report, Former Titan 1-A Missile Facility, Lincoln, California, April.
- CEBMCO (Corps of Engineers Ballistic Missile Construction Office). 1962. History of Corps of Engineers Activities at Beale Air Force Base, October 1959 to March 1962.
- City of Lincoln. 2023. Zoning Map. April. Available online at: <u>https://www.lincolnca.gov/en/business-and-development/resources/Documents/Zoning-Map-Update2022.pdf</u>
- CVRWQCB (Central Valley Regional Water Quality Control Board). 2019. Water Quality Control Plan (basin Plan) for the California Regional Water Quality Control Board, Central Valley Region. Fifth Edition. February.
- DoD (Department of Defense). 2019. General Data Validation Guidelines, Environmental Data Qualification Workgroup. November.
- DoD (Department of Defense). 2021. Quality Systems Manual (QSM) for Environmental Laboratories, Final, Version 5.4.

- Dynamac (Dynamac Corporation). 1992. Inventory Project Report, Defense Environmental Restoration Program, Formerly Used Defense Sites, Site No. J09110800. September.
- Environmental Synectics. 2023. Formerly Used Defense Sites Chemical Database (FUDSChem) User Manual, Version 6.1. October.
- FA/BC (Forsgren Associates/Brown and Caldwell). 2002. Titan 1-A Missile Facility, 2001 Annual Groundwater Report. June.
- FA/BC (Forsgren Associates/Brown and Caldwell). 2004. Human Health and Ecological Risk Assessment, Titan 1-A Missile Facility, Lincoln, California. April.
- IDQTF (Intergovernmental Data Quality Task Force). 2005. Uniform Federal Policy for Quality Assurance Project Plans, Part 1: UFP-QAPP Manual, Evaluating, Assessing, and Documenting Environmental Data Collection and Use Programs. EPA-505-B-04-900A. DTIC ADA 427785. March.
- IDQTF (Intergovernmental Data Quality Task Force). 2012. Uniform Federal Policy for Quality Assurance Work Plans, Part 2A (revised): Optimized UFP-QAPP Worksheets. March.
- IEM (lowa Environmental Mesonet).2023.Station data and metadata for station LHM at the Lincoln
AvailableRegionalAirport.Availableonlineat:
https://mesonet.agron.iastate.edu/sites/site.php?station=LHM&network=CA_ASOS
- Parsons. 2024a. Draft Remedial Investigation Report for Former Titan 1-A Missile Facility, Lincoln, California, February.
- Parsons. 2024b. Final Uniform Federal Policy for Quality Assurance Project Plans for Semi-Annual Groundwater and Soil Vapor Sampling at Former Titan 1-A Missile Facility, Lincoln, California, April.
- Radian (Radian Corporation). 1991. Monitoring Well Installation and Ground Water Sampling at Ferrari Eastlake Ranch Site, May.
- URS. 2001. Focused Remedial Investigation Report, Titan 1-A Missile Facility, Lincoln, California. Draft Final. December.
- U.S. Air Force. 1962. Technical Manual. Corrosion Control and Treatment for Aerospace Equipment. T.O. 1-1-2. October.
- USACE (U.S. Army Corps of Engineers). 2016. EM 200-1-2 Technical Project Planning Process.
- USACE (U.S. Army Corps of Engineers). 2018. Beale Air Force Base Titan 1-A Biological Site Visit Report. April.
- USACE (U.S. Army Corps of Engineers). 2019. Staged Electronic Data Deliverable (SEDD) Specification and Data Element Dictionary Version 5.2. March.
- USACE (U.S. Army Corps of Engineers). 2023. SEDD Modifications and Clarifications for FUDSChem Submission. August.
- USEPA (U.S. Environmental Protection Agency). 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. September.
- USEPA (U.S. Environmental Protection Agency). 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February.

- Wallace-Kuhl (Wallace-Kuhl & Associates). 2015. Surface Soil and Soil Vapor Investigation Report, Hidden Hills Property, Lincoln, California. May.
- Woodward-Clyde. 1996. Records Research Report, Titan 1-A Missile Facility, Lincoln, California. February.
- Woodward-Clyde. 1997. Field Investigation Report, Passive Soil Vapor Survey, Titan 1-A Missile Complex, Lincoln, California. February.

FIGURES

General Site Location Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

Former Titan 1-A Missile Facility / FUDS Boundary

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAPP

Site Setting Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

- Former Titan 1-A Missile Facility / FUDS Boundary

FILE: X:\gis\Other_sites\Waps\Titan1A\UFP-QAPI

Historic Site Features Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

1	Former Titan 1-A Missile Facility / FUDS Boundary
	Placer County Corporation Yard and Quarry
	California Division of Forestry (CDF) Fire Station
	Trap and Skeet Shooting Club
	Pistol Range
	Drainage Path

Municipal Water Line

Parcel Ownership Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

Former Titan 1-A Missile Facility / FUDS Boundary

Parcel Boundary

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAP

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAP

Figure 3.1 - Project Organization Chart

Figure 10.4

Groundwater Elevations and Contours 1st Semi-Annual Sampling Event 2024 Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

 \bullet

- Extraction Well
 - Monitoring Well
 - Ground water Elevation Contour (feet above mean sea level), dashed where estimated
- Direction of Groundwater Flow
- Parcel Boundary
- Ephemeral/Seasonal Streams and Surface Water Bodies
- Ephemeral stream
- Former Titan 1-A Missile Facility / FUDS Boundary

Note:

Note: Groundwater Elevations are in feet above mean sea level. The groundwater elevation contours and groundwater flow directions are from: 1st Semi-Annual Sampling Event 2024. Beale Air Force Base (AFB) Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California FUDS Project J09CA1108-01.

Site Location in California

300	150	0		■Feet 300	W S E
PARSONS		U.S. Arm Sao	ny Corps o cramento I	f Engineers District	
DESIGNED BY: BT DRAWN BY: BT	G 1:	iroundwa st Semi-A	ter Elevat .nnual Sar	ions and npling E	d Contours Event 2024
CHECKED BY:		PROJECT TYPE: HTRW		PROJECT NUM	BER: 06.0044.110251.01000
	PR	ROJECT: JO9CA	1108-01	PAGE NUMBER:	HAN
CR	DA	ATE: JUIY Z	024		

FILE: X:\gis\Other_sites\Maps\Titan1A\R

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAP

Figure 18.1

Sampling Route Map Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

 \bigcirc

٠

 $\times -$

Extraction Well

Monitoring Well, Existing

Monitoring Well, Proposed

Boring, Proposed

Sampling Route, Dashed where Walking (no vehicles allowed) Fence

Parcel Boundary

Ephemeral/Seasonal Streams and Surface Water Bodies

Ephemeral stream Vehicles will use high-density polyethylene mats to cross streams/wetlands Former Titan 1-A Missile Facility / FUDS Boundary

Former main 1-A missile Facility / FODS bounda

Investigation Derived Waste Storage Area

Note: The concentration contours and groundwater flow directions are from: Ahtna. 2023. First Quarter 2023 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB) Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California, FUDS Project J09CA1108-01.

Site Location in California

300 150	0	30	Feet 0	W S E	
PARSONS		U.S. Arm Sao	ny Corps o cramento I	f Engineers District	
ESIGNED BY: BT RAWN BY: BT	Sampling Route Map				
HECKED BY:	PROJECT TYPE: HTR	W	PROJECT NUMBER: 100306.0044.110251.09000		
MK	PROJECT: J09CA	1108-01	PAGE NUMBER:	(Wwww)	

July 2024

DATE:

H-H

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAP

BMITTED BY: CR APPENDIX A – Project Schedule

					Field Schee Titan Treatabili	dule ty Study				
ID	Task Name			Duration	Start	Finish	,	March		April
1	Titan 1A Treatability Stu	dy		254 days	Fri 2/28/25	Wed 2/18/26	•			
2	Baseline Groundwater	Sampling (EW-1, N	MW-43, & MW-50)	9 days	Tue 3/18/25	Fri 3/28/25				
3	Groundwater Samplin	ng / Deploy PFMs		1 day	Fri 2/28/25	Fri 2/28/25				
4	4wk - Deployment of	PFMs		20 days	Mon 3/3/25	Fri 3/28/25	1			
5	Biological Nesting Bird	l Survey		1 day	Tue 3/25/25	Tue 3/25/25		п		
6	Biological Nesting B	ird Survey		1 day	Tue 3/25/25	Tue 3/25/25				
7	Treatability Study Fiel	d Work		12 days	Tue 4/1/25	Wed 4/16/25				—
8	Mobilize and Recove	r / Sample PFMs		1 day	Tue 4/1/25	Tue 4/1/25			1	
9	Utility Clearance / Ve	egetation Clearance		1 day	Tue 4/1/25	Tue 4/1/25				
10	Groundwater Monitor	ring Well Installatior	n (MW-67)	1 day	Wed 4/2/25	Wed 4/2/25			ай.	
11	Soil Boring and samp	ling (B-01)		1 day	Wed 4/2/25	Wed 4/2/25			X	
12	Develop and Sample	Monitoring Well (M	W-67)	1 day	Thu 4/3/25	Thu 4/3/25			T	
13	Amendment Injection	IS		8 days	Fri 4/4/25	Tue 4/15/25			+	
14	Survey			1 day	Tue 4/15/25	Tue 4/15/25				50
15	Demobilize			1 day	Wed 4/16/25	Wed 4/16/25				
16	Performance Groundw	ater Monitoring		200 days	Thu 5/15/25	Wed 2/18/26				
17	1st Quarterly GW Sar	mpling		5 days	Thu 5/15/25	Wed 5/21/25				
18	2nd Quarterly GW Sa	mpling		5 days	Thu 8/14/25	Wed 8/20/25				
19	19 3rd Quarterly GW Sampling		5 days	Thu 11/13/25	Wed 11/19/25					
20	20 4th Quarterly GW Sampling		5 days	Thu 2/12/26	Wed 2/18/26					
21	Treatability Study Report		179 days	Tue 6/10/25	Fri 2/13/26					
22	22 Draft Treatability Study Report		22 days	Thu 6/26/25	Fri 7/25/25					
23	23 PDT Review		15 days	Tue 7/29/25	Mon 8/18/25					
24	24 Resolution of PDT Comments		10 days	Wed 8/20/25	Tue 9/2/25					
25	25 PDT Backcheck Review		10 days	Thu 9/4/25	Wed 9/17/25					
26	6 Draft 2 Treatability Study Report		5 days	Fri 9/19/25	Thu 9/25/25					
27	EM-CX Review			15 days	Mon 9/29/25	Fri 10/17/25				
28	Resolution of EM-CX	Comments Comments		10 days	Tue 10/21/25	Mon 11/3/25				
29	EM-CX Backcheck Review			10 days	Wed 11/5/25	Tue 11/18/25				
30	D Draft Final Treatability Study Report		5 days	Thu 11/20/25	Wed 11/26/25					
31	1 Government and Regulator/Property Owner Review		22 days	Fri 11/28/25	Mon 12/29/25					
32	2 Resolution of Government and Regulator/Property Owner Comments		10 days	Wed 12/31/25	Tue 1/13/26					
33	3 Government and Regulator/Property Owner Backcheck		15 days	Thu 1/15/26	Wed 2/4/26					
34	34 Final Treatability Study Report		6 days	Fri 2/6/26	Fri 2/13/26					
	1	1				1				
		Task	Ina	ctive Task		Manual Summary R	ollup	External Milestone	\diamond	
ъ ·	·	Split	Ina	ctive Milestone	\diamond	Manual Summary	1	Deadline	÷	
Project Date:	roject: Titan Treatability Study Milestone Inact		ctive Summary	1	Start-only	C	Progress			
_ a.e.		Summary	Ma	nual Task		Finish-only	3	Manual Progress		
		Project Summary	Du	ration-only		External Tasks		-		
				,	Page 1					

APPENDIX B – Waste Management Plan

TABLE OF CONTENTS

B.1	Introduction	B-2
B.2	Applicable Federal and State of California Waste Codes	B-2
B.3	Waste Soil	B-2
B.4	Personal Protective Equipment, Used Sampling Equipment, and Related Solid Waste	B-3
B.5	Liquid Waste	B-3
B.6	Tracking of Waste Containers	B-3
B.7	Storage	B-5
B.8	Transportation	B-5
B.9	Disposal Documentation	B-5
B.10	Waste Profile Sheet	B-5
B.11	Manifesting	B-5
B.12	Weight Slips	B-6
B.13	Notification of Waste Shipped	B-6
B.14	Certificate of Disposal	B-6

Figure B.1	Investigation Derived	Waste Storage Area	B-7

ATTACHMENT B.1	UFP-QAPP Worksheets 15, 19, and 20
ATTACHMENT B.2	Waste Tracking Log

ATTACHMENT B.3 Waste Transportation and Disposal Log

B.1 INTRODUCTION

This Waste Management Plan (WMP) has been developed for the management of wastes generated during semi-annual groundwater and soil vapor sampling at the Former Titan 1-A Missile Facility Used Defense Site (FUDS) property located in Lincoln, California. Expected waste streams requiring disposal generated during this project could potentially include, but are not limited to, the following:

- Waste Soil;
- Purge Water;
- Personal Protective Equipment (PPE), Used Sampling Equipment, and Related Waste;
- Decontamination Water.

The waste streams listed above are all considered investigation-derived waste (IDW), and waste disposal operations will be conducted in accordance with this WMP.

B.2 APPLICABLE FEDERAL AND STATE OF CALIFORNIA WASTE CODES

Hazardous waste regulations are specified in the 40 Code of Federal Regulations (CFR) Part 261. Hazardous waste is any solid waste that either exhibits any of the characteristics of hazardous waste or is a listed United States Environmental Protection Agency (USEPA) waste. D-listed wastes are wastes that exhibit the characteristics of ignitability, corrosivity, reactivity, or toxicity (D001 through D043). Flisted wastes are hazardous wastes from non-specific sources (F001 through F039). K-listed wastes are hazardous wastes from specific sources (K001 through K151). P-listed wastes are acute hazardous wastes (P001 through P123) and U-listed wastes are toxic wastes (U001 through U359).

The California hazardous waste laws, regulations, and policies can be found at the California Department of Toxic Substances Control website at: <u>https://dtsc.ca.gov/dtsc-laws-regulations/</u>.

Prior to shipping HTRW waste, the USEPA Region 9 Off-Site Contact will be consulted to ensure that a waste disposal facility is selected that complies with the CERCLA off-site rule; i.e., 40 CFR 300.440(b)(1) and ER 200-3-1 Section 4-9.3. The current USEPA Region 9 Off-Site Contact is Jennifer MacArthur (macarthur.jennifer@epa.gov); 415-972-3994).

B.3 WASTE SOIL

Waste soil will consist of soil cuttings from soil borings, which will be staged onsite in United States Department of Transportation (DOT)-approved 55-gallon drums until the results of waste profiling analysis have been received and evaluated. IDW soils may be combined in a single drum when they originate from nearby areas. Soil cuttings will be segregated and managed as suspect hazardous waste if obvious signs of contamination are observed during field activities such as visible staining, odors, or if photoionization detector (PID) volatile organic compound (VOC) readings are greater than 500 parts per million (ppm). All IDW soil drums will be labeled and managed in designated staging areas until waste profiling has been completed. Waste profiling of IDW soil will be performed in accordance with the sampling protocols detailed in worksheets #17, 18, and 20, and as follows. Each

IDW drum generated will be sampled. For drums containing soil, a composite will be made in the field that includes soil from multiple layers of the drum. The soil will be combined in a plastic ziploc-style baggie and homogenized in the field before being distributed amongst the appropriate sample containers. Soil IDW samples will be analyzed for

- total metals via USEPA Method 6010/7471
- VOCs via USEPA Method 8260

If concentrations exceed the 10 times Soluble Threshold Limit Concentration (STLC) listed in 22 California Code of Regulations (CCR) 66261.24, the sample will also be analyzed using STLC. If concentrations exceed 20 times the Toxicity Characteristic Leaching Procedure (TCLP) criterion listed in 22 CCR 66261.24, the sample will also be analyzed using TCLP.

B.4 PERSONAL PROTECTIVE EQUIPMENT, USED SAMPLING EQUIPMENT, AND RELATED SOLID WASTE

Used PPE, disposable sampling equipment and materials, and other miscellaneous solid wastes will be generated during environmental sampling activities. The solid waste will be considered as nonhazardous solid waste, packaged in clear plastic bags, and disposed of as solid waste (trash) in a municipal trash receptacle.

B.5 LIQUID WASTE

Liquid waste will consist of decontamination/rinse water and purged groundwater. Decontamination water is expected to be generated from the rinsing of soil sampling equipment. Decontamination water will be stored in USDOT-approved 55-gallon drums separate from the groundwater IDW. Waste profiling for decontamination/rinse water will be performed in accordance with the sampling protocols detailed in worksheets #17, 18, and 20 and as follows. Each IDW drum generated will be sampled. For drums containing liquid, a bailer will be used to obtain a grab sample from approximately mid-drum. The liquid from the bailer will then be decanted into appropriate sample containers. Liquid IDW samples will be analyzed for the following:

- total metals via USEPA Method 6010/7471
- VOCs via USEPA Method 8260

Groundwater IDW is expected to be generated during the purging and sampling of groundwater monitoring wells. Groundwater IDW will be stored in USDOT-approved 55-gallon drums. Containerized groundwater IDW will be held in designated staging areas at the site until waste profiling has been completed.

B.6 TRACKING OF WASTE CONTAINERS

The following tracking system will be used for each waste stream encountered. The tracking system will be administered by the site manager (SM) (or designee) and reviewed by the Site Safety and Health Officer (SSHO). Each container will be tracked from point of recovery to disposal as follows:
- 1. Drums will initially receive a temporary number that will change to a permanent number according to monitoring results or laboratory analysis. This system allows for a more streamlined approach to waste characterization and potential consolidation of waste into larger containers for disposal. Temporary drum numbers will be designated as "T-001," "T-002," etc. and will be tracked via an electronic spreadsheet as well as the container log shown found in Attachment C.2 and C.3 of this Appendix. After it is deemed necessary for a drum and/or other container to receive a permanent number, the drum will be marked accordingly. The original temporary "T-###" number will be changed to "P-###," signifying that the waste has been profiled and the drum is ready for disposal. The number will also be noted on the waste tracking log for consistency.
- 2. All waste will be given permanent tracking numbers. However, if a drum is profiled as nonhazardous and can be combined with another drum of similar waste stream (also nonhazardous), the final drum would use the initial drum's permanent number and the second drum's number would be deleted (and not reused).
- 3. Each container will be marked directly on the top and side with a unique container number. The container number will be in an alphanumeric sequence that identifies both the site waste stream and container number. Waste stream designations for the project consist of the following:
 - a. Waste Soil: WS
 - b. Decontamination Water: H20 Decon
 - c. Purge Water: H20 Purge
 - d. Other debris: OD

An example container number follows: WS-001. This designation identifies the container as containing waste soil and identified as container number 1. Containers will be sequentially numbered with no numbers reused (e.g., WS-001, H20DECON-002, H20PURGE-003, PPE/SW-004, OD-005, etc.).

All containers will be labeled in accordance with DOT and USEPA regulations and restrictions. Initially, all drums will be labelled with a "non-hazardous waste" label and the contents will be listed as "contents pending analysis." When the analytical results are available, a new label (as appropriate) will be affixed to the drum with the updated contents and generator information in accordance with the analytical results.

Additionally, the outside of each container will be marked on the top and sides with the following information:

- 1. Generation date
- 2. Generator name and address
- 3. Waste approval code
- 4. USEPA identification number
- 5. Hazardous waste label
- 6. Unique drum number
- 7. Waste profile sheet number

B.7 STORAGE

Labeled drums will be transferred from their point of generation to the on-site designated holding area located in the Skeet Club Building parking area off of Placer County Road Construction Yard (**Figure B.1**). Labeled bins/drums containing soil cuttings may be stored and secured at off-site locations (point of origin) if the property owner has approved the storage location. The bins/drums should be transported as soon as disposal has been approved by the landfill. Hazardous waste may not be stored on-site for longer than 90 days.

B.8 TRANSPORTATION

Upon receipt of analytical data and the waste approval code from the disposal facility, transport of the containers to the appropriate facility will be arranged. An approved disposal contractor will be used as a transporter, and the waste will be disposed of at an appropriate approved disposal facility. Shipments will be coordinated and scheduled when a sufficient number of containers have accrued or when a specific waste stream is exhausted. The scheduling will also account for any state mandated storage periods.

Ultimately, waste will be labeled and shipped as profiled: hazardous waste will ship via a hazardous waste manifest and non-hazardous waste will ship via a bill-of-lading or non-hazardous waste manifest. Solid waste will be disposed of as specified in Section B.4.

B.9 DISPOSAL DOCUMENTATION

All disposal documentation will be in full compliance with applicable rules and regulations, including USEPA requirements, and DOT Hazardous Material Regulations (49 CFR 100-199). "DOD (DERP/FUDS)" will be will be listed as the generator of all waste streams and will provide a person responsible for signing required paperwork. The former Titan 1-A Missile Facility address will be used as the location of waste generation. Copies of all disposal documentation paperwork will be maintained in the site filing system by the SM. Disposal documentation will be included in the final report.

B.10 WASTE PROFILE SHEET

Prior to shipment from the worksite, samples will be forwarded to a Department of Defense and California accredited analytical laboratory for the appropriate chemical analyses. A waste profile sheet will then be produced for each of the waste streams based on the resulting analytical data.

B.11 MANIFESTING

Parsons, as the shipping agent, is responsible for manifesting the waste in compliance with existing rules and regulations. Hazardous waste will be properly manifested and sent to disposal facilities using a Hazardous Waste Manifest. Non-hazardous waste will be shipped via a bill of lading and/or a non-hazardous waste manifest. These forms will be provided by the waste shipment and disposal contractor. Draft and/or digital copies of waste documentation will be provided at least 48 hours before waste pick-up to allow Parsons to review for accuracy and compliance with regulations. Parsons

will forward the final document, ready for signature, to the appropriate representative for signature. All waste documents, manifests or bills-of-lading will be signed by a representative from U.S. Army Corps of Engineers, Sacramento District (CESPK).

If waste is determined to be hazardous during profiling, an EPA identification (ID) number specific to this site, will be obtained. The EPA ID number is only necessary if waste is shipped as hazardous waste. Non-hazardous waste does not require an EPA ID number for disposal.

B.12 WEIGHT SLIPS

A signed weight slip will be furnished to the CESPK indicating the actual weight of the waste that has been shipped to the approved disposal facility.

B.13 NOTIFICATION OF WASTE SHIPPED

A notification of waste shipped form, required under the Land Ban Disposal restrictions, will be completed by the waste management subcontractor. This form will identify treatment standards required in 40 CFR 268. This form will be prepared as an addendum to the manifest.

B.14 CERTIFICATE OF DISPOSAL

A certificate of disposal indicating acceptance of materials by the disposal facility will be signed by the disposal facility representative and furnished to the CESPK within 90 working days after the disposal action has been completed. The completion of this form will be coordinated by Parsons.

ATTACHMENT B.1 UFP-QAPP Worksheets 15, 19, and 20

Table 15.1 - Reference Levels and Evaluation Table: Soil, Metals (SW6010C)

Laboratory: EMAX Matrix: Soil Analytical Group: Metals (SW6010C)

	Chemical	Unito	4	PSL	Project	Labo	oratory-Spec	cific ³
Analyte	Abstracts Service (CAS) Number	Units	PSL⁺	Reference	Quantitation Limit Goal ²	LOQ	LOD	DL
Antimony	7440-36-0	mg/kg	500	22 CCR 66261.24	167	10.00	3.00	1.00
Arsenic	7440-38-2	mg/kg	500	22 CCR 66261.24	167	2.00	1.00	0.50
Barium	7440-39-3	mg/kg	10,000	22 CCR 66261.24	3,333	1.00	0.50	0.20
Beryllium	7440-41-7	mg/kg	75	22 CCR 66261.24	25	0.50	0.20	0.10
Cadmium	7440-43-9	mg/kg	100	22 CCR 66261.24	33	0.50	0.20	0.10
Chromium, total	7440-47-3	mg/kg	2,500	22 CCR 66261.24	833	1.00	0.50	0.25
Cobalt	7440-48-4	mg/kg	8,000	22 CCR 66261.24	2,667	1.00	0.20	0.10
Copper	7440-50-8	mg/kg	2,500	22 CCR 66261.24	833	1.00	0.50	0.25
Lead	7439-92-1	mg/kg	1,000	22 CCR 66261.24	333	2.00	1.00	0.50
Molybdenum	7439-98-7	mg/kg	3,500	22 CCR 66261.24	1,167	1.00	0.50	0.25
Nickel	7440-02-0	mg/kg	2,000	22 CCR 66261.24	667	1.00	0.50	0.25
Selenium	7782-49-2	mg/kg	100	22 CCR 66261.24	33	2.00	1.00	0.50
Silver	7440-22-4	mg/kg	500	22 CCR 66261.24	167	1.00	0.20	0.10
Thallium	7440-28-0	mg/kg	700	22 CCR 66261.24	233	1.00	0.50	0.25
Vanadium	7440-62-2	mg/kg	2,400	22 CCR 66261.24	800	0.50	0.20	0.10
Zinc	7440-66-6	mg/kg	5,000	22 CCR 66261.24	1,667	10.00	5.00	2.00

Notes:

1 - the PSL is the California Total Threshold Limit Concentration from 22 CCR 66261.24.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

CCR - California Code of Regulations PSL - Project Screening Level

Table 15.2 - Reference Levels and Evaluation Table: IDW, TCLP Metals(SW1311/SW6010C) and STLC Metals (STLC/SW6010C)

Laboratory: EMAX Matrix: IDW

Analytical Group: TCLP Metals (SW1311 / SW6010C)

Analute	CAS Number Uni	Linits PSI		PSL	Project Quantitation	Laboratory-Specific ³		
		Units	FUL	Reference	Limit Goal ²	LOQ	LOD	DL
Arsenic (As)	7440-36-0	mg/L	5.0	40 CFR 261.24	1.7	4.0	2.0	1.0
Barium (Ba)	7440-39-3	mg/L	100	40 CFR 261.24	33	1.0	0.20	0.10
Cadmium (Cd)	7440-43-9	mg/L	1.0	40 CFR 261.24	0.33	1.0	0.50	0.25
Chromium (Cr)	7440-47-3	mg/L	5.0	40 CFR 261.24	1.67	1.0	0.50	0.20
Lead (Pb)	7439-92-1	mg/L	5.0	40 CFR 261.24	1.67	1.0	0.50	0.25
Selenium (Se)	7782-49-2	mg/L	1.0	40 CFR 261.24	0.33	2.0	1.0	0.5
Silver (Ag)	7440-22-4	mg/L	5.0	40 CFR 261.24	1.67	1.0	0.5	0.20

Laboratory: EMAX

Matrix: IDW

Analytical Group: STLC Metals (STLC¹ / SW6010C)

Analyte	CAS Number	Unite	DCI	PSL	Project Quantitation	Laboratory-Specific ³		
Analyte		Units	- TOL	Reference	Limit Goal ²	LOQ	LOD	DL
Antimony	7440-36-0	mg/L	15	22 CCR 66261.24	5.0	10.0	3.0	1.5
Arsenic	7440-38-2	mg/L	5.0	22 CCR 66261.24	1.7	4.0	2.0	1.0
Barium	7440-39-3	mg/L	100	22 CCR 66261.24	33	1.0	0.20	0.10
Beryllium	7440-41-7	mg/L	0.75	22 CCR 66261.24	0.25	1.0	0.20	0.10
Cadmium	7440-43-9	mg/L	1.0	22 CCR 66261.24	0.33	1.0	0.50	0.25
Chromium	7440-47-3	mg/L	5.0	22 CCR 66261.24	1.7	1.0	0.50	0.20
Cobalt	7440-48-4	mg/L	80	22 CCR 66261.24	27	1.0	0.20	0.10
Copper	7440-50-8	mg/L	25	22 CCR 66261.24	8.3	1.0	0.50	0.25
Lead	7439-92-1	mg/L	5.0	22 CCR 66261.24	1.7	1.0	0.50	0.25
Molybdenum	7439-98-7	mg/L	350	22 CCR 66261.24	117	1.0	0.50	0.20
Nickel	7440-02-0	mg/L	20	22 CCR 66261.24	6.7	1.0	0.50	0.20
Selenium	7782-49-2	mg/L	1.0	22 CCR 66261.24	0.33	2.0	1.0	0.50
Silver	7440-22-4	mg/L	5.0	22 CCR 66261.24	1.7	1.0	0.50	0.20
Thallium	7440-28-0	mg/L	7.0	22 CCR 66261.24	2.3	2.0	1.0	0.5
Vanadium	7440-62-2	mg/L	24	22 CCR 66261.24	8.0	1.0	0.20	0.10
Zinc	7440-66-6	mg/L	250	22 CCR 66261.24	83	5.0	2.0	1.0

Notes:

1 - Soluble Threshold Limit Concentration (STLC) method reference: California Title 22 Guidelines (STLC) Chapter 11, Article 5, Appendix II. December 9, 2005.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

CCR - California Code of Regulations

Table 15.3 - Reference Levels and Evaluation Table: Soil, Mercury (SW7471B)

Laboratory: EMAX

Matrix: Soil

Analytical Group: Mercury (SW7471B)

Analita	CAS Number Units PSL ¹ PSL Reference	11-11-		PSL	Project Quantitation	Laboratory-Specific ³		
Analyte		Limit Goal ²	LOQ	LOD	DL			
Mercury (Hg)	7439-97-6	mg/kg	20	22 CCR 66261.24	6.7	0.10	0.067	0.033

Notes:

1 - the PSL is the California Total Threshold Limit Concentration from 22 CCR 66261.24.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the

de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

CCR - California Code of Regulations

Table 15.4 - Reference Levels and Evaluation Table: IDW, TCLP Mercury (SW1311/SW7470A) and STLC Mercury (STLC/SW7470A)

Laboratory: EMAX

Matrix: Water

Analytical Group: TCLP Mercury (SW1311/SW7470A)

Analyte	CAS Number			PSL	Project	Laboratory-Specific ³			
		Units	PSL	Reference	Goal ²	LOQ	LOD	DL	
Mercury (Hg)	7439-97-6	mg/L	0.2	40 CFR 261.24	0.067	0.050	0.020	0.010	

Laboratory: EMAX

Matrix: IDW

Analytical Group: STLC Metals (STLC¹ / SW7470A)

Analyte	CAS Number	Units PSL PSL Qua		Project Quantitation Limit	Laboratory-Specific ³			
				Reference	Goal ²	LOQ	LOD	DL
Mercury (Hg)	7439-97-6	mg/L	0.2	22 CCR 66261.24	0.067	0.050	0.020	0.010

Notes:

1 - Soluble Threshold Limit Concentration (STLC) method reference: California Title 22 Guidelines (STLC) Chapter 11, Article 5, Appendix II. December 9, 2005.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects will be reported to the LOD; detections will be reported to the DL.

Definitions:

Table 15.5 - Reference Levels and Evaluation Table: Soil, Low-level VOCs (SW8260C)

Laboratory: EMAX

Matrix: Soil

Analytical Group: Low-level (Sodium Bisulfate) Volatile Organic Compounds (SW8260C)

Analyte	CAS Number Un	Linite Del 1		PSL	Project Quantitation	Lab	oratory-Spec	ific ³
Analyte	CAS Number Onits PSL		FOL	Reference	Limit Goal ²	LOQ	LOD	DL
1,1-Dichloroethene	75-35-4	mg/kg	14	40 CFR 261.24	4.7	1.0	0.2	0.1
1,2-Dichloroethane	107-06-2	mg/kg	10	40 CFR 261.24	3.3	1.0	0.2	0.1
1,4-Dichlorobenzene	106-46-7	mg/kg	150	40 CFR 261.24	50	1.0	0.2	0.1
Benzene	71-43-2	mg/kg	10	40 CFR 261.24	3.3	1.0	0.2	0.1
Carbon tetrachloride	56-23-5	mg/kg	10	40 CFR 261.24	3.3	1.0	0.2	0.1
Chlorobenzene	108-90-7	mg/kg	2,000	40 CFR 261.24	667	1.0	0.2	0.1
Chloroform	67-66-3	mg/kg	120	40 CFR 261.24	40	1.0	0.2	0.1
2-Butanone (MEK)	78-93-3	mg/kg	4,000	40 CFR 261.24	1,333	20	10	5
Tetrachloroethene	127-18-4	mg/kg	14	40 CFR 261.24	4.7	1.0	0.3	0.15
Trichloroethene	79-01-6	mg/kg	2,040	22 CCR 66261.24	680	0.0050	0.0010	0.0005
Vinyl chloride	75-01-4	mg/kg	4.0	40 CFR 261.24	1.3	1.0	0.3	0.11

Notes:

1 - the PSL is the California Total Threshold Limit Concentration from 22 CCR 66261.24 or the Toxicity Characteristic Leaching Procedure in 40 CFR 261.24 multiplied by a dilution factor of 20 if there is no Total Threshold Limity Concentration.

2 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

3 - Non-detects (< DL) will be reported to the LOD.

Definitions:

CCR - California Code of Regulations

PSL - Project Screening Level

CFR - Code of Federal Regulations

Table 15.6 - Reference Levels and Evaluation Table: IDW, TCLP VOCs (SW1311/SW8260C) and STLC VOCs (STLC/SW8260C)

Laboratory: EMAX

Matrix: IDW

Analytical Group: TCLP Volatile Organic Compounds (SW1311 / SW8260C)

Analyta	CAS Number	Unite	PSL	PSL	Project	Lab	oratory-Spec	ific ²
Analyte		Units	FSL	Reference	Goal ¹	LOQ	LOD	DL
1,1-Dichloroethene	75-35-4	µg/L	700	40 CFR 261.24	233	1.0	0.2	0.1
1,2-Dichloroethane	107-06-2	µg/L	500	40 CFR 261.24	167	1.0	0.2	0.1
1,4-Dichlorobenzene	106-46-7	µg/L	7,500	40 CFR 261.24	2,500	1.0	0.2	0.1
Benzene	71-43-2	µg/L	500	40 CFR 261.24	167	1.0	0.2	0.1
Carbon tetrachloride	56-23-5	µg/L	500	40 CFR 261.24	167	1.0	0.2	0.1
Chlorobenzene	108-90-7	µg/L	100,000	40 CFR 261.24	33,333	1.0	0.2	0.1
Chloroform	67-66-3	µg/L	6,000	40 CFR 261.24	2,000	1.0	0.2	0.1
2-Butanone (MEK)	78-93-3	µg/L	200,000	40 CFR 261.24	66,667	20	10	5
Tetrachloroethene	127-18-4	µg/L	700	40 CFR 261.24	233	1.0	0.3	0.15
Trichloroethene	79-01-6	µg/L	500	40 CFR 261.24	167	1.0	0.2	0.1
Vinyl chloride	75-01-4	µg/L	200	40 CFR 261.24	67	1.0	0.3	0.11

Notes:

1 - The Project Quantitation Limit Goal is 1/3 of the PSL. If the resulting value is below the laboratory LOD, the LOD will be used as the de facto Project Quantitation Limit Goal.

2 - Non-detects will be reported to the LOD; detections will be reported to the DL.

Definitions:

CFR - Code of Federal Regulations

Worksheets #19: Sample Containers, Preservation, and Hold Times

Tables 19.1 - Sample Containers, Preservation, and Hold Times: SW6010C, SW6020A

Laboratory: EMAX

Analytical Method: SW6010C, SW7470A, SW7471B

Matrix	Analytical Group	Analytical Method	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
IDW Soil	TTLC Metals	Preparation Method: SW3050 Analysis Method: SW6010C	2 x 8oz wide-mouth jar with Teflon lined screw cap	200 g	None	180 days
IDW Soil	TCLP Metals	Preparation Method: SW1311, SW3010A Analysis Method: SW6010C	Use TTLC IDW soil container	200 g	None	180 days
IDW Soil	STLC Metals	Preparation Method: STLC, SW3010A Analysis Method: SW6010C	Use TTLC IDW soil container	200 g	None	180 days
IDW Water	Metals	Preparation Method: SW3010A Analysis Method: SW6010C	500mL plastic	100 mL	None	180 days
IDW Soil	TTLC Mercury	Analysis Method: SW7471B	2 x 8oz wide-mouth jar with Teflon lined screw cap	100 g	Cool to \leq 6 ° C	28 days
IDW Soil	TCLP Mercury	Preparation Method: SW1311 Analysis Method: SW7470A	Use TTLC IDW soil container	100 g	Cool to \leq 6 ° C	28 days
IDW Soil	STLC Mercury	Preparation Method: STLC Analysis Method: SW7470A	Use TTLC IDW soil container	200 g	Cool to \leq 6 ° C	28 days

Tables 19.1 - Sample Containers, Preservation, and Hold Times: SW6010C, SW6020A

Laboratory: EMAX

Analytical Method: SW6010C, SW7470A, SW7471B

Matrix	Analytical Group	Analytical Method	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
IDW Water	Mercury	Analysis Method/SOP: SW7470A	500mL plastic	50 mL	Cool to \leq 6 ° C	28 days

Definitions:

IDW – Investigation-derived waste

STLC – Soluble threshold limit concentration

STLC Method reference: California Title 22 Guidelines (STLC) Chapter 11, Article 5, Appendix II. December 9, 2005.

TCLP – Toxicity characteristic leaching procedure

TTLC - Total threshold limit concentration

Tables 19.2 - Sample Containers, Preservation, and Hold Times: SW8260C

Laboratory: EMAX

Analytical Method: SW8260C

Matrix	Analytical Group	Analytical Method/ SOP Reference	Containers (number, size, and type)	Sample Volume	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation / analysis)
IDW Soil	VOCs	Preparation Method: SW5035 Analysis Method: SW8260C	1 x 8oz wide-mouth jar with Teflon-lined screw cap	50g	Cool to \leq 6 ° C	14 days /14 days
IDW Soil	TCLP VOCs	Preparation Method: SW1311, SW5030C Analysis Method: SW8260C	Use VOC IDW soil container	50g	Cool to \leq 6 ° C	14 days /14 days
IDW Water	VOCs	Preparation Method: SW5030C Analysis Method: SW8260C	3 x 40mL VOA vials with septa	40mL	Cool to \leq 6 °C (NO HCI)	14 days

Definitions:

IDW – Investigation-derived waste

TCLP – Toxicity characteristic leaching procedure

VOCs – Volatile organic compounds

Worksheet #20: Field Quality Control

This worksheet summarizes the field QC samples to be collected and analyzed for the project. The table below shows the relationship between the number of field samples and associated QC samples for each combination of analyte/analytical group and matrix. Note that if additional samples are collected over the estimated number shown, additional QC samples will be collected at the rate shown below.

Table 20.1 - Field Quality Control Sampling

Matrix	Analytical Group	Method	Estimated No. of Field Samples	Field Duplicates	MS/MSD	Source Blanks ¹	Equipment Blanks ¹	Trip Blanks	Total No. of Samples to Lab
IDW Soil and Water	Metals (CAM 17)	SW6010C, SW7471B/ SW7470A	TBD						TBD
IDW Soil and Water	Volatiles	SW8260C	TBD	NIA2	NIA 2	NIA2	NIA2	NIA2	TBD
IDW Soil and Water	TCLP/STLC Metals	SW1311/ SW6010C, SW7470A	TBD	INA ²	INA ²	INA ²	INA ²	INA ²	TBD
IDW Soil and Water	TCLP VOCs	SW1311/ SW8260C	TBD						TBD

Notes:

1 - Field blanks will only be collected if decontaminated equipment comes into contact with the sample matrix.

2 - No field QC samples will be collected for waste characterization samples.

CAM 17 – Antimony, arsenic, barium, beryllium, cadmium, chromium (total), cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc

Definitions:

NA – Not applicable

IDW – Investigation-derived waste

MS/MSD – Matrix spike/matrix spike duplicate

STLC – Soluble threshold limit concentration

TBD – To be determined

TCLP – Toxicity characteristic leaching procedure

STLC Method reference: California Title 22 Guidelines (STLC) Chapter 11, Article 5, Appendix II. December 9, 2005.

ATTACHMENT B.2 Waste Tracking Log

WASTE TRACKING LOG Former Titan 1-A Missile Facility, Lincoln, CA

			Temporary	Dermanent				Initial Was	te Charac	erization				Final	Waste Cl	haracteriz	ation	tion Clean Harbors	90 Days from
Waste Tracking Table Number	Number of Containers	Container Location	Container Number	Container Number	Accumulation Start Date	Close Date	Waste Description	Nonhaz	Haz Unknown	TSCA	Sample Date	Sample ID	Waste Code(s)	Nonhaz	Haz	Unknown	TSCA	Waste Profile Number	accumulation closure
		_					Solid Waste								-				

WASTE TRACKING LOG Former Titan 1-A Missile Facility, Lincoln, CA

			Tomporony	Dormonont				Initial Waste	e Characte	erization				Final	Waste Cl	haracteria	zation	Clean Harborg	bors 90 <u>Days from</u>
Waste Tracking Table Number	Number of Containers	Container Location	Container Number	Container Number	Accumulation Start Date	Close Date	Waste Description	Nonhaz Haz	Unknown	TSCA	Sample Date	Sample ID	Waste Code(s)	Nonhaz	Наг	Unknown	TSCA	Waste Profile Number	accumulation closure
							Liquid Waste	3		·									

ATTACHMENT B.3 Waste Transportation and Disposal Log

WASTE TRANSPORT AND DISPOSAL LOG Former Titan 1-A Missile Facility, Lincoln, CA

			Final Waste Characterization			ization					
Waste Tracking Table Number	Accumulation Start Date	Permanent Container Number	Nonhaz	Haz	Unknown	TSCA	Waste Description	Manifest/BOL Number	Shipment Date	Waste Hauler	Disposal Facility

APPENDIX C – Meeting Minutes

Former Titan 1-A Missile Facility RI/FS/PP/ROD Placer County, California

MONTHLY STATUS CALL MEETING MINUTES FEBRUARY 27, 2024

Text in bold italics indicates discussion had during the meeting.

ATTENDANCE

Name	Organization	Name	Organization
Tim Crummett	USACE	Tom McManus	Parsons
Matt Marlatt	USACE	Cynthia Oppenheimer	Parsons
Kyle Bayliff	USACE	Abby Bazin	Parsons
Carrie Ross	Parsons	Tracy Craig	Craig Communications
Mark Rigby	Parsons		

REVIEW OF COMPLETED TASKS IN THE PAST MONTH

- Participated in Public Meeting #1 on January 31, 2024
- Submitted Draft Final Sampling UFP-QAPP for regulatory/property owner review on February 14, 2024
- Submitted Draft Remedial Investigation Report on February 15, 2024

ITEMS TO BE COMPLETED THIS MONTH

- Participate in Prunella Court Resident Meeting
- Prepare for RAB Meeting #1
- Receive USACE comments on Draft Remedial Investigation Report
- Prepare Treatability Study UFP-QAPP

REVIEW OF UPCOMING IMPORTANT DATES & OTHER ITEMS

Matt Marlatt mentioned that he provided comments on the RAB agenda last week. Tracy will review his comments and provide a formal response. Carrie asked whether a date was selected for the 1st RAB meeting; no date as been selected.

Treatability Study

Abby Bazin presented an overview of the Treatability Study. She explained that the proposed approach includes source area treatment at EW-1 and perimeter barrier treatment at MW-43.

Mark Rigby asked if the barrier treatment for MW-43 will consist of a flow through or flow around barrier. Abby confirmed that a flow through barrier is proposed.

Tim Crummett explained that the treatability study should support the selection of a remedy to achieve remedy in place by 2029. Reducing the cleanup duration is a secondary goal.

Abby confirms that injections across the site would be very expensive, and that the derived alternatives for the FS will look at all technologies and costs.

Matt Marlatt noted that a perimeter remedy would need to be compatible with residential as a future land use. For example, if a PRB was installed that would need media refresh before response complete that may need to be considered in the FS, since USACE can't control land development.

Mark Rigby stated that low elevation pathways on the site maybe potential natural barriers that could help during the study.

Matt would like to discuss the approach with a biologist to confirm if mitigation measures would need to be implemented to protect wetlands near MW-43.

Mark presented a google earth map to show the area surrounding MW-43, it appears that boundary fencing has been installed near MW-43.

Mark asked if USACE GIS personnel were able to verify parcel boundaries for the site. Matt confirmed that the results were inconclusive.

Carrie explained that Parsons FED employees were migrating to .US system on Wednesday (2/29). She will be sending out a new meeting invite following the migration via Microsoft Teams.

Call ended at 11:30 PST

Figure x Treatability Study Former Titan 1-A Missile Facility Lincoln, California FUDS Property No. J09CA1108

Legend

Extraction well \bigcirc (trichloroethene concentration shown below well in μ g/L) Monitoring Well • (trichloroethene concentration shown below well in μ g/L) Proposed Treatability Study Areas Direction of Groundwater Flow $\times -$ Fence TCE Isoconcentration (µg/L) Line, Dashed where Estimated Groundwater Extraction Pilot Test System (Trenches) Planned Future Development Features Parcel Boundary Ephemeral/Seasonal Streams and Surface Water Bodies Ephemeral stream

Note: The concentrations, concentration contours, and groundwater flow directions are from: Ahtna. 2023. First Quarter 2023 Groundwater and Soil Vapor Monitoring Report, Beale Air Force Base (AFB) Former Titan 1-A Missile Facility, Formerly Used Defense Site (FUDS), Placer County, Lincoln, California, FUDS Project J09CA1108-01.

Site Location in California

Ν

200	100	0	:	■Feet 200	W S E				
	PARSONS		U.S. Army Corps of Engineers Sacramento District						
DESIGNED BY: BT DRAWN BY: BT		т	reatabilit	y Study	,				
CHECKED BY:		PROJECT TYPE: HTR	W	PROJECT NUMBER: 100306.0044.110251.090					
MR SUBMITTED BY: CR		PROJECT: J09CA	1108-01	PAGE NUMBER:	X =X				
		DATE: February	2024		لكك				

FILE: X:\gis\Other_sites\Maps\Titan1A\UFP-QAPF

APPENDIX D – Field SOPs

STANDARD OPERATING PROCEDURE

SOP-01

PERSONAL PROTECTIVE EQUIPMENT

Revision: 0

Date Effective: April 2019

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-01	Date Effective: April 2019	Revision 0						
Title: PERSONAL PROTECTIVE EQUIPMENT								
Office of Contact: Parsons, San	ndy, UT	Page 1 of 3						

1.0 INTRODUCTION

This personal protective equipment (PPE) SOP specifies procedures to protect personnel from safety and health hazards when performing field operations. This plan addresses U.S. Army Corps of Engineers PPE requirements contained in Section 5 of the USACE Safety and Health Requirements Manual (EM 385-1-1) and the Occupational Safety and Health Administration (OSHA) requirements as specified in 29 CFR 1910.132 (Personal Protective Equipment).

The purpose of PPE is to shield, isolate, or secure individuals from hazards that may be encountered when administrative or engineering controls are not feasible or cannot provide adequate protection.

The selection of the appropriate PPE is a complex process that takes into consideration a variety of factors. Key factors involved in this process are the identification of suspected hazards; their routes of exposure (inhalation, skin absorption, ingestion, and eye or skin contact); and the performance of the PPE materials in providing a barrier to these hazards. The anticipated levels of protection are outlined below. Compliance with the PPE selection requirements will be enforced by the SSHO.

2.0 PROTECTIVE ENSEMBLES

Descriptions of the PPE ensembles and project-specific applications are provided in the Work Plan.

3.0 DONNING AND DOFFING OF PPE

Donning of PPE will be accomplished in accordance with the manufacturer's instructions and only after an inspection of the item to ensure its operability, continuity and to be certain there are no "critters" making a home of the item. This inspection should include peering into and the shaking and slapping together of leather gloves prior to putting them on. The same procedure goes for the work boots and head protection. Be certain to conduct a visual inspection and then shake and bang the items against a hard object to dislodge any would be intruders.

Doffing of PPE is accomplished in accordance with the manufacturer's instructions and includes a complete inspection to ensure the item is free of dirt or anything else that may be clinging to it as well as an inspection for operability and continuity. Any item found to be torn, or inoperable must be replaced and the defective item either properly disposed of or repaired.

SOP-01	Date Effective: April 2019	Revision 0						
Title: PERSONAL PROTECTIVE EQUIPMENT								

Office of Contact: Parsons, Sandy, UT

Page 2 of 3

4.0 MAINTENANCE AND STORAGE OF PPE

Maintenance of PPE will only be conducted in accordance with the manufacturer's instructions and, in the instance of Level A and B, PPE, only by personnel that have received proper instruction in the maintenance of the PPE. Replacement items or parts will be those provided by the manufacturer and at no time will pieces from different brands of PPE be used to "fix" a defective piece of PPE. Any PPE used inside an Exclusion Zone (EZ), which is contaminated with HTRW or CWM shall be cleaned in accordance with the documented decontamination procedures. This cleaning will involve the use of one or more decontamination solutions and a freshwater rinse, and all re- usable PPE should be dried, or hung to dry, and stored in a clean environment, free from exposure to chemicals, dust, moisture, sunlight or extreme temperatures. Level D PPE, such as leather gloves, hard hats and safety glasses will be cleaned of dirt or anything clinging to the items that should not be there after every use.

PPE must be stored properly to prevent damage or malfunction due to exposure to dust, moisture, sunlight, damaging chemicals, extreme temperatures, and impact. Many equipment failures can be directly attributed to improper storage. Storage of PPE will include storing in such a way that the natural shape of the PPE is not compromised. All PPE must be stored in such as manner as to prevent "critters" from crawling into the item and presenting a possible injury from a bite or sting. Establish a location and procedure for the proper storage of PPE. The bed of the pick-up truck or floor of the SUV are not acceptable locations for the storage of PPE.

Different types of clothing and gloves should be stored separately to prevent issuing the wrong material by mistake. Protective clothing should be folded or hung in accordance with manufacturer's recommendations.

Reusable clothing (outer gloves, boots) must be thoroughly decontaminated before being reused if they were used on an HTRW environment.

5.0 TRAINING AND PROPER FITTING

The SSHO or other qualified person will train Parsons Employees and subcontractors in the proper use of protective equipment prior to field operations. At a minimum, the training should explain the user's responsibilities and should address the following issues, using a combination of classroom lecture and field simulation:

- OSHA and USACE PPE requirements;
- Proper use and maintenance of the selected PPE, including capabilities and limitations;
- Nature of the hazards and the consequences of not using the PPE;

SOP-01	Date Effective: April 2019	Revision 0						
Title: PERSONAL PROTECTIVE EQUIPMENT								
Office of Contact: Parsons, Sa	indy. UT	Page 3 of 3						

- Instruction inspection, donning, doffing, decontaminating, checking, fitting, and using the selected PPE;
- User's responsibility (if any) for decontamination, cleaning, maintenance, and repair of PPE; and
- Emergency procedures and self-rescue in the event of PPE failure.

6.0 PPE PROGRAM EVALUATION

At a minimum, the PPE program should be reviewed monthly by the SSHO to evaluate the effectiveness of the following factors:

- Number of personnel-hours that are spent in various PPE ensembles;
- Degree to which the program complies with OSHA Hazardous Waste Operations and Emergency Response (HAZWOPER) and USACE requirements on PPE use, inspection, maintenance, and recordkeeping;
- Accident, injury, and illness statistics, and recorded levels of exposure;
- Adequacy of operating procedures to guide the selection of PPE; and
- Recommendations for and results of program improvement and modification.

STANDARD OPERATING PROCEDURE

SOP-02

LOW FLOW GROUNDWATER SAMPLING

Revision: 0

Date Effective: January 2022

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-02	Date Effective: January 2022	Revision 0							
Title: LOW FLOW GROUNDWATER SAMPLING									
Office of Contact: Parsons,	Sandy, Utah		Page 1 of 4						

1.0 PURPOSE

The purpose of this standard operating procedure (SOP) is to define requirements for the collection of groundwater samples using low flow sampling techniques. This method dictates that presample purging (the removal of standing water from a well and filter pack immediately prior to sample collection) be done at very low flow rates. This sampling method is designed to ensure that a representative sample is collected while minimizing the volume of purge water generated.

2.0 BACKGROUND

Low flow purging and sampling involves the use of a submerged pump that can be adjusted to deliver ground water to the surface at rates from less than 100 ml per minute to a maximum of 1 liter per minute. The purpose of this technique is the recovery of representative samples of the water from the soil formation adjacent to the well screen. Stagnant water above the screen and below will not usually be purged or sampled. The technique eliminates the need for collection and costly disposal of several well volumes of groundwater as investigative derived waste (IDW) from wells containing contaminated water. Typically, by using a low flow purging and sampling technique, the volume of water removed from a well will be a few liters, compared to more than 10 times this amount using the older, multiple well volume purging technique. The method looks to stabilized water quality parameters being achieved during purging rather than number of well volumes of groundwater removed.

During low flow purging and sampling the pump intake is placed within the lower depths of the screened interval and the water pumped from the well is monitored for a number of water quality parameters using a flow through cell and field instrumentation. The water level will also be monitored to ensure that draw down is kept to a minimum. Sampling commences when the measured parameters have stabilized and turbidity is at an acceptable and constant level.

3.0 **RESPONSIBILITIES**

The *Field Team Leader* is responsible for ensuring that the work is performed in conformance with this procedure and that the field personnel understand and perform activities in accordance with this SOP.

The *Field Geologist or Environmental Scientist* is responsible for continuous monitoring of purging and sampling activities, collecting water quality data and determining that the sampling is complete.

4.0 REQUIRED EQUIPMENT

- Submersible pump and related equipment
- Appropriate sample containers with labels and preservatives

SOP-02	Date Effective: January 2022	Revision 0					
Title: LOW FLOW GROUNDWATER SAMPLING							
Office of Contact: Parsons,	Sandy, Utah	Page 2 of 4					

- Cooler with ice for samples
- Water quality meters (temperature, pH, conductivity, turbidity, dissolved oxygen (DO), and oxygen reduction potential (ORP) as required by the Field Investigation Plan)
- Equipment calibration standards
- Electronic water level indicator
- Photo-ionization detector (PID), as required
- Plastic sheeting
- 5-gallon and 55-gallon drums for purge water with labels as required
- Decontamination supplies, as required
- Personal protective equipment (PPE) as specified in the Accident Prevention Plan (APP) and the associated Site Safety and Health Plan (SSHP)
- Monitoring well purge and sample log (Appendix F) and the field logbook

5.0 PROCEDURE

5.1 Preparation

The following steps must be followed when preparing for sample collection:

- Implement air monitoring as specified in the Field Investigation Plan and APP/SSHP.
- Don appropriate PPE as specified in the APP and the associated SSHP
- Calibrate all necessary equipment and document on an equipment calibration form.
- Arrange the required sampling equipment for convenient use. If on-site decontamination is required, arrange the necessary supplies in a nearby but separate location, away from the wellhead. All equipment entering the well will be decontaminated prior to use.

5.2 Groundwater Sampling

The following steps should be followed when sampling groundwater with a submersible pump using low flow methods:

- Open the well and note the condition of the casing and cap. Using an electronic water level meter, determine the static water level and depth to well bottom. Top-of-casing (TOC) will be the reference point. Depth will be recorded to within ± 0.01 feet. Record this information on the monitoring well purge and sample log.
- Lower the pump and piping into the well to a depth a few feet above the bottom of the well screen. Let the water column equilibrate and measure and record the static water level. This level should be used to ensure maintenance of the water level in the well as close to the static level as possible during purging and sampling. The highest discharge flow rate will be established such that the well will maintain a static water level and drawdown will be limited to 0.33 ft (< 100 to 300 ml per minute is a good target a graduated measuring device will be used to calculate flow rate.)

SOP-02	Date Effective: January 2022						
Title: LOW FLOW GROUNDWATER SAMPLING							
Office of Contact: Parsons,	Sandy, Utah		Page 3 of 4				

- If a well is pumped dry at the lowest consistent flow rate the sampler can establish, then the well is considered properly purged, and groundwater samples will be collected when 80% of the initial well water volume is recharged.
- Plumb the flow through cell and a sampling port (ahead of the flow through cell) into the pump piping or tubing discharge line. Care should be taken to protect the discharge line and flow through cell from temperature extremes and excessive sunlight during the monitoring process. Water quality measurements will be recorded when the first water reaches the flow cell and then at regular intervals during purging (3 to 5 minutes apart). Once an initial volume of water has been removed from the well (the static water in the pump and delivery tubing and at least one flow cell volume), a consistent flow rate and static water level are achieved, and water quality measurements have stabilized groundwater samples can be collected. ASTM Practice D 6771 suggests the following criteria to define stabilization:

pH: ± 0.2 pH units

Conductivity: $\pm 3\%$ of reading

Dissolved Oxygen: $\pm 10\%$ or reading or ± 0.2 mg/l, whichever is greater

Eh or ORP: $\pm 20 \text{ mV}$

Turbidity: $\pm 10\%$ prior reading or ± 1.0 NTU

- Temperature, pH, conductivity, turbidity, DO, and ORP measurements will be recorded just prior to sampling. The pump will be adjusted to prevent aeration of the well water during sample collection. The flow should be no greater than 100 milliliters per minute for the VOC samples and then can be increased 1 liter per minute (if the well can yield this volume) to fill all other sample containers.
- Arrange the sample containers in the order of use and complete labels. Volatile organic compounds (VOCs) samples, if required, will be obtained first, followed in order by semi-volatile organic compounds (SVOCs) samples, and then all other samples. Sample collection will be conducted to prevent aeration. Samples collected for total dissolved solids and dissolved metals analysis will be field filtered.
- Immediately place the filled containers in the coolers(s) on ice.
- Record sample types, amounts collected, time, and date of collection in the field logbook and on the monitoring well purge and sample log (Appendix F). Prepare chain-of-custody and analytical request documents as required.
- One trip blank will be included in each ice chest that contains groundwater samples which are to be analyzed for VOCs. Trip blanks will be supplied by laboratory and will be analyzed only for VOCs. Other QC samples will be included as per the Field Investigation Plan.

SOP-02	Date Effective: January 2022	Revision 0						
Title: LOW FLOW GROUNDWATER SAMPLING								
Office of Contact: Parsons,	Sandy, Utah		Page 4 of 4					

6.0 EQUIPMENT DECONTAMINATION

Equipment decontamination will be performed following the procedures outlined in the SSHP and SOP-04.

7.0 RESTRICTIONS / LIMITATIONS

Situations that may affect the collection of representative groundwater samples include:

- 1. Wells that produce consistently turbid samples (i.e., greater than 50 NTU), or equivalent units depending on the method used, and
- 2. Wells designed improperly with little or no documentation available on well design and installation. The technical reviewer must decide whether the well 'as built' allows the sampler to collect representative groundwater samples.

STANDARD OPERATING PROCEDURE

SOP-03

GROUNDWATER LEVEL MEASUREMENT

Date Effective: January 2022

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-03	Date Effective: January 2022	Revision 0
Title: GROUNDWATER LEVEL MEASUREMENT		
Office of Contact: Parsons, San	ndy, Utah	Page 1 of 3

1.0 PURPOSE

The objective of this standard operating procedure (SOP) is to define the procedures and requirements used to measure water levels or total depth in a groundwater monitoring well, production well, or piezometer.

2.0 BACKGROUND

Groundwater level data can be used for several purposes during site investigations, including the following:

- To determine the magnitude of horizontal and vertical hydraulic gradients in an aquifer system
- To measure changes in groundwater levels over time
- To estimate the magnitude of surface water/groundwater interaction that occurs during various flow conditions
- To estimate aquifer properties after aquifer testing
- To calculate the purge volume of standing water in the well
- To establish whether wells have fully recharged after purging and aquifer testing

A water level meter will typically be used to measure the groundwater level and total depth in wells.

Water level meters use a battery-powered probe assembly attached to a cable marked in 0.01foot increments. When the probe contacts the water surface, a circuit is closed, and electricity is transmitted through the cable to sound an audible and/or visual alarm. The equipment has a sensitivity adjustment switch that enables the operator to distinguish between actual and false readings caused by the presence of conductive, immiscible components (such as LNAPL floating on the groundwater) or condensation inside the well casing. Consult the manufacturer's operating manual for instructions on adjusting sensitivity.

Static groundwater level (depth to water [DTW]), depth to product (DTP), and total depth (TD) are measured relative to an established measurement reference point. The measurement reference point is generally the top of the casing (TOC), and may be marked with a surveyor's reference mark. The reference mark should be permanent, such as a small notch cut into the TOC or a permanent ink mark at the TOC. If a reference mark is not present at the time of water level measurement, use and mark the north side of the casing. Decontaminate all equipment before and after introducing it to the well as outlined in SOP-04.
SOP-03	Date Effective: January 2022	Revision 0
Title: GROUNDWATER LEVEL MEASUREMENT		
Office of Contact: Parsons, San	dy, Utah	Page 2 of 3

3.0 **RESPONSIBILITIES**

The *Field Team Leader* (FTL) is responsible for determining that staff measuring water levels know the procedures in this SOP and that this SOP is implemented effectively and accurately.

4.0 REQUIRED MATERIAL/EQUIPMENT

- Power source (e.g., generator), if required
- Electronic water level indicator

5.0 PROCEDURES

5.1 Depth to Water Measurement

If the well is sealed with an airtight cap, allow time for pressure to equilibrate after the cap is removed before measuring water levels. Take measurements until consecutive readings are within 0.01 foot.

Measure DTW and DTP as follows:

- 1. With the water level indicator switched on, wet the tip of the probe in potable water to test whether the meter is working properly. If no audible alarm is observed, the meter is not working properly.
- 2. Slowly lower the water level meter or oil-water indicator probe down the monitoring well until the probe contacts the groundwater or LNAPL surface, as indicated by the audible alarm. Do not let the probe tip and tape free-fall down the well. Always hold onto the meter's reel handle.
- 3. Raise the probe out of the water or LNAPL until the audible alarm stops. Continue raising and lowering the probe until a precise level is determined within 0.01 foot.
- 4. If LNAPL is present in the well, measure and record the depth from the TOC reference point to the top surface of the LNAPL layer (that is, DTP). The oil-water indicator probe alarm will sound a continuous tone when LNAPL is detected.
- 5. Continue to lower the probe until the meter indicates the presence of groundwater. The alarm will typically emit a beep when water is detected. Measure the first static groundwater level and record the measurement (DTW) from the reference point to the top of the static groundwater level.
- 6. Record the measurements in the field logbook and groundwater sampling datasheet.

5.2 Total Depth Measurement

Use the following procedures to measure the TD of a groundwater monitoring well:

SOP-03	Date Effective: January 2022	Revision 0
Title: GROUNDWATER LEVEL MEASUREMENT		
Office of Contact: Parsons, San	ndy, Utah	Page 3 of 3

- 1. Slowly lower the water level meter until the cable goes slack. Do not let the probe tip and tape free-fall down the well. Always hold onto the meter's reel handle.
- 2. Gently raise and lower the water level meter probe to tap the bottom of the well.
- 3. Record the reading on the cable at the established reference point to the nearest 0.01 foot. If there is an offset between the bottom of the probe and the water level sensor, adjust the measurement accordingly. Record the TD measurement in the field logbook or groundwater purge and sample log (**Appendix F**).

6.0 RECORDS

Document all measurements in the field notebook and/or on a groundwater sampling datasheet.

7.0 EQUIPMENT DECONTAMINATION

Equipment decontamination will be performed following the procedures outlined in the SSHP and SOP-04.

STANDARD OPERATING PROCEDURE

SOP-04

FIELD EQUIPMENT DECONTAMINATION

Revision: 0

Date Effective: January 2022

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-04	Date Effective: January	2022	Revision 0
Title: FIELD EQUIPMENT DECONTAMINATION			
Office of Contact: Parsons, San	dy, Utah		Page 1 of 4

1.0 PURPOSE

The objective of this standard operating procedure (SOP) is to describe the requirements for decontamination of field environmental sampling equipment.

2.0 BACKGROUND

Decontamination of field equipment is necessary to ensure the quality of samples by preventing cross-contamination. Further, decontamination reduces health hazards and prevents the spread of contaminants off-site.

3.0 **RESPONSIBILITY**

The *Field Team Leader* is responsible for ensuring that the work is performed in conformance with this procedure and is responsible for ensuring that field personnel understand and perform activities in accordance with this SOP.

The *Field Geologist or Environmental Scientist* is responsible for oversight of decontamination activities, containerizing investigation derived waste (IDW) in accordance with the Waste Management Plan, and collecting equipment rinsate blank quality control samples if required for the project, and ensuring their preservation prior to receipt by laboratory.

4.0 EQUIPMENT

4.1 Large Equipment (e.g., Drill rigs, backhoes, drill rods and tooling, etc.)

The following equipment may be needed for cleaning/decontaminating large equipment:

- High-pressure or steam-spray unit
- 2- to 5-gallon manual-pump sprayer (pump sprayer material must be compatible with the solution used)
- Scrub brushes
- Gloves, goggles, and other PPE as specified in the Site Safety and Health Plan
- Plastic sheeting
- Metal troughs or water collection equipment
- 4.2 Field Sampling Equipment (reusable sampling tools, etc.)
 - Plastic sheeting

SOP-04	Date Effective: January 2022	Revision 0
Title: FIELD EQUIPMENT DECONTAMINATION		
Office of Contact: Parsons, San	ndy, Utah	Page 2 of 4

- 5-gallon plastic buckets
- Phosphate-free detergent (e.g., Alconox, or Liquinox)
- Stiff-bristle brushes
- Sprayers or wash bottles, or 2- to 5-gallon manual-pump sprayer (pump sprayer material must be compatible with the solution used)
- Disposable wipes, paper towels, or clean rags
- Potable water
- Distilled water
- Disposable wipes, paper towels, or clean rags
- Gloves, goggles, and other PPE

5.0 PROCEDURES

5.1 Heavy Equipment Decontamination

Heavy equipment includes drill rigs and excavation equipment, such as backhoes. The following steps must be followed when decontaminating this equipment:

- 1. Set up a decontamination pad that is large enough to fully contain the equipment or parts of the equipment to be cleaned. Use one or more layers of heavy plastic sheeting to cover the ground surface. Raise the edges of the pad using wood, PVC pipes, or other material such that a berm is created to contain rinse water. Slope the pad towards one corner which will act as a sump to facilitate collection of liquids generated during decontamination.
- 2. Don gloves, boots, goggles, face shield, and any other personal protective equipment.
- 3. With heavy equipment in place, spray areas and surfaces (e.g., rear of rig, backhoe bucket, etc.) exposed to contaminated soil using a steam unit or high-pressure sprayer.
- 4. If phosphate-free detergent was used for the washdown step, rinse the equipment with potable water.
- 5. Remove equipment from the decontamination pad and allow to air dry before returning it to the work site.
- 6. Record equipment type, date, time, and method of decontamination in the appropriate logbook.
- 7. Collect rinse water as investigation derived waste (IDW) and manage in accordance with the Waste Management Plan (**Appendix C**).

SOP-04	Date Effective: January 2022	Revision 0
Title: FIELD EQUIPMENT DECONTAMINATION		
Office of Contact: Parsons, San	ndy, Utah	Page 3 of 4

5.2 Downhole Equipment Decontamination

Downhole equipment includes, drill bits, rods, casing, core barrels, etc. The following steps must be followed when decontaminating this equipment:

- 1. If possible, use heavy equipment decontamination pad or create a centralized decontamination area set up or metal trough to contain contaminated rinse water and minimize the spread of airborne spray.
- 2. Set up a "clean" area upwind of the decontamination area to receive cleaned equipment for air drying. At a minimum, clean plastic sheeting must be used to cover the ground, tables, or other surfaces on which decontaminated equipment is to be placed.
- 3. Don gloves, boots, goggles, face shield and any other personal protective equipment.
- 4. Place object to be cleaned on tender truck, metal or wooden sawhorses or other supports.
- 5. Using a high-pressure sprayer or steam unit, spray the contaminated equipment. Aim downward to avoid spraying outside the decontamination area. Be sure to spray between and inside the drill string components. Use a brush, if necessary, to dislodge soil.
- 6. If using phosphate-free detergent, rinse the equipment using clean water.
- 7. Remove the equipment from the decontamination area and place in the clean area to airdry.
- 8. If necessary, wrap clean downhole equipment in plastic or use other protective material, as feasible, to ensure that it does not become contaminated prior to next use.
- 9. Record the equipment type, date, time, and method of decontamination in the appropriate logbook.
- 10. Collect rinse water and manage as IDW in accordance with the Waste Management Plan (Appendix C).

5.3 Sampling Equipment Decontamination

Sampling equipment includes split spoons or other samplers, spatulas, spoons, trowels, compositing bowls, filtration equipment, and other reusable utensils or items that directly contact samples. The following steps must be followed when decontaminating this equipment:

- 1. Set up a decontamination line on plastic sheeting. The decontamination line should progress from contaminated to clean and end with an area for drying decontaminated equipment. At a minimum, clean plastic sheeting must be used to cover the ground, tables, or other surfaces on which decontaminated equipment is to be placed.
- 2. Don gloves, boots, goggles, and any other PPE.
- 3. Wash the item thoroughly in a 5-gallon bucket of phosphate-free detergent. Use a stiffbristle brush or other cleaning tool to dislodge any soil adhered to the equipment. If

SOP-04	Date Effective: January 2022	Revision 0
Title: FIELD EQUIPMENT DECONTAMINATION		
Office of Contact: Parsons, Sand	ly, Utah	Page 4 of 4

possible, disassemble any items that might trap contaminants internally before washing. Do not reassemble until decontamination is complete.

- 4. Rinse the item in a 5-gallon bucket of potable water. Rinse water should be replaced as needed, generally when cloudy.
- 5. Rinse with distilled/ deionized water.
- 6. If necessary, wrap clean sampling equipment in plastic or use other protective material, as feasible, to ensure that it does not become contaminated prior to next use.
- 7. Record the decontamination protocol and the date and time of decontamination in the field logbook.

6.0 WASTE DISPOSAL

After decontamination activities are completed, all contaminated waters, sludge, plastic sheeting (unless it will be reused at the decontamination pad), and disposable gloves, boots, and clothing will be disposed of in accordance with the Waste Management Plan (**Appendix C**).

7.0 RESTRICTIONS/LIMITATIONS

The following restrictions/limitations apply to these field equipment decontamination procedures:

- When feasible, use of disposable equipment is recommended to minimize the extent of decontamination required.
- Sensitive, non-waterproof, or other equipment that cannot be extensively decontaminated should be used in a manner that prevents contamination to the greatest possible extent (e.g., wrapping delicate instruments in plastic bags during use on-site). If decontamination is necessary despite these efforts, a damp cloth should be used to wipe any potential contaminated portions of such equipment.
- Equipment rinsate blank quality control samples will be collected in accordance with the UFP-QAPP to determine the effectiveness of field equipment decontamination. Equipment rinsate blanks will be obtained by pouring distilled/deionized water over decontaminated sampling equipment and collecting it in appropriate sampling containers for analysis, to determine if residual contamination is present. These samples will be handled, packaged, and shipped in a manner identical to that used for environmental samples.

STANDARD OPERATING PROCEDURE

SOP-05

DIRECT PUSH SOIL SAMPLING

Revision: 0

Date Effective: March 2024

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	ndy, Utah	Page 1 of 6

1.0 PURPOSE

The objective of this standard operating procedure (SOP) is to describe the methods to be used for attaining and logging soil cores using direct push drilling equipment and techniques. Also outlined are the procedures for borehole abandonment, and the collection of soil samples from the borings.

2.0 BACKGROUND

The direct push method is used to acquire soil samples in formations where a standard 2inch diameter split spoon sampler can be driven (e.g., unconsolidated clays, silts, sands, and fine gravels) at lower costs than other types of drilling. The direct push drilling method produces continuous cores that can provide lithologic detail of the subsurface strata and allow soil sampling for classification and chemical testing. In addition, soil strata profiling in shallow depths may be accomplished over large areas in less time than conventional drilling methods because of the rapid sample gathering potential of the direct push method. Direct push soil sampling has the benefits of smaller size tooling, smaller diameter boreholes, and minimal waste generation. Additionally, larger diameter direct push probes and rods allow for the installation of small diameter groundwater monitoring wells. These small diameter groundwater monitoring wells can be used as temporary wells or completed as permanent wells if appropriate. Some models of direct push drill rigs have the capability to perform hollow stem auger (HSA) drilling in addition to direct push. The soil sampling procedures described in this SOP apply equally to the direct push or direct push HSA methods.

3.0 **RESPONSIBILITIES**

The *Drilling Contractor* is responsible for ensuring that the drill crew is properly trained in direct push drilling techniques and soil sampling.

The *Field Team Leader* is responsible for ensuring that the work is performed in conformance with this procedure and that the field personnel understand and perform activities in accordance with this SOP.

The *Field Geologist or Environmental Scientist* is responsible for continuous monitoring of drilling activities and temporary well construction activities (if performed), logging soil encountered during advancement of the direct push probe, collecting soil samples in the manner described below, and ensuring samples are properly prepared and shipped for laboratory analysis.

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	ndy, Utah	Page 2 of 6

4.0 EQUIPMENT

- Photo ionization detector (PID) or flame ionization detector (FID) for screening of volatiles and methane (if using an FID) in the boring,
- Sample containers, with labels and preservatives (provided by laboratory),
- Cooler and ice,
- Appropriate forms and field notebook,
- Waterproof pen and markers,
- Digital camera and Global Positioning System (GPS) unit
- American Society for Testing Materials (ASTM) Standard D 2488-00 (Modified United Soil Classification [USCS] scheme) for logging and Munsell color chart,
- Measuring tape,
- Acid bottle,
- Hand lens,
- Site map,
- Decontamination supplies, as required, and
- Personal protective equipment (PPE).

The drilling contractor is responsible for providing the required drilling equipment and related materials appropriate to site conditions, drilling depth, and other project requirements.

5.0 PROCEDURES

5.1 Preparation

The following steps must be followed when preparing for sample collection:

- Obtain the required excavation permit.
- Assemble decontamination equipment and supplies, sampling equipment, sampling containers, etc in the sampling area.
- Calibrate the PID or FID, as appropriate.
- Don appropriate PPE.

5.2 Direct Push Coring Process

• The top 6 inches of soil and/or vegetation will be set aside for replacement later.

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	dy, Utah	Page 3 of 6

- Soil samples will be collected continuously or at specific intervals, from the ground surface to the bottom of the boring using a Geoprobe[®] or similar drill rig operated by a California-licensed driller. The driller will employ a soil core sampling system of the appropriate outer diameter (OD) to collect soil samples for the specified soil boring diameter.
- The sampler will be placed directly under the hammer with the cutting shoe centered between the toes of the probe foot. Static weight and hammer percussion will be applied to advance the sampler until the drive head reaches the ground surface. This action will produce a core four to five feet long depending on the type of direct-push machine used.
- The sampler will then be pulled completely out of the ground and the sample liner will be removed from the sampler. Undisturbed soil samples can be obtained from the liner by splitting the liner either longitudinally or by segmenting the liner by cutting around its outside circumference.
- To sample consecutive soil cores, a clean sample liner will be advanced down the previously opened hole to the top of the next sampling interval. Another rod will be attached to the sampler and static weight and hammer percussion applied to advance the sampler to the desired depth. Again, the sampler will be pulled completely out of the ground and the sampler liner will be removed from the sampler.

5.2.1 Hole Abandonment

In accordance with Marin County requirements, borehole abandonment will consist of tremie grouting the borehole with a neat cement (with no more than 5% powdered bentonite) grout slurry. Depending upon the location of the boring, it will be backfilled as follows:

- Tremie grouted with neat cement from the bottom of the bore hole to within 6 inches of the ground surface.
- From the ground surface to 6 inches below ground surface, the soil core will be put back into the borehole. This will be done to preserve and any plant seed base.
- If the boring was made through asphalt or concrete, the asphalt/concrete will be patched, as appropriate.

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	idy, Utah	Page 4 of 6

5.3 Characterization of Soil Core

5.3.1 Measuring and Labeling Borehole Depths

Once the extraction of the plastic liners is completed, the geologist will verify with the driller the depth of the boring. The geologist will mark the bottom depth on the appropriate end of the plastic liner.

5.3.2 PID/FID Screening for VOCs

Where petroleum hydrocarbon contamination is suspected, an FID may be used in place of an PID. An FID can quantify volatile organic compounds (VOCs) just like a PID, but can also quantify methane, which may be produced by the degradation of petroleum hydrocarbons.

The onsite geologist will perform field screening of the core with a PID or FID by cutting open the disposable plastic liner to access the interior of the core. The tip of the PID or FID probe will then be slowly run the length of the partially opened liner. Additional PID or FID screening shall also be performed at any zone marked by visible discoloration or organic matter, noticeable odor, caliche cementation, and/or an abundance of silt/clay-sized particles that may control the distribution of VOCs. If readings vary considerably over the length of the core just recovered the geologist should take one or more additional measurements to further refine the distribution of organic soil vapors. These readings will be taken expeditiously and will be recorded immediately on the boring log.

5.3.3 Geologic Logging

Following VOC field screening, geologic logging will be conducted. The depths and thicknesses of distinguishable sediment/soil types (e.g., sand, silt, clay, gravel) will be recorded, as well as any other geologic features that may influence the distribution of contaminants, such as zones of caliche cementation or visible organic matter, will be described. Details concerning other parameters, including mineralogy, grain size, roundness, moisture content, stiffness or density, bedding, lamination, the Munsell color designation, etc., should also be described on the boring log.

5.3.4 Soil Sampling

Soil sampling will occur at the predetermined intervals or conditions described in the Field Investigation Plan. Sampling parameters are also outlined in the Field Investigation Plan for each planned sampling location and interval.

Samples planned for VOC analysis will be collected first. VOCs will be collected using a Terra CoreTM sampler. Use of the Terra CoreTM sampler minimizes disturbance of the drill core

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	ldy, Utah	Page 5 of 6

and volatilization of VOCs. Three Terra CoreTM samples of approximately 5 grams each will be collected at discrete depths over an interval not to exceed one foot. The Terra CoreTM sampler consists of a capped plastic sleeve and a separate T-handle. To collect the sample, the cap is removed from the sleeve and the T-handle attached to the other end. The sleeve is then rotated or pressed into the drill core using the handle until it is completely filled with soil. It is then retracted from the drill core and capped. All three Terra CoreTM samplers (for one sample interval) are placed in a zip-lock bag and sealed for shipment to the laboratory.

Other sampling parameters will be sampled after the volatiles using a dedicated sampling spoon and appropriate sampling container provided by the laboratory. Sampling containers that are to be provided by the laboratory for each parameter are outlined in the UFP-QAPP.

Sampling labels will be filled out with all pertinent data for each sample location. All samples collected from the same interval should have identical information recorded. The chain of custody (COC) will be completed concurrently. Samples will be stored in a cooler with ice.

6.0 EQUIPMENT DECONTAMINATION

Drilling equipment decontamination will be performed by the drilling subcontractor following the procedures outlined in SOP-04. Field sampling equipment will also be decontaminated as outlined in SOP-04.

7.0 RESTRICTIONS/LIMITATIONS

As a general rule, the direct push method can be used in formations where a standard 2inch diameter split spoon sampler can be driven. Suitable geologic materials include unconsolidated clays, silts, sands, and fine gravels. Care should be taken when pushing the sampling device or rod from the surface into the soil with the entire barrel unsupported. If the applied force to the unit is not in a vertical plane or an obstruction is encountered while driving the unit, the sampling device may be damaged by bending or breaking.

8.0 DOCUMENTATION

The drilling log form is intended for use in the field during drilling, sampling, and logging process for soil borings that will be drilled using the direct push technology described above.

All paperwork, including the field notebook, will be neatly and legibly recorded to clearly document the events and findings of the drilling activity. Parsons has the option to

SOP-05	Date Effective: March 2024	Revision 0
Title: DIRECT PUSH SOIL SAMPLING		
Office of Contact: Parsons, San	idy, Utah	Page 6 of 6

resubmit logs or a modified form in a deliverable as completely redrafted, typed, or computergenerated, and representing a combination of information applied in the field and office. The original field log or document will be retained in the permanent file. Alterations or changes between the office copy and the field original will be justified.

STANDARD OPERATING PROCEDURE

SOP-06

ORGANIC VAPOR SCREENING USING A PHOTOIONIZATION DETECTOR / FLAME IONIZATION DETECTOR

Revision: 0

Date Effective: January 2022

PARSONS

Former Titan 1-A Missile Facility, Lincoln, California

SOP-06	Effective Date: January 2022	Revision 0
Title: ORGANIC VAPOR SCREENING USING A PHOTOIONIZATION		
DETECTOR / FLAME IONIZATION DETECTOR		
Office of Contact: Parsons, Sandy, Utah		Page 1 of 3

1.0 PURPOSE

The objective of this standard operating procedure (SOP) is to describe the procedures for operating a photoionization detector (PID) or flame ionization detector (FID) for the field screening of soils containing volatile organic compounds. This SOP describes how to safely operate an PID/FID instrument and outlines the proper procedures for record keeping and use of the data generated.

2.0 **RESPONSIBILITIES**

The *Field Team Leader* is responsible for ensuring that the work is performed in conformance with this procedure and that the field personnel understand and perform activities in accordance with this SOP.

Field Personnel are responsible for the safe operation of the PID/FID, and for ensuring that operation conforms to this procedure.

3.0 EQUIPMENT

- Indelible black ink pens,
- Logbooks,
- PID/FID equipped with a proper lamp size (10.6 or an 11.8 eV lamp),
- PID/FID calibration equipment
- Spare batteries,
- PID/FID manual, and
- Sampling equipment, if necessary.

4.0 PROCEDURES

1. Select a PID/FID equipped with the proper lamp size the afternoon before the field work is scheduled and charge the battery overnight by plugging in the adapter. As the PIDs/FIDs have no battery gauge, failure to recharge the battery may leave you with a discharged battery and an unusable PID/FID.

SOP-06	Effective Date: January 2022	Revision 0
Title: ORGANIC VAPOR SCREENING USING A PHOTOIONIZATION		
DETECTOR / FLAME IONIZATION DETECTOR		
Office of Contact: Parsons	, Sandy, Utah	Page 2 of 3

2. Calibrate the PID/FID upon arrival at the site or prior to leaving the office. Record all pertinent information on the calibration record located in the case of each PID/FID and record the calibration on the Field Report form.

3. With a gloved hand, fill a dedicated sealable bag or soil jar approximately half full of soil to be screened. Refer to the site-specific sampling and analysis plan or work plan for appropriate sample container. Manually break up the soil clumps within the bag. Seal the bag or cover the opening of the soil jar with aluminum foil and screw on a lid. Use a marker to write the sample identifier and depth on the bag or jar lid.

4. Shake the sealed bag or soil jar for approximately 15 seconds, then allow the soil to volatilize for at least 10 minutes in an atmosphere of at least 70°F. On cold days it may be necessary place the bag or soil jar inside a heated room or vehicle.

5. After headspace development, shake the sample for another 15 seconds.

6. Complete organic vapor screening within approximately 20 minutes of sample collection. If using soil jars, remove the lid. Pierce the aluminum foil or plastic bag with the probe of the PID/FID. Record the highest meter response within a time period of two to five seconds.

7. Discard the soil samples on-site and dispose of used bags, soil jars, foil, and lids as trash.

5.0 RECORD KEEPING

A record of each analysis will be maintained in the field log book, and a rationale for the decision to collect the subsample from the core shall also be maintained. At a minimum, the following information needs to be recorded:

- Operator name
- Date
- Calibration check results
- Sample location
- Results
- Observations (soil moist or dry, rocky or sandy, color, etc)
- Battery charge

SOP-06	Effective Date: January 2022	Revision 0
Title: ORGANIC VAPOR SCREENING USING A PHOTOIONIZATION		
DETECTOR / FLAME IONIZATION DETECTOR		
Office of Contact: Parsons, Sandy, Utah		Page 3 of 3

6.0 SAFETY EQUIPMENT

- Wear nitrile gloves to reduce the incidence of skin contact with potentially contaminated soil and to reduce the risk of cross-contamination.
- Refer to the Site Safety and Health Plan (SSHP) for other safety concerns and applicable personal protective equipment.

7.0 REFERENCES

The operating manual for the PID/FID instrument must be available to the instrument operators.

This document is intended for use with an approved work plan.

STANDARD OPERATING PROCEDURE

SOP-07

SOIL DESCRIPTION AND CLASSIFICATION SYSTEM

Revision: 1

Date Effective: April 2023

Former Titan 1-A Missile Facility, Lincoln, California

Designation: D2488 – $17^{\epsilon 1}$

Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)¹

This standard is issued under the fixed designation D2488; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

 ϵ^1 NOTE—Editorially corrected Fig. 2 in March 2018.

1. Scope*

1.1 This practice covers procedures for the description of soils for engineering purposes.

1.2 This practice also describes a procedure for identifying soils, at the option of the user, based on the classification system described in Test Method D2487. The identification is based on visual examination and manual tests. It shall be clearly stated in reporting, the soil identification is based on visual-manual procedures.

1.2.1 When precise classification of soils for engineering purposes is required, the procedures outlined in Test Method D2487 shall be used.

1.2.2 In this practice, the identification procedures assigning a group symbol and name are limited to soil particles smaller than 3 in. (75 mm).

1.2.3 The identification portion of this practice is limited to naturally occurring soils. Specimens used for identification may be either intact or disturbed.

Note 1—This practice may be used as a descriptive system applied to such materials as shale, claystone, shells, crushed rock, etc. (see Appendix X2).

1.3 The descriptive information in this practice may be used with other soil classification systems or for materials other than naturally occurring soils.

1.4 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are rationalized conversions to SI units that are provided for information only and are not considered standard. The sieve designations are identified using the "alternative" system in accordance with Practice E11.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Section 8.

1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D653 Terminology Relating to Soil, Rock, and Contained Fluids
- D1452 Practice for Soil Exploration and Sampling by Auger Borings
- D1586 Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils
- D1587 Practice for Thin-Walled Tube Sampling of Fine-Grained Soils for Geotechnical Purposes
- D2113 Practice for Rock Core Drilling and Sampling of Rock for Site Exploration

¹ This practice is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.07 on Identification and Classification of Soils.

Current edition approved July 15, 2017. Published August 2017. Originally approved in 1966. Last previous edition approved in 2009 as D2488 – 09a. DOI: 10.1520/D2488-17E01.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

- D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
- D4083 Practice for Description of Frozen Soils (Visual-Manual Procedure)

D4427 Classification of Peat Samples by Laboratory Testing

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

3. Terminology

3.1 *Definitions:*

3.1.1 For definitions of common technical terms in this standard, refer to Terminology D653.

3.1.2 *cobbles*—particles of rock that will pass a 12-in. (300-mm) square opening and be retained on a 3-in. (75-mm) sieve.

3.1.3 *boulders*—particles of rock that will not pass a 12-in. (300-mm) square opening.

3.1.4 *clay*—soil passing a No. 200 (75-µm) sieve that can be made to exhibit plasticity (putty-like properties) within a range of water contents, and that exhibits considerable strength when air-dried. For classification, a clay is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index equal to or greater than 4, and the plot of plasticity index versus liquid limit falls on or above the "A" line (see Fig. 4 of Test Method D2487).

3.1.5 *gravel*—particles of rock that will pass a 3-in. (75-mm) sieve and be retained on a No. 4 (4.75-mm) sieve with the following subdivisions:

3.1.5.1 *coarse*—passes a 3-in. (75-mm) sieve and is retained on a $\frac{3}{4}$ -in. (19-mm) sieve.

3.1.5.2 *fine*—passes a ³/₄-in. (19-mm) sieve and is retained on a No. 4 (4.75-mm) sieve.

3.1.6 *organic clay*—a clay with sufficient organic content to influence the soil properties. For classification, an organic clay is a soil that would be classified as a clay, except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.7 *organic silt*—a silt with sufficient organic content to influence the soil properties. For classification, an organic silt is a soil that would be classified as a silt except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.8 *peat*—a soil composed primarily of vegetable tissue in various stages of decomposition usually with an organic odor, a dark brown to black color, a spongy consistency, and a texture ranging from fibrous to amorphous.

3.1.9 *sand*—particles of rock that will pass a No. 4 (4.75-mm) sieve and be retained on a No. 200 (75- μ m) sieve with the following subdivisions:

3.1.9.1 *coarse*—passes a No. 4 (4.75-mm) sieve and is retained on a No. 10 (2.00-mm) sieve.

3.1.9.2 *medium*—passes a No. 10 (2.00-mm) sieve and is retained on a No. 40 (425- μ m) sieve.

3.1.9.3 *fine*—passes a No. 40 (425-µm) sieve and is retained on a No. 200 (75-µm) sieve.

3.1.10 *silt*—soil passing a No. 200 (75-μm) sieve that is nonplastic or very slightly plastic and that exhibits little or no strength when air dry. For classification, a silt is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index less than 4, or the plot of plasticity index versus liquid limit falls below the "A" line (see Fig. 4 of Test Method D2487).

3.1.11 *fine-grained soils*—soils that are made up of 50 % or more particles that will pass a No. 200 (75 μ m) sieve.

3.1.12 *coarse-grained soils*—soils that are made up of more than 50 % particles that will be retained on a No. 200 (75 μ m) sieve.

4. Summary of Practice

4.1 Using visual examination and simple manual tests, this practice gives standardized criteria and procedures for describing and identifying soils.

4.2 The soil can be given an identification by assigning a group symbol(s) and name. The flow charts, Fig. 1a and Fig. 1b for fine-grained soils, and Fig. 2, for coarse-grained soils, can be used to assign the appropriate group symbol(s) and name. If the soil has properties which do not distinctly place it into a specific group, borderline symbols may be used, see Appendix X3.

5. Significance and Use

5.1 The descriptive information required in this practice can be used to describe a soil to aid in the evaluation of its significant properties for engineering use.

5.2 The descriptive information required in this practice should be used to supplement the classification of a soil as determined by Test Method D2487.

5.3 This practice may be used in identifying soils using the classification group symbols and names as prescribed in Test Method D2487. Since the names and symbols used in this practice to identify the soils are the same as those used in Test Method D2487, it shall be clearly stated in reports and all other appropriate documents, that the classification symbol and name are based on visual-manual procedures.

5.4 This practice is to be used for identification of soils in the field, laboratory, or any other location where soil samples are inspected and described.

5.5 This practice may be used to group similar soil samples to reduce the number of laboratory tests necessary for positive soil classification.

Note 2—The ability to describe and identify soils correctly is learned more readily under the guidance of experienced personnel, but it may also be acquired systematically by comparing numerical laboratory test results for typical soils of each type with their visual and manual characteristics.

5.6 Soil samples from a given boring, test pit or location which appear to have similar characteristics are not required to follow all of the procedures in this practice, providing at least one sample is completely described and identified. These samples may follow only the necessary procedures to determine they are "similar" and shall be labeled as such.

D2488 – 17^{ε1}

GROUP NAME

FIG. 1a Flow Chart for Identifying Inorganic Fine-Grained Soil (50 % or more fines)

GROUP SYMBOL

NOTE-Percentages are based on estimating amounts of fines, sand, and gravel to the closest 5 %.

5.7 This practice may be used in combination with Practice D4083 when working with frozen soils.

Note 3-The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

6. Apparatus

6.1 Small Knife or Spatula

6.2 Test Tube and Stopper (optional)

- 6.3 Jar with Lid (optional)
- 6.4 Hand Lens (optional)
- 6.5 Shallow Pan (optional)

7. Reagents

7.1 Purity of Water-Unless otherwise indicated, references to water shall be understood to mean water from a city water supply or natural source, including non-potable water.

GROUP NAME

7.2 Hydrochloric Acid—A small bottle of dilute hydrochloric acid (HCl) one part HCl (10 N) to three parts distilled water (This reagent is optional for use with this practice). See Section 8.

Φ D2488 – 17^{ε1}

GROUP NAME

NOTE-Percentages are based on estimating amounts of fines, sand, and gravel to the closest 5 %.

NOTE-It is suggested that a distinction be made between dual symbols and borderline symbols.

Dual Symbol—A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC, CL-ML used to indicate that the soil has been identified as having the properties of a classification in accordance with Test Method D2487 where two symbols are required. Two symbols are required when the soil has between 5 and 12 % fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.

Borderline Symbol—A borderline symbol is two symbols separated by a slash, for example, CL/CH, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that do not distinctly place the soil into a specific group (see Appendix X3).

FIG. 2 Flow Chart for Identifying Coarse-Grained Soils (less than 50 % fines)

8. Safety Precautions

8.1 When preparing the dilute HCl solution of one part concentrated hydrochloric acid (10 N) to three parts of distilled water, slowly add acid into water following necessary safety precautions. Handle with caution, utilize personal protective equipment and store safely. If solution comes into contact with the skin or eyes, rinse thoroughly with water.

8.2 **Caution**—Acid shall be added to the water. Do not add water to the acid as this may cause an adverse reaction.

9. Sampling

9.1 The sample shall be considered to be representative of the stratum from which it was obtained by an appropriate, accepted, or standard procedure.

NOTE 4—Preferably, the sampling procedure should be identified as having been conducted in accordance with Practices D1452, D1587, or D2113, or Test Method D1586.

9.2 The sample shall be carefully identified as to origin.

Note 5—Remarks as to the origin may take the form of a boring number and sample number in conjunction with a project number, a

geologic stratum, a pedologic horizon or a location description with respect to a permanent monument, a grid system or a station number and offset with respect to a stated centerline and a depth or elevation.

9.3 For accurate description and identification, the minimum amount of the specimen to be examined shall be in accordance with Table 1.

Note 6—If random isolated particles are encountered that are significantly larger than the particles in the soil matrix, the soil matrix can be accurately described and identified in accordance with the preceding table.

9.4 If the sample or specimen being examined is smaller than the minimum recommended specimen size, the report shall include a remark stating as such.

TABLE 1 Minimum Specimen Dry Mass Requirements

Maximum Particle	Minimum Specimen
Size, Sieve Opening	Size, by Dry Mass
No. 4 (4.75 mm)	0.25 lb (110 g)
3⁄8 in. (9.5 mm)	0.5 lb (220 g)
³ ⁄ ₄ in. (19.0 mm)	2.2 lb (1.0 kg)
1½ in. (38.1 mm)	18 lb (8.0 kg)
3 in. (75.0 mm)	132 lb (60.0 kg)

10. Descriptive Information for Soils

10.1 Angularity—Describe the angularity of the sand (coarse sizes only), gravel, cobbles, and boulders, as angular, subangular, subrounded, or rounded in accordance with the criteria in Table 2 and Fig. 3. A range of angularity may be stated, such as: subrounded to rounded.

10.2 *Shape*—Describe the shape of the gravel, cobbles, and boulders as flat, elongated, or flat and elongated if they meet the criteria in Table 3 and Fig. 4. Otherwise, do not mention the shape. Indicate the fraction of the particles that have the shape, such as: one-third of the gravel particles are flat.

10.3 *Color*—Describe the color. Color is an important property in identifying organic soils, and within a given locality it may also be useful in identifying materials of similar geologic origin. If the sample contains layers or patches of varying colors, this shall be noted and all representative colors shall be described. The color shall be described for moist samples. If the color represents a dry condition, this shall be stated in the report.

10.4 Odor-Describe the odor if organic or unusual.

10.4.1 Soils containing a significant amount of organic material usually have a distinctive odor of decaying vegetation. This is especially apparent in fresh samples.

10.4.2 If the samples are dried, the odor may often be revived by moistening the sample and slightly heating it.

10.4.3 Odors from petroleum products, chemicals or other substances shall be described.

10.4.4 Some fumes emitting from soil samples, especially of a chemical nature, may pose a health risk. Proper safety protocols which may include the use of personal protective equipment must be followed in these instances. It is the responsibility of the user to determine the extent of the health risk and the correct protocols to follow.

10.5 *Moisture Condition*—Describe the moisture condition as dry, moist, or wet, in accordance with the criteria in Table 4.

10.6 *HCl Reaction*—Describe the reaction with HCl as none, weak, or strong, in accordance with the criteria in Table 5. Since calcium carbonate is a common cementing agent, a comment of its presence on the basis of the reaction with dilute hydrochloric acid is important.

10.7 *Consistency*—For intact fine-grained soil, describe the consistency as very soft, soft, firm, hard, or very hard, in accordance with the criteria in Table 6. This observation is inappropriate for soils with significant amounts of gravel.

TABLE 2 Criteria for Describing Angularity of Coarse-Grained Particles (see Fig. 3)

Description	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces
Subangular	Particles are similar to angular description but have rounded edges
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges
Rounded	Particles have smoothly curved sides and no edges

10.8 *Cementation*—Describe the cementation of intact coarse-grained soils as weak, moderate, or strong, in accordance with the criteria in Table 7.

10.9 *Structure*—Describe the structure of intact soils in accordance with the criteria in Table 8.

10.10 *Range of Particle Sizes*—For gravel and sand components, describe the range of particle sizes within each component as defined in 3.1.5 and 3.1.9. For example, about 20 % fine to coarse gravel, about 40 % fine to coarse sand.

10.11 *Maximum Particle Size*—Describe the maximum particle size found in the sample in accordance with the following information:

10.11.1 *Sand Size*—If the maximum particle size is a sand size, describe as fine, medium, or coarse as defined in 3.1.9. For example: maximum particle size, medium sand.

10.11.2 *Gravel Size*—If the maximum particle size is a gravel size, describe the maximum particle size as the smallest sieve opening that the particle will pass. For example, maximum particle size, $1\frac{1}{2}$ in. will pass a $1\frac{1}{2}$ -in. (square opening) but not a $\frac{3}{4}$ -in. (square opening).

10.11.3 *Cobble or Boulder Size*—If the maximum particle size is a cobble or boulder size, describe the maximum dimension of the largest particle. For example: maximum dimension, 18 in. (450 mm).

10.12 *Hardness*—Describe the hardness of coarse sand and larger particles as hard, or state what happens when the particles are hit by a hammer, for example, gravel-size particles fracture with considerable hammer blow, some gravel-size particles crumble with hammer blow. "Hard" means particles do not crack, fracture, or crumble under a hammer blow.

10.13 Additional comments shall be noted, such as the presence of roots or root holes, difficulty in drilling or augering the hole, caving of the trench or hole, or the presence of mica.

10.14 A local or commercial name or a geologic interpretation of the soil, or both, may be added if identified as such.

10.15 A classification or identification of the soil in accordance with other classification systems may be added if identified as such.

11. Identification of Peat

11.1 A sample composed primarily of vegetative tissue in various stages of decomposition that has a fibrous to amorphous texture, usually a dark brown to black color, and an organic odor, shall be designated as highly organic and shall be identified as peat, PT. Peat samples shall not be subjected to the identification procedures described hereafter. Refer to D4427 for procedures on classifying peat.

12. Preparation for Identification

12.1 The soil identification portion of this practice is based on the portion of the soil sample that will pass a 3-in. (75-mm) sieve. The larger than 3-in. (75-mm) particles must be removed, manually for a loose sample, or ignored for an intact sample before classifying the soil.

(a) Rounded

(b) Angular

(c) Subrounded

(d) Subangular

FIG. 3 Typical Angularity of Bulky Grains

TABLE 3 Criteria for Describing Particle Shape (see Fig. 4)

The particle shape shall be described as follows where length, width, and thickness refer to the greatest, intermediate, and least dimensions of a particle, respectively.

Flat	Particles with width/thickness > 3
Elongated	Particles with length/width > 3
Flat and	Particles meet criteria for both flat and elongated
elongated	

12.2 Estimate and note the percentage of cobbles and the percentage of boulders. Visual estimates will be based on the percentage by volume.

NOTE 7—Since the percentages of the particle-size distribution in Test Method D2487 are by dry mass, and the estimates of percentages for gravel, sand, and fines in this practice are by dry mass, it is recommended that the report state that the percentages of cobbles and boulders are by volume.

12.3 Of the fraction of the soil smaller than 3 in. (75 mm), estimate and note the percentage, by dry mass, of the gravel, sand, and fines (see Appendix X4 for suggested procedures).

NOTE 8—Since the particle-size components appear visually on the basis of volume, considerable experience is required to estimate the percentages on the basis of dry mass. Frequent comparisons with laboratory particle-size analyses should be made.

12.3.1 The percentages shall be estimated to the closest 5 %. The percentages of gravel, sand, and fines must add up to 100 %.

12.3.2 If one of the components is present but not in sufficient quantity to be considered 5 % of the smaller than 3-in. (75-mm) portion, indicate its presence by the term *trace*,

PARTICLE SHAPE

W = WIDTH T = THICKNESS L = LENGTH

FLAT: W/T > 3 ELONGATED: L/W > 3 FLAT AND ELONGATED: – meets both criteria

FIG. 4 Criteria for Particle Shape

TABLE 4 Criteria for Describing Moisture Condition

Description	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

TABLE 5 Criteria for Describing the Reaction with HCI

Description	Criteria
None	No visible reaction
Weak	Some reaction, with bubbles forming slowly
Strong	Violent reaction, with bubbles forming immediately

TABLE 6 Criteria for Describing Consistency

Description	Criteria
Very soft	Thumb will penetrate soil more than 1 in. (25 mm)
Soft	Thumb will penetrate soil about 1 in. (25 mm)
Firm	Thumb will indent soil about 1/4 in. (6 mm)
Hard	Thumb will not indent soil but readily indented with thumbnail
Very hard	Thumbnail will not indent soil

for example, trace of fines. A component quantity described as trace shall not be included in the total of 100 % for the components.

TABLE 7 Criteria for Describing Cementation

Description	Criteria
Neak	Crumbles or breaks with handling or little finger pressure
Moderate	Crumbles or breaks with considerable finger pressure
Strong	Will not crumble or break with finger pressure

TABLE 8 Criteria for Describing Structure

Description	Criteria
Stratified	Alternating layers of varying material or color with layers at
	least 1/4 in. (6 mm) thick; note thickness
Laminated	Alternating layers of varying material or color with the layers
	less than 6 mm thick; note thickness
Fissured	Breaks along definite planes of fracture with little resistance to
	fracturing
Slickensided	Fracture planes appear polished or glossy, sometimes striated
Blocky	Cohesive soil that can be broken down into small angular
	lumps which resist further breakdown
Lensed	Inclusion of small pockets of different soils, such as small
	lenses of sand scattered through a mass of clay; note
	thickness
Homogeneous	Same color and appearance throughout

13. Preliminary Identification

13.1 The soil is *fine grained* if it contains 50 % or more fines. Follow the procedures for identifying fine-grained soils in Section 14.

13.2 The soil is *coarse grained* if it contains more than 50 % coarse-grained soils. Follow the procedures for identifying coarse-grained soils in Section 15.

14. Procedure for Identifying Fine-Grained Soils

14.1 Select a representative sample of the material for examination. Remove particles larger than the No. 40 (425 μ m) sieve (medium sand and larger) until a specimen equivalent to about a handful of material is available. Use this specimen for performing the dry strength, dilatancy, and toughness tests.

14.2 Dry Strength:

14.2.1 From the specimen, select enough material to mold into a ball about 1 in. (25 mm) in diameter. Mold the material until it has the consistency of putty, adding water if necessary.

14.2.2 From the molded material, make at least three test specimens. A test specimen shall be a ball of material about $\frac{1}{2}$ in. (12 mm) in diameter. Allow the test specimens to air dry or dry by artificial means, with a temperature not to exceed 140°F (60°C).

14.2.3 If the test specimen contains natural dry lumps, those that are about $\frac{1}{2}$ in. (12 mm) in diameter may be used in place of the molded balls.

NOTE 9—The process of molding and drying usually produces higher strengths than those determined using natural dry lumps of soil.

14.2.4 Test the strength of the dry balls or lumps by crushing between the fingers. Note the strength as none, low, medium, high, or very high in accordance with the criteria in Table 9. If natural dry lumps are used, do not use the results of any of the lumps that are found to contain particles of coarse sand.

14.2.5 The presence of high-strength water-soluble cementing materials, such as calcium carbonate, may cause exceptionally high dry strengths. The presence of calcium carbonate ∰ D2488 – 17^{ε1}

TABLE 9 Criteria for Describing Dry Strength

Description	Criteria
None	The dry specimen crumbles into powder with mere pressure of handling
Low	The dry specimen crumbles into powder with some finger pressure
Medium	The dry specimen breaks into pieces or crumbles with considerable finger pressure
High	The dry specimen cannot be broken with finger pressure. Specimen will break into pieces between thumb and a hard surface
Very high	The dry specimen cannot be broken between the thumb and a hard surface

can usually be detected from the intensity of the reaction with dilute hydrochloric acid (see 10.6).

14.3 Dilatancy:

14.3.1 From the specimen, select enough material to mold into a ball about $\frac{1}{2}$ in. (12 mm) in diameter. Mold the material, adding water if necessary, until it has a soft, but not sticky, consistency.

14.3.2 Smooth the soil ball in the palm of one hand with the blade of a knife or small spatula. Shake horizontally, striking the side of the hand vigorously against the other hand several times. Note the reaction of water appearing on the surface of the soil. Squeeze the sample by closing the hand or pinching the soil between the fingers, and note the reaction as none, slow, or rapid in accordance with the criteria in Table 10. The reaction is the speed with which water appears while shaking, and disappears while squeezing.

14.4 Toughness:

14.4.1 Following the completion of the dilatancy test, the test specimen is shaped into an elongated pat and rolled by hand on a smooth surface or between the palms into a thread about 1/8 in. (3 mm) in diameter. (If the sample is too wet to roll easily, it should be spread into a thin layer and allowed to lose some water by evaporation.) Fold the sample threads and reroll repeatedly until the thread crumbles at a diameter of about 1/8 in. (3 mm). The thread will crumble at a diameter of 1/8 in. (3 mm) when the soil is near the plastic limit. Note the pressure required to roll the thread near the plastic limit. Also, note the strength of the thread. After the thread crumbles, the pieces should be lumped together and kneaded until the lump crumbles. Note the toughness of the material during kneading.

14.4.2 Describe the toughness of the thread and lump as low, medium, or high in accordance with the criteria in Table 11.

TABLE 10 Criteria for Describing Dilatancy

Description	Criteria
None	No visible change in the specimen
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing

TABLE 1	Criteria	for	Describing	Toughness
---------	----------	-----	------------	-----------

Description	Criteria
Low	Only slight pressure is required to roll the thread near the
	plastic limit. The thread and the lump are weak and soft
Medium	Medium pressure is required to roll the thread to near the
	plastic limit. The thread and the lump have medium stiffness
High	Considerable pressure is required to roll the thread to near
	the plastic limit. The thread and the lump have very high
	stiffness

14.5 *Plasticity*—On the basis of observations made during the toughness test, describe the plasticity of the material in accordance with the criteria given in Table 12.

14.6 Decide if the soil is an *inorganic* or an *organic* fine-grained soil (see 14.8). If inorganic, follow the steps given in 14.7.

14.7 Identification of Inorganic Fine-Grained Soils:

14.7.1 Identify the soil as a *lean clay*, CL, if the soil has medium to high dry strength, no or slow dilatancy, and medium toughness and plasticity (see Table 13).

14.7.2 Identify the soil as a *fat clay*, CH, if the soil has high to very high dry strength, no dilatancy, and high toughness and plasticity (see Table 13).

14.7.3 Identify the soil as a *silt*, ML, if the soil has no to low dry strength, slow to rapid dilatancy, and low toughness and plasticity, or is nonplastic (see Table 13).

14.7.4 Identify the soil as an *elastic silt*, MH, if the soil has low to medium dry strength, no to slow dilatancy, and low to medium toughness and plasticity (see Table 13).

Note 10—These properties are similar to those for a lean clay. However, the silt will dry quickly on the hand and have a smooth, silky feel when dry. Some soils that would classify as MH in accordance with the criteria in Test Method D2487 are visually difficult to distinguish from lean clays, CL. It may be necessary to perform laboratory testing for proper identification.

TABLE 12 Criteria for Describing Plasticity

Description	Criteria
Nonplastic	A 1/8-in. (3-mm) thread cannot be rolled at any water content
Low	The thread can barely be rolled and the lump cannot be
	formed when drier than the plastic limit
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than
	the plastic limit
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit

TABLE 13 Identification of Inorganic Fine-Grained Soils from Manual Tests

Soil Symbol	Dry Strength	Dilatancy	Toughness and Plasticity
ML	None to low	Slow to rapid	Low or thread cannot be formed
CL	Medium to high	None to slow	Medium
MH	Low to medium	None to slow	Low to medium
СН	High to very high	None	High

14.8 Identification of Organic Fine-Grained Soils:

14.8.1 Identify the soil as an *organic soil*, OL/OH, if the soil contains enough organic particles to influence the soil properties. Organic soils usually have a dark brown to black color and may have an organic odor. Often, organic soils will change color, for example, black to brown, when exposed to the air. Some organic soils will lighten in color significantly when air dried. Organic soils normally will not have a high toughness or plasticity. The thread for the toughness test will be spongy.

Note 11—In some cases, through practice and experience, it may be possible to further identify the organic soils as organic silts or organic clays, OL or OH. Correlations between the dilatancy, dry strength, toughness tests, and laboratory tests can be made to identify organic soils in certain deposits of similar materials of known geologic origin.

14.9 If the soil is estimated to have 15 to 25 % sand or gravel, or both, the terms "with sand" or "with gravel" (whichever is more predominant) shall be added to the group name. For example: "lean clay with sand, CL" or "silt with gravel, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percentage of gravel, use "with sand."

14.10 If the soil is estimated to have 30 % or more sand or gravel, or both, the words "sandy" or "gravelly" shall be added to the group name. Add the word "sandy" if there appears to be more sand than gravel. Add the word "gravelly" if there appears to be more gravel than sand. For example: "sandy lean clay, CL", "gravelly fat clay, CH", or "sandy silt, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percent of gravel, use "sandy."

15. Procedure for Identifying Coarse-Grained Soils

(Contains more than 50 % coarse-grained soil)

15.1 The soil is a *gravel* if the percentage of gravel is estimated to be more than the percentage of sand.

15.2 The soil is a *sand* if the percentage of gravel is estimated to be equal to or less than the percentage of sand.

15.3 The soil is a *clean gravel* or *clean sand* if the percentage of fines is estimated to be 5 % or less.

15.3.1 Identify the soil as a *well-graded gravel*, GW, or as a *well-graded sand*, SW, if it has a wide range of particle sizes and substantial amounts of the intermediate particle sizes.

15.3.2 Identify the soil as a *poorly graded gravel*, GP, or as a *poorly graded sand*, SP, if it consists predominantly of one size (uniformly graded), or it has a wide range of sizes with some intermediate sizes obviously missing (gap or skip graded).

15.4 The soil is either a *gravel with fines* or a *sand with fines* if the percentage of fines is estimated to be 15 % or more.

15.4.1 Identify the soil as a *clayey gravel*, GC, or a *clayey sand*, SC, if the fines are clayey as determined by the procedures in Section 14.

15.4.2 Identify the soil as a *silty gravel*, GM, or a *silty sand*, SM, if the fines are silty as determined by the procedures in Section 14.

15.5 If the soil is estimated to contain 10 % fines, give the soil a dual identification using two group symbols.

15.5.1 The first group symbol shall correspond to a clean gravel or sand (GW, GP, SW, SP) and the second symbol shall correspond to a gravel or sand with fines (GC, GM, SC, SM).

15.5.2 The group name shall correspond to the first group symbol plus the words "with clay" or "with silt" to indicate the plasticity characteristics of the fines. For example: "well-graded gravel with clay, GW-GC" or "poorly graded sand with silt, SP-SM" (see Fig. 2).

15.6 If the specimen is predominantly sand or gravel but contains an estimated 15 % or more of the other coarse-grained constituent, the words "with gravel" or "with sand" shall be added to the group name. For example: "poorly graded gravel with sand, GP" or "clayey sand with gravel, SC" (see Fig. 2).

15.7 If the field sample contains any cobbles or boulders, or both, the words "with cobbles" or "with cobbles and boulders" shall be added to the group name. For example: "silty gravel with cobbles, GM."

16. Report: Data Sheet(s)/Form(s)

16.1 Record as a minimum the following information (data):

16.1.1 Project specific information such as Project number, Project name, Project location if this information is available.

16.1.2 The person performing the soil identification.

16.1.3 Sample specific information including boring number, sample number, depth, sample location, such as test pit or station number etc. if this information is available.

16.1.4 The specimen characteristics which should be in the soil description are listed in Table 14. At a minimum the group name, group symbol and color shall be recorded.

NOTE 12—Example: Clayey Gravel with Sand and Cobbles, GC— About 50 % fine to coarse, subrounded to subangular gravel; about 30 % fine to coarse, subrounded sand; about 20 % fines with medium plasticity, high dry strength, no dilatancy, medium toughness; weak reaction with HCl; original field sample had about 5 % (by volume) subrounded cobbles, maximum dimension, 150 mm.

In-Place Conditions-Firm, homogeneous, dry, brown

Geologic Interpretation-Alluvial fan

NOTE 13—Other examples of soil descriptions and identification are given in Appendix X1 and Appendix X2.

NOTE 14—If desired, the percentages of gravel, sand, and fines may be stated in terms indicating a range of percentages, as follows:

Trace-Particles are present but estimated to be less than 5 %

Few-5 to 10 %

Little—15 to 25 % *Some*—30 to 45 %

Mostly—50 to 100 %

16.2 If, in the soil description, the soil is identified using a classification group symbol and name as described in Test Method D2487, it must be distinctly and clearly stated in any

∰ D2488 – 17^{ε1}

TABLE 14 Checklist for Description of Soils

1. Group name

- 2. Group symbol
- 3. Percent of cobbles or boulders, or both (by volume)
- 4. Percent of gravel, sand, and fines, or all three (by dry weight)
- 5. Particle-size range:

Gravel-fine, coarse

- Sand—fine, medium, coarse 6. Particle angularity: angular, subangular, subrounded, rounded
- 7. Particle shape: (if applicable) flat, elongated, flat and elongated
- 8. Maximum particle size or dimension
- 9. Hardness of coarse sand and larger particles
- 10. Plasticity of fines: nonplastic, low, medium, high
- 11. Dry strength: none, low, medium, high, very high
- 12. Dilatancy: none, slow, rapid
- 13. Toughness: low, medium, high
- 14. Color (in moist condition)
- 15. Odor (mention only if organic or unusual)
- 16. Moisture: dry, moist, wet
- 17. Reaction with HCI: none, weak, strong
- For intact samples:
- 18. Consistency (fine-grained soils only): very soft, soft, firm, hard, very hard
- 19. Structure: stratified, laminated, fissured, slickensided, lensed, homogeneous
- 20. Cementation: weak, moderate, strong
- 21. Local name
- 22. Geologic interpretation
- Additional comments: presence of roots or root holes, presence of mica, gypsum, etc., surface coatings on coarse-grained particles, caving or sloughing of auger hole or trench sides, difficulty in augering or excavating, etc.

log forms, summary tables, reports, and the like, that the symbol and name are based on visual-manual procedures.

17. Precision and Bias

17.1 This practice provides qualitative information only, therefore, a precision and bias statement is not applicable.

18. Keywords

18.1 classification; clay; gravel; organic soils; sand; silt; soil classification; soil description; visual classification

APPENDIXES

(Nonmandatory Information)

X1. EXAMPLES OF VISUAL SOIL DESCRIPTIONS

X1.1 The following examples show how the information required in 16.1 can be reported. The information that is included in descriptions should be based on individual circumstances and need.

X1.1.1 *Well-Graded Gravel with Sand (GW)*—About 75 % fine to coarse, hard, subangular gravel; about 25 % fine to coarse, hard, subangular sand; trace of fines; maximum size, 75 mm, brown, dry; no reaction with HCl.

X1.1.2 Silty Sand with Gravel (SM)—About 60 % predominantly fine sand; about 25 % silty fines with low plasticity, low dry strength, rapid dilatancy, and low toughness; about 15 % fine, hard, subrounded gravel, a few gravel-size particles fractured with hammer blow; maximum size, 1 in. (25 mm); no reaction with HCl (Note—Field sample size smaller than recommended).

In-Place Conditions—Firm, stratified and contains lenses of silt 1 to 2 in. (25 to 50 mm) thick, moist, brown to gray; in-place density 106 lb/ft³; in-place moisture 9 %.

X1.1.3 *Organic Soil (OL/OH)*—About 100 % fines with low plasticity, slow dilatancy, low dry strength, and low toughness; wet, dark brown, organic odor; weak reaction with HCl.

X1.1.4 Silty Sand with Organic Fines (SM)—About 75 % fine to coarse, hard, subangular reddish sand; about 25 % organic and silty dark brown nonplastic fines with no dry strength and slow dilatancy; wet; maximum size, coarse sand; weak reaction with HCl.

X1.1.5 Poorly Graded Gravel with Silt, Sand, Cobbles and Boulders (GP-GM)—About 75 % fine to coarse, hard, subrounded to subangular gravel; about 15 % fine, hard, subrounded to subangular sand; about 10 % silty nonplastic fines; moist, brown; no reaction with HCl; original field sample had about 5 % (by volume) hard, subrounded cobbles and a trace of hard, subrounded boulders, with a maximum dimension of 18 in. (450 mm).

X2. USING THE IDENTIFICATION PROCEDURE AS A DESCRIPTIVE SYSTEM FOR SHALE, CLAYSTONE, SHELLS, SLAG, CRUSHED ROCK, AND THE LIKE

X2.1 The identification procedure may be used as a descriptive system applied to materials that exist in-situ as shale, claystone, sandstone, siltstone, mudstone, etc., but convert to soils after field or laboratory processing (crushing, slaking, and the like).

X2.2 Materials such as shells, crushed rock, slag, and the like, should be identified as such. However, the procedures used in this practice for describing the particle size and plasticity characteristics may be used in the description of the material. If desired, an identification using a group name and symbol according to this practice may be assigned to aid in describing the material.

X2.3 The group symbol(s) and group names should be placed in quotation marks or noted with some type of distinguishing symbol. See examples.

X2.4 Examples of how group names and symbols can be incorporated into a descriptive system for materials that are not naturally occurring soils are as follows:

X2.4.1 *Shale Chunks*—Retrieved as 2 to 4-in. (50 to 100mm) pieces of shale from power auger hole, dry, brown, no reaction with HCl. After slaking in water for 24 h, material identified as "Sandy Lean Clay (CL)"; about 60 % fines with medium plasticity, high dry strength, no dilatancy, and medium toughness; about 35 % fine to medium, hard sand; about 5 % gravel-size pieces of shale.

X2.4.2 *Crushed Sandstone*—Product of commercial crushing operation; "Poorly Graded Sand with Silt (SP-SM)"; about 90 % fine to medium sand; about 10 % nonplastic fines; dry, reddish-brown.

X2.4.3 *Broken Shells*—About 60 % uniformly graded gravel-size broken shells; about 30 % sand and sand-size shell pieces; about 10 % nonplastic fines; "Poorly Graded Gravel with Silt and Sand (GP-GM)."

X2.4.4 *Crushed Rock*—Processed from gravel and cobbles in Pit No. 7; "Poorly Graded Gravel (GP)"; about 90 % fine, hard, angular gravel-size particles; about 10 % coarse, hard, angular sand-size particles; dry, tan; no reaction with HCl.

X3. SUGGESTED PROCEDURE FOR USING A BORDERLINE SYMBOL FOR SOILS WITH TWO POSSIBLE IDENTIFICA-TIONS.

X3.1 Since this practice is based on estimates of particle size distribution and plasticity characteristics, it may be difficult to clearly identify the soil as belonging to one category. To indicate that the soil may fall into one of two possible basic groups, a borderline symbol may be used with the two symbols separated by a slash. For example: SC/CL or CL/CH.

X3.1.1 A borderline symbol may be used when the percentage of fines is estimated to be between 45 and 55 %. One symbol should be for a coarse-grained soil with fines and the other for a fine-grained soil. For example: GM/ML or CL/SC.

X3.1.2 A borderline symbol may be used when the percentage of sand and the percentage of gravel are estimated to be about the same. For example: GP/SP, SC/GC, GM/SM. It is practically impossible to have a soil that would have a borderline symbol of GW/SW.

X3.1.3 A borderline symbol may be used when the soil could be either well graded or poorly graded. For example: GW/GP, SW/SP.

X3.1.4 A borderline symbol may be used when the soil could either be a silt or a clay. For example: CL/ML, CH/MH, SC/SM.

X3.1.5 A borderline symbol may be used when a finegrained soil has properties that indicate that it is at the boundary between a soil of low compressibility and a soil of high compressibility. For example: CL/CH, MH/ML.

X3.2 The order of the borderline symbols should reflect similarity to surrounding or adjacent soils. For example: soils in a borrow area have been identified as CH. One sample is considered to have a borderline symbol of CL and CH. To show similarity, the borderline symbol should be CH/CL.

X3.3 The group name for a soil with a borderline symbol should be the group name for the first symbol, except for:

CL/CH lean to fat clay ML/CL clayey silt CL/ML silty clay

X3.4 The use of a borderline symbol should not be used indiscriminately. Every effort shall be made to first place the soil into a single group.

X4. SUGGESTED PROCEDURES FOR ESTIMATING THE PERCENTAGES OF GRAVEL, SAND, AND FINES IN A SOIL SAMPLE

X4.1 *Jar Method*—The relative percentage of coarse- and fine-grained material may be estimated by thoroughly shaking a mixture of soil and water in a test tube or jar, and then allowing the mixture to settle. The coarse particles will fall to the bottom and successively finer particles will be deposited with increasing time; the sand sizes will fall out of suspension in 20 to 30 s. The relative proportions can be estimated from the relative volume of each size separate. This method should be correlated to particle-size laboratory determinations.

X4.2 *Visual Method*—Mentally visualize the gravel size particles placed in a sack (or other container) or sacks. Then, do the same with the sand size particles and the fines. Then, mentally compare the number of sacks to estimate the percentage of plus No. 4 sieve size and minus No. 4 sieve size present.

The percentages of sand and fines in the minus sieve size No. 4 material can then be estimated from the wash test (X4.3).

X4.3 Wash Test (for relative percentages of sand and fines)—Select and moisten enough minus No. 4 sieve size material to form a 1-in (25-mm) cube of soil. Cut the cube in half, set one-half to the side, and place the other half in a small dish. Wash and decant the fines out of the material in the dish until the wash water is clear and then compare the two samples and estimate the percentage of sand and fines. Remember that the percentage is based on weight, not volume. However, the volume comparison will provide a reasonable indication of grain size percentages.

X4.3.1 While washing, it may be necessary to break down lumps of fines with the finger to get the correct percentages.

X5. ABBREVIATED SOIL CLASSIFICATION SYMBOLS

X5.1 In some cases, because of lack of space, an abbreviated system may be useful to indicate the soil classification symbol and name. Examples of such cases would be graphical logs, databases, tables, etc.

X5.2 This abbreviated system is not a substitute for the full name and descriptive information but can be used in supplementary presentations when the complete description is referenced.

X5.3 The abbreviated system should consist of the soil classification symbol based on this standard with appropriate lower case letter prefixes and suffixes as:

Suffix:

Prefix:

S :

q :

= sandy	s = with sand
= gravelly	g = with gravel
	c = with cobbles
	b = with boulders

X5.4 The soil classification symbol is to be enclosed in parenthesis. Some examples would be:

Group Symbol and Full Name	Abbreviated	
CL, Sandy lean clay SP-SM, Poorly graded sand with silt and gravel GP, poorly graded gravel with sand, cobbles, and boulders	s(CL) (SP-SM)g (GP)scb	
ML, gravelly silt with sand and cobbles	g(ML)sc	

SUMMARY OF CHANGES

Committee D18 has identified the location of selected changes to this standard since the last issue (D2488 – 09a) that may impact the use of this standard. (July 15, 2017)

(1) Revised various sections to clarify wording.

 $\left(2\right)$ Added D4427 and E11 to Section 2 - Reference Documents.

(3) Added definitions for fine grained and coarse grained soils to Section 3.

- (4) Replaced flow charts 1a, 1b and 2 with clearer versions.
- (5) Corrected units in Table 1.
- (6) Updated photos in Figure 3.
- (7) Expanded Section 10 regarding sample order.
- (8) Revised Section 16 Report to conform to D18 SPM.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

Re U.S. Environment Science and Ecosys Athens	gion 4 al Protection Agency stem Support Division s, Georgia		
GUIDANCE			
Title: Design and Installation of Monitoring Wells			
Effective Date: January 16, 2018	Number: SESDGUID-101-R2		
Au	thors		
Name: Brian Striggow Title: Environmental Engineer Signature: Date: 1-9-18			
Approvals			
Name: John Deatrick Title: Chief, Field Services Branch			
Signature: Ohn Datatick	Date: 1/10/18		
Name: Hunter Johnson Title: Field Quality Manager, Science and H	Cosystem Support Division		
Signature:	Date: 1/10/18		

Revision History

This table shows changes to this controlled document over time. The most recent version is presented in the top row of the table. Previous versions of the document are maintained by the SESD Document Control Coordinator.

History	Effective Date
SESDGUID-101-R2, <i>Design and Installation of Monitoring</i> <i>Wells</i> , replaces SESDPROC-101-R1	January 16, 2018
General: Corrected any typographical, grammatical and/or editorial errors.	
Cover Page: Cover page was updated to reflect reorganization and new personnel.	
Section 2.2.5: Added Direct Push Technology as drilling method.	
Section 2.7: Added additional cautions regarding early sampling of permanent wells	
Section 2.8: Added greater detail to decommissioning procedures	
Section 4: Generalized description of screen point installation. Added section on direct push technology well installation.	
SESDGUID-101-R1, <i>Design and Installation of Monitoring Wells</i> , replaces SESDPROC-101-R0.	January 29, 2013
SESDGUID-101-R0, <i>Design and Installation of Monitoring</i> <i>Wells</i> , Original Issue	February 18, 2008

TABLE OF CONTENTS

1	G	enera	al Information	5
	1.1	Purpose		
	1.2	2 Scope/Application		
	1.3	Documentation/Verification		
	1.4	Refer	rences	5
	1.5	Gene	eral Precautions	6
	1.5	5.1	Safety	6
	1.5	5.2	Procedural Precautions	6
2	Р	erma	nent Monitoring Well Design Considerations	7
	2.1	Gene	ral	7
	22	Drilli	ing Methods	7
	2.2	$\frac{D}{21}$	Hollow Stem Auger (HSA)	7
	2.2	2.2	Solid Stem Auger	8
	2.2	2.3	Sonic Methods	9
	2.2	2.4	Rotary Methods	9
	2.2	2.5	Direct Push Technology	1
	2.2	2.6	Other Methods	1
	2.3	Bore	hole Construction	12
	2.3	3.1	Annular Space	2
	2.3	3.2	Over-drilling the Borehole	2
	2.3	3.3	Filter Pack Placement	2
	2.3	3.4	Filter Pack Seal – Bentonite Pellet Seal (Plug)1	3
	2.3	3.5	Grouting the Annular Space	3
	2.3	3.6	Above Ground Riser Pipe and Outer Casing1	4
	2.3	3.7	Concrete Surface Pad1	5
	2.3	3.8	Surface Protection – Bumper Guards	5
	2.4	Cons	truction Techniques	5
	2.4	4.1	Well Installation	5
	2.4	4.2	Double-Cased Wells	7
	2.5	Well	Construction Materials	9
	2.5	5.1	Introduction	9
	2.5	5.2	Well Screen and Casing Materials	20
	2.5	5.3	Filter Pack Materials2	21
	2.5	5.4	Filter Pack and Well Screen Design	21
	2.6	Safet	y Procedures for Drilling Activities2	?3
	2.7	Well	Development2	?4
	2.8	Well	Decommissioning (Abandonment)	26
	2.8	8.1	Decommissioning Procedures	26
3	1	Tempo	orary Monitoring Well Installation2	28
	3.1	Intro	duction	28
	3.2	Data	Limitation	28
	3.3	Tem	porary Well Materials2	28
	3.4	Тетр	porary Monitoring Well Borehole Construction	29

	Design and Installation of Monitoring Wells
	SESDGUID-101-R2
	Effective Date: January 16, 2018
3.5 Te	mporary Monitoring Well Types
3.5.1	No Filter Pack
3.5.2	Inner Filter Pack
3.5.3	Traditional Filter Pack
3.5.4	Double Filter Pack
3.5.5	Well-in-a-Well
3.6 De	commissioning
4 Dire	ct-Push Technology in Groundwater Investigations
4.1	Screen Point Samplers
4.1.1	Special Considerations for Screen Point Samplers
4.2	Groundwater Profiling
4.3	Small-Diameter Well Installation
1 General Information

1.1 Purpose

This document describes general and specific procedures, methods and considerations to be used and observed when designing and installing permanent and temporary groundwater monitoring wells to be used for collection of groundwater samples.

1.2 Scope/Application

The procedures contained in this document are to be used by field personnel when designing, constructing and installing groundwater monitoring wells. On the occasion that SESD field personnel determine that any of the procedures described in this section are either inappropriate, inadequate or impractical and that another procedure must be used for any aspect of the design, construction and/or installation of a groundwater monitoring well, the variant procedure will be documented in the field log book, along with a description of the circumstances requiring its use. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

1.3 Documentation/Verification

This procedure was prepared by persons deemed technically competent by SESD management, based on their knowledge, skills and abilities and has been tested in practice and reviewed in print by a subject matter expert. The official copy of this procedure resides on the SESD local area network (LAN). The Document Control Coordinator is responsible for ensuring the most recent version of the procedure is placed on the LAN and for maintaining records of review conducted prior to its issuance.

1.4 References

USEPA Region 4 Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM), November 2001

USEPA. Safety, Health and Environmental Management Program Procedures and Policy Manual. Science and Ecosystem Support Division, Region 4, Athens, GA, Most Recent Version

SESD Operating Procedure for Field Sampling Quality Control, SESDPROC-011, Most Recent Version

SESD Operating Procedure for Field Equipment Cleaning and Decontamination, SESDPROC-205, Most Recent Version

SESD Operating Procedure for Logbooks, SESDPROC-010, Most Recent Version

SESD Operating Procedure for Groundwater Sampling, SESDPROC-301, Most Recent Version

SESD Operating Procedure for Management of Investigation Derived Waste, SESDPROC-202, Most Recent Version

EPA/540/S-95/503, Nonaqueous Phase Liquids Compatibility with Materials Used in Well Construction, Sampling, and Remediation

ASTM standard D5092, Design and Installation of Ground Water Monitoring Wells in Aquifers

1.5 General Precautions

1.5.1 Safety

Proper safety precautions must be observed when constructing and installing groundwater monitoring wells. Refer to the SESD Safety, Health and Environmental Management Program Procedures and Policy (SHEMP) Manual (Most Recent Version) and any pertinent site-specific Health and Safety Plans (HASPs) for guidelines on safety precautions. These guidelines should be used to complement the judgment of an experienced professional. When using this procedure, minimize exposure to potential health hazards through the use of protective clothing, eye wear and gloves. Address chemicals that pose specific toxicity or safety concerns and follow any other relevant requirements, as appropriate. Section 2.6, Safety Procedures for Drilling Activities, contains detailed and specific safety guidelines that must be followed by Branch personnel when conducting activities related to monitoring well construction and installation.

1.5.2 Procedural Precautions

The following precautions should be considered when constructing and installing groundwater monitoring wells.

- Special care must be taken to minimize or prevent inadvertent crosscontamination between borehole locations. Equipment, tools and well materials must be cleaned and/or decontaminated according to procedures found in SESD Operating Procedure for Field Equipment Cleaning and Decontamination (SESDPROC-205).
- All field activities are documented in a bound logbook according to the procedures found in SESD Operating Procedure for Logbooks (SESDPROC-010).

2 Permanent Monitoring Well Design Considerations

2.1 General

The design and installation of permanent monitoring wells involves drilling into various types of geologic formations that exhibit varying subsurface conditions. Designing and installing permanent monitoring wells in these geologic environments may require several different drilling methods and installation procedures. The selection of drilling methods and installation procedures should be based on field data collected during a hydrogeologic site investigation and/or a search of existing data. Each permanent monitoring well should be designed and installed to function properly throughout the duration of the monitoring program. When designing monitoring wells, the following should be considered:

- Short-and long-term objectives;
- Purpose of the well(s);
- Probable duration of the monitoring program;
- Contaminants likely to be monitored;
- Surface and subsurface geologic conditions;
- Properties of the aquifer(s) to be monitored;
- Well screen placement;
- General site conditions; and
- Potential site health and safety hazards.

In designing permanent monitoring wells, the most reliable, obtainable data should be utilized. Once the data have been assembled and the well design(s) completed, a drilling method(s) must be selected. The preferred drilling methods for installing monitoring wells are those that temporarily case the borehole during drilling and the construction of the well, e.g. hollow-stem augers and sonic methods. However, site conditions or project criteria may not allow using these methods. When this occurs, alternate methods should be selected that will achieve the project objectives. The following discussion of methods and procedures for designing and installing monitoring wells will cover the different aspects of selecting materials and methods, drilling boreholes, and installing monitoring devices.

2.2 Drilling Methods

The following drilling methods may be used to install environmental monitoring wells or collect samples under various subsurface conditions. In all cases the preferred methods are those that case the hole during drilling, i.e. Hollow Stem Augers (HSA) and sonic methods using an override system. Other methods may be used where specific subsurface or project criteria dictate.

2.2.1 Hollow Stem Auger (HSA)

This type of auger consists of a hollow, steel stem or shaft with a continuous, spiraled steel flight, welded onto the exterior. A hollow auger bit, generally with

carbide teeth, disturbs soil material when rotated, whereupon the spiral flights transport the cuttings to the surface. This method is best suited in soils that have a tendency to collapse when disturbed. A monitoring well can be installed inside of hollow-stem augers with little or no concern for the caving potential of the soils. If caving sands exist during monitoring well installations, a drilling rig must be used that has enough power to extract the augers from the borehole without having to rotate them. A bottom plug, trap door, or pilot bit assembly can be used at the bottom of the augers to keep out most of the soils and/or water that have a tendency to enter the bottom of the augers during drilling. Potable water (analyzed for contaminants of concern) may be poured into the augers during drilling to equalize pressure so that the inflow of formation materials will be held to a minimum. Water-tight center bits are not acceptable because they create suction when extracted from the augers. This suction forces or pulls cuttings and formation materials into the augers, defeating the purpose of the center plug. Augering without a center plug or pilot bit assembly is permitted, provided that the soil plug, formed in the bottom of the augers, is removed before sampling or installing well casings. Removing the soil plug from the augers can be accomplished by drilling and washing out the plug using a rotary bit, or augering out the plug with a solidstem auger bit sized to fit inside the hollow-stem auger. Bottom plugs can be used where no soil sampling is conducted during the drilling process. The bottom plug is wedged into the bottom of the auger bit and is knocked out at depth with drill pipe or the weight of the casing and screen assembly. The plug material should be compatible with the screen and casing materials. The use of wood bottom plugs is not acceptable. The type of bottom plug, trap door, or pilot bit assembly proposed for the drilling activity should be approved by a senior field geologist prior to drilling operations. Boreholes can be augered to depths of 150 feet or more (depending on the auger size), but generally boreholes are augered to depths less than 100 feet.

2.2.2 Solid Stem Auger

This type of auger consists of a sealed hollow or solid stem or shaft with a continuous spiraled steel flight welded on the outside of the stem. An auger bit connected to the bottom disturbs soil material when rotated and the helical flights transport cuttings to the surface. At the desired depth the entire auger string is removed to gain access to the bottom of the borehole. This auger method is used in cohesive and semi-cohesive soils that do not have a tendency to collapse when disturbed. Boreholes can be augered to depths of 200 feet or more (depending on the auger size), but generally boreholes are augered to depths less than 100 feet.

Both of the previously discussed auger methods can be used in unconsolidated soils and semi-consolidated (weathered rock) soils, but not in competent rock. Each method can be employed without introducing foreign materials into the borehole such as water and drilling fluids, minimizing the potential for cross contamination. Minimizing the risk of cross contamination is one of the most important factors to consider when selecting the appropriate drilling method(s) for a project.

2.2.3 Sonic Methods

These methods generally alternately advance concentric hollow drill stems using rotation in conjunction with axial vibration of the drill stem. After each stage of drill stem advancement, the inner string is removed with a core of drill cuttings while the outer 'override' string remains to hold the borehole open. The cuttings can be removed nearly intact from the inner casing for examination of the stratigraphy prior to sampling or disposal. Because there are no auger flights to increase the borehole diameter, the quantity of cuttings removed from the hole is minimized as compared to hollow stem augering. With moderate rotation, smearing of the formation materials on the borehole walls is reduced as well. This drilling method is useful in a variety of materials, from flowing sands to heavily consolidated or indurated formations.

In flowing sands, the drill casings can be filled and/or pressurized with potable water to prevent excess entry of formation materials into the drill string. The same QA/QC requirements for sampling of material introduced to the borehole apply as in other drilling methods. Because the amount of water introduced into the borehole can be significant, an approximation of the water used in the drilling process should be logged for use in estimating appropriate well development withdrawal.

Sonic drilling allows a larger diameter temporary casing to be set into a confining layer while drilling proceeds into deeper aquifers. This temporary casing is then removed during the grouting operation. In many cases this will be acceptable technique. However, the level of contamination in the upper aquifer, the importance of the lower aquifers for drinking water uses, the permeability and continuity of the confining layer, and state regulations should be taken into account when specifying this practice as opposed to permanent outer casing placed into the confining unit. Note that when using the temporary casing practice, it is critical that grout be mixed and placed properly as specified elsewhere in this section.

Because the total borehole diameter in sonic drilling is only incrementally larger than the inner casing diameter, particular care should be taken that the well casing is placed in the center of the drill stem while placing the filter pack. Centralizers should be used in most cases to facilitate centering, particularly in the case of deep wells with PVC casing.

2.2.4 Rotary Methods

These methods consist of a drill pipe or drill stem coupled to a drilling bit that rotates and cuts through the soils. The cuttings produced from the rotation of the drilling bit are transported to the surface by drilling fluids which generally consist of water, drilling mud, or air. The water, drilling mud, or air are forced down through the drill pipe, and out through the bottom of the drilling bit. The cuttings are then lifted to the surface between the borehole wall and the drill pipe, (or within a concentric drill stem in reverse rotary). Except in the case of air rotary, the drilling fluid provides a hydrostatic pressure that reduces or prevents borehole collapse. When considering this method, it is important to evaluate the potential for contamination when fluids and/or air are introduced into the borehole.

Due to the introduction of the various circulating fluids, the use of rotary methods requires that the potential for contamination by these fluids be evaluated. Water and mud rotary methods present the possibility of trace contamination of halogenated compounds when municipal water supplies are used as a potable water source. Air rotary drilling can introduce contamination through the use of lubricants or entrained material in the air stream. Unless contaminated formations are cased off, the circulation of drilling fluids presents a danger of cross contamination between formations. In any of the rotary (or sonic) methods, care must be exercised in the selection and use of compounds to prevent galling of drill stem threads.

2.2.4.1 Water Rotary

When using water rotary, potable water (that has been analyzed for contaminants of concern) should be used. If potable water (or a higherquality water) is not available on-site, then potable water will have to be transported to the site or an alternative drilling method will have to be selected. Water does not clog the formation materials, but the suspended drilling fines can be carried into the formation, resulting in a very difficult to develop well. This method is most appropriate for setting isolation casing.

2.2.4.2 Air Rotary

Air rotary drilling uses air as a drilling fluid to entrain cuttings and carry them to the surface. High air velocities, and consequently large air volumes and compressor horsepower are required. "Down-the-hole" (DTH) percussion hammers driven by the air stream can be used with this method to rapidly penetrate bedrock materials. Where a casing through unconsolidated material is required to prevent borehole collapse, it can be driven in conjunction with advancement of the drill stem.

When using air rotary drilling in any zone of potential contamination, the cuttings exiting the borehole must be controlled. This can be done using the dual-tube reverse circulation method where cuttings are carried to the surface inside dual-wall drill pipe and separated with a cyclone separator. An air diverter with hose or pipe carrying cuttings to a waste container is also an acceptable alternative. Allowing cuttings to blow uncontrolled from the borehole is not acceptable.

When using air rotary, the issue of contaminants being introduced into the borehole by the air stream must be addressed. Screw compressor systems

should have a coalescing filter system in good working order to capture excess entrained compressor oils. The lubricant to be used with DTH hammers as well as thread lubricants to be used on drill stem should be evaluated for their potential impact on analytical samples.

2.2.4.3 Mud Rotary

Mud rotary is an undesirable drilling method because contamination can be introduced into the borehole from the constituents in the drilling mud, cross contamination can occur along the borehole column, and it is difficult to remove the drilling mud from the borehole after drilling and during well development. The drilling mud can also carry contaminates from a contaminated zone to an uncontaminated zone thereby cross-contaminating the borehole. If mud rotary is selected, only potable water and pure (no additives) bentonite drilling muds should be used. All materials used should have adequate documentation as to manufacturer's recommendations and product constituents. QA/QC samples of drilling muds and potable water should be sampled at a point of discharge from the circulation system to assure that pumps and piping systems are not contributing crosscontamination from previous use.

2.2.5 Direct Push Technology

Direct Push Technology (DPT) uses hollow drive rods either driven percussively or by large forces from a rig weighted or anchored to the ground. Percussive rigs are used for general soil and groundwater investigations and the push only rigs are generally used for cone penetrometer testing (CPT). DPT does not bring cuttings to the surface but instead compresses them into the borehole walls. A variety of tool systems are available to perform soil sampling, groundwater sampling, well installation, and to profile contamination with in situ systems. The light tooling, small crews required, and reduced IDW can make DPT operations an economical investigation tool. Although significant depths have been explored with DPT, investigations are generally limited to 100 ft (and more practically 50 ft.) in unconsolidated materials.

2.2.6 Other Methods

Other methods such as the cable-tool method, jetting method, and boring (bucket auger) method are available. If these and/or other methods are selected for monitoring well installations, they should be approved by a senior field geologist before field work is initiated.

2.3 Borehole Construction

2.3.1 Annular Space

The borehole or hollow stem auger should be of sufficient diameter so that well construction can proceed without major difficulties. For open boreholes, the annular space should be approximately 2" to allow the uniform deposition of well materials around the screen and riser, and to allow the passage of tremie pipes and well materials without unduly disturbing the borehole wall. For example, a 2" nominal diameter (nom.) casing would require a 6" inside diameter (ID) borehole.

In hollow stem augers and sonic method drill casing, the ID should be of sufficient size to allow the passage of the tremie pipe to be used for well grout placement, as well as free passage of filter sands or bentonite pellets dropped through the auger or casing. In general, 4-1/4" ID should be the minimum size used for placement of 2" nom. casing and 8-1/4" ID for 4" nom. casing. Larger augers should be used where installation difficulties due to geologic conditions or greater depths are anticipated, e.g. larger augers might be required to place a bentonite pellet seal through a long water column.

2.3.2 Over-drilling the Borehole

Sometimes it is necessary to over-drill the borehole in anticipation of material entering the augers during center bit removal or knocking out of the bottom plug. Normally, 3 to 5 feet is sufficient for over-drilling. The borehole can also be over-drilled to allow for an extra space or a "sump" area below the well screen. This "sump" area provides a space to attach a 5 or 10 foot section of well casing to the bottom of the well screen. The extra space or "sump" below the well screen serves as a catch basin or storage area for sediment that flows into the well and drops out of suspension. These "sumps" are added to the well screens when the wells are screened in aquifers that are naturally turbid and will not yield clear formation water (free of visible sediment) even after extensive development. The sediment can then be periodically pumped out of the "sump" preventing the well screen from clogging or "silting up". If the borehole is inadvertently drilled deeper than desired, it can be backfilled to the design depth with bentonite pellets, chips, or the filter sand that is to be used for the filter pack.

2.3.3 Filter Pack Placement

When placing the filter pack into the borehole, a minimum of 6-inches of the filter pack material should be placed under the bottom of the well screen to provide a firm base. Also, the filter pack should extend a minimum of 2-feet above the top of the well screen to allow for settling and to isolate the screened interval from the grouting material. In open boreholes, the filter pack should be placed by the tremie or positive displacement method. Placing the filter pack by pouring the sand into an open drill stem is acceptable with the use hollow stem augers, and other methods where the borehole is temporarily cased down to the filter pack.

2.3.4 Filter Pack Seal – Bentonite Pellet Seal (Plug)

Bentonite pellets consist of ground, dried bentonite compacted into pellets available in several sizes. Bentonite pellets are compressed to a bulk density of 70-80 lbs/ft³ and hydrate to a 30% min. solids material. Where neat cement grouts are to be used, the placement of a bentonite pellet seal above the filter pack is mandatory to prevent the possibility of grout infiltration into the screened interval prior to setting. Bentonite chips or other sealing products should not be substituted in this application. Where bentonite grouts are to be used, the placement of a bentonite pellet seal is optional, but desirable.

Since bentonite pellets begin hydrating rapidly, they can be very difficult to place properly. They are generally placed by pouring slowly into open boreholes, hollow stem augers or sonic drill pipe. In some cases, pellets are placed by tremie pipe and flushed into place with potable water. A tamper can be used to ensure that the material is being placed properly and to rapidly break up any pellet bridging that occurs.

Pellet seals should be designed for a two-foot thickness of dry pellets above the filter pack. Hydration may extend the height of the seal. Where neat cement grouts are to be used, the pellets should be hydrated for eight hours, or the manufacturer's recommended hydration time, whichever is greater. Where the water table is temporarily below the pellet seal, potable (or higher quality) water should be added repeatedly to hydrate the pellets prior to grouting.

2.3.5 Grouting the Annular Space

The annular space between the casing and the borehole wall should be filled with either a 30% solids bentonite grout, a neat cement grout, or a cement/bentonite grout. Each type of grout selected should be evaluated as to its intended use and integrity. Bentonite grouts are preferred unless the application dictates the use of another material.

Bentonite grout shall be a 30% solids pure bentonite grout. Drilling muds are not acceptable for grouting. The grout should be placed into the borehole, by the tremie method, from the top of the bentonite seal to within 2-feet of the ground surface or below the frost line, whichever is the greater depth. The bentonite pellet seal or filter pack should not be disturbed during grout placement, either by the use of a side discharge port on the tremie tube, or by maintaining clearance between the bottom of the tremie tube and the bentonite seal or filter pack. The grout should be allowed to cure for a minimum of 24 hours before the concrete surface pad is installed. The preferred method of achieving proper solids content is by measurement of ingredients per the manufacturer's specifications during mixing with a final check by grout balance after mixing. Bentonite grouts should have a

minimum density of 10 lbs/gal to ensure proper gelling and low permeability. The density of the first batch of grout should be measured while mixing to verify proper measurement of ingredients. In addition, the grouting operation should not cease until the bentonite grout flowing out of the borehole has a minimum density of 10 lbs/gal. Estimating the grout density is not acceptable.

Cement grouts are generally dictated where a high level of dissolved solids or a particular dissolved constituent would prevent proper gelling of a bentonite grout. Neat cement grouts (cement without additives) should be mixed using 6 gallons of water per 94-lb bag of Type 1 Portland cement to a density of 15lbs/gal. The addition of bentonite (5 to 10 percent) to the cement grout can be used to delay the "setting" time and may not be needed in all applications. The specific mixtures and other types of cement and/or grout proposed should be evaluated on a case by case basis by a senior field geologist.

2.3.6 Above Ground Riser Pipe and Outer Casing

The well casing, when installed and grouted, should extend above the ground surface a minimum of 2.5 feet. A vent hole should be drilled into the top of the well casing cap to permit pressure equalization, if applicable. An outer protective casing should be installed into the borehole after the annular grout has cured for at least 24 hours. The outer protective casing should be of steel construction with a hinged, locking cap. Generally, outer protective casings used over 2-inch well casings are 4 inches square by 5 feet long. Similarly, protective casings used over 4-inch well casings are 6 inches square and 5 feet long. Other types of protective casing including those constructed of pipe are also acceptable. All protective casings should have sufficient clearance around the inner well casings, so that the outer protective casings will not come into contact with the inner well casings after installation. The protective casings should have a weep hole to allow drainage of accumulated rain or spilled purge water. The weep hole should be approximately 1/4-inch in diameter and drilled into the protective casings just above the top of the concrete surface pad to prevent water from standing inside of the protective casings. Protective casings made of aluminum or other soft metals are normally not acceptable because they are not strong enough to resist tampering. Aluminum protective casing may be used in very corrosive environments such as coastal areas.

Prior to installing the protective casing, the bentonite grout in the borehole annulus is excavated to a depth of approximately two feet. The protective casing is installed by pouring concrete into the borehole on top of the grout. The protective casing is then pushed into the wet concrete and borehole a minimum of 2 feet. Extra concrete may be needed to fill the inside of the protective casing so that the level of the concrete inside of the protective casing is at or above the level of the surface pad. In areas where frost heave of the surface pad is possible, the protective casing should first be pressed into the top surface of the bentonite grout seal and concrete poured around the protective casing. A granular material such as sand or gravel can then be used to fill the space between the riser and protective casing and riser will also facilitate the future conversion of the well to a flush-mount finish, if required.

The protective casing should extend above the ground surface to a height so that the top of the inner well casing is exposed when the protective casing is opened. At each site, all locks on the outer protective casings should be keyed alike.

2.3.7 Concrete Surface Pad

A concrete surface pad should be installed around each well at the same time as the outer protective casing is being installed. The surface pad should be formed around the well casing. Concrete should be placed into the pad forms and into the borehole (on top of the grout) in one operation making a contiguous unit. The size of the concrete surface pad is dependent on the well casing size. If the well casing is 2 inches in diameter, the pad should be 3 feet x 3 feet x 4 inches. If the well casing is 4 inches in diameter, the pad should be 4 feet x 4 feet x 6 inches. Round concrete surface pads are also acceptable. The finished pad should be slightly sloped so that drainage will flow away from the protective casing and off of the pad. A minimum of one inch of the finished pad should be below grade to prevent washing and undermining by soil erosion.

2.3.8 Surface Protection – Bumper Guards

If the monitoring wells are located in a high traffic area, a minimum of three bumper guards consisting of steel pipes 3 to 4 inches in diameter and a minimum 5-foot length should be installed. These bumper guards should be installed to a minimum depth of 2 feet below the ground surface in a concrete footing and extend a minimum of 3 feet above ground surface. Concrete should also be placed into the steel pipe to provide additional strength. Substantial steel rails and/or other steel materials can be used in place of steel pipe. Welding bars between the bumper posts can provide additional strength and protection in high traffic areas, but the protective bumpers should not be connected to the protective casing.

2.4 Construction Techniques

2.4.1 Well Installation

The borehole should be bored, drilled, or augered as close to vertical as possible, and checked with a plumb bob or level. Deviation from plumb should be within 1° per 50ft of depth. Slanted boreholes are undesirable and should be noted in the boring logs and final construction logs. The depth and volume of the borehole, including the over-drilling if applicable, should have been calculated and the appropriate materials procured prior to drilling activities.

The well casings should be secured to the well screen by flush-jointed threads and placed into the borehole and plumbed by the use of centralizers and/or a plumb bob and level. Another method of placing the well screen and casings into the borehole and plumbing them at the same time is to suspend the string of well screen and casings in the borehole by means of a hoist on the drill rig. This wireline method is especially useful if the borehole is deep and a long string of well screen and casings have to be set and plumbed.

No lubricating oils or grease should be used on casing threads. No glue of any type should be used to secure casing joints. Viton® O-rings can be used where the joints are designed for same.

Before the well screen and casings are placed on the bottom of the borehole, at least 6 inches of filter material should be placed at the bottom of the borehole to serve as a firm footing. The string of well screen and casings should then be placed into the borehole and plumbed. Centralizers can be used to plumb a well, but centralizers should be placed so that the placement of the filter pack, bentonite pellet seal, and annular grout will not be hindered. Centralizers placed in the wrong locations can cause bridging during material placement. Monitoring wells less than 50 feet deep generally do not need centralizers. If centralizers are used they should be placed below the well screen and above the bentonite pellet seal. The specific placement intervals should be decided based on site conditions.

When installing the well screen and casings through hollow-stem augers, the augers should be slowly extracted as the filter pack, bentonite pellet seal, and grout are tremied and/or poured into place. The gradual extraction of the augers will allow the materials being placed in the augers to flow out of the bottom of the augers into the borehole. If the augers are not gradually extracted, the materials (sand, pellets, etc.) will accumulate at the bottom of the augers causing potential bridging problems.

After the string of well screen and casing is plumb, the filter pack material should then be placed around the well screen to the designated depth. With cased drilling methods, the sand should be poured into the casing or augers until the lower portion is filled. The casing or augers are then withdrawn, allowing the sand to flow into the evacuated space. With hollow stem augers, sand should always fill the augers 6-12 inches, maintained by pouring the sand while checking the level with a weighted tag line. The filter pack sand in open boreholes should be installed by tremie methods, using water to wash the sand through the pipe to the point of placement.

After the filter pack has been installed, the bentonite pellet seal (if used) should be placed directly on top of the filter pack to an unhydrated thickness of two feet. When installing the seal for use with cement grouts, the bentonite pellet seal should be allowed to hydrate a minimum of eight hours or the manufacturer's recommended hydration time, whichever is longer.

After the pellet seal has hydrated for the specified time, the grout should then be pumped by the tremie method into the annular space around the casings. The grout should be allowed to set for a minimum of 24 hours before the surface pad and protective casing are installed.

After the surface pad and protective casing are installed, bumper guards should be installed (if needed). The bumper guards should be placed around the concrete surface pad in a configuration that provides maximum protection to the well. Each piece of steel pipe or approved material should be installed into an 8-to 10-inch diameter hole, to a minimum depth of 2 feet below ground surface, and filled with concrete. As previously stated, the bumper guard should extend above the ground surface a minimum of 3 feet. The total length of each bumper guard should be a minimum of 5 feet.

After the wells have been installed, the outer protective casing should be painted with a highly visible paint. The wells should be permanently marked with the well number, date installed, site name, elevation, etc., either on the cover or an appropriate place that will not be easily damaged and/or vandalized.

If the monitoring wells are installed in a high traffic area such as a parking lot, in a residential yard, or along the side of a road it may be desirable to finish the wells to the ground surface and install water-tight flush mounted traffic and/or man-hole covers. Flush mounted traffic and man-hole covers are designed to extend from the ground surface down into the concrete plug around the well casing. Although flush mounted covers may vary in design, they should have seals that make the unit water-tight when closed and secured. The flush mounted covers should be installed slightly above grade to minimize standing water and promote runoff. Permanent identification markings should be placed on the covers or in the concrete plug around the cover. Expansive sealing plugs should be used to cap the well riser to prevent infiltration of any water that might enter the flush cover.

2.4.2 Double-Cased Wells

Double-cased wells should be constructed when there is reason to believe that interconnection of two aquifers by well construction may cause cross-contamination or when flowing sands make it impossible to install a monitoring well using conventional methods. A highly contaminated surface soil zone may also be cased off so that drilling may continue below the casing with reduced danger of cross contamination. A pilot borehole should be bored through the overburden and/or the contaminated zone into the clay confining layer or bedrock. An outer casing (sometimes called surface or pilot casings) should then be placed into the borehole and sealed with grout. The borehole and outer casing should extend into tight clay a minimum of two feet and into competent bedrock a minimum of 1 foot. The total depths into the clay or bedrock will vary, depending on the plasticity of the clay and the extent of weathering and/or fracturing of the bedrock. The final depths should be approved by a senior field geologist. The size of the outer casing should be of sufficient inside diameter to contain the inner casing, and the 2-inch minimum annular space. In addition, the borehole should be of sufficient size to contain the outer casing and the 2-inch minimum outer annular space, if applicable.

The outer casing should be grouted by the tremie, displacement, grout shoe, or Halliburton method from the bottom to the ground surface. The grout should be pumped into the annular space between the outer casing and the borehole wall. A minimum of 24 hours should be allowed for the grout plug (seal) to cure before attempting to drill through it. The grout mixture used to seal the outer annular space should be either a neat cement, cement/bentonite, cement/sand, or a 30% solids

bentonite grout. However, the seal or plug at the bottom of the borehole and outer casing should consist of a Type I portland cement/bentonite or cement/sand mixture. The use of a pure bentonite grout for a bottom plug or seal is not acceptable, because the bentonite grout cures to a gel-like material, and is not rigid enough to withstand the stresses of drilling. When drilling through the seal, care should be taken to avoid cracking, shattering, or washing out the seal. If caving conditions exist so that the outer casing cannot be sufficiently sealed by grouting, the outer casing should be driven into place and a grout seal placed in the bottom of the casing.

2.4.2.1 Bedrock Wells

The installation of monitoring wells into bedrock can be accomplished in two ways:

1. The first method is to drill or bore a pilot borehole through the soil overburden into the bedrock. An outer casing is then installed into the borehole by setting it into the bedrock, and grouting it into place as described in the previous section. After the grout has set, the borehole can then be advanced through the grout seal into the bedrock. The preferred method of advancing the borehole into the bedrock is rock coring. Rock coring makes a smooth, round hole through the seal and into the bedrock without cracking and/or shattering the seal. Roller cone bits are used in soft bedrock, but extreme caution should be taken when using a roller cone bit to advance through the grout seal in the bottom of the borehole because excessive water and "down" pressure can cause cracking, eroding (washing), and/or shattering of the seal. Low volume air hammers may be used to advance the borehole, but they have a tendency to shatter the seal because of the hammering action. If the structural integrity of the grout seal is in question, a pressure test can be utilized to check for leaks. A visual test can also be made by examining the cement/concrete core that is collected when the seal is cored with a diamond coring bit. If the seal leaks (detected by pressure testing) and/ or the core is cracked or shattered, or if no core is recovered because of washing, excessive down pressure, etc., the seal is not acceptable. The concern over the structural integrity of the grout seal applies to all double cased wells. Any proposed method of double casing and/or seal testing will be evaluated on its own merits, and will have to be approved by a senior field geologist before and during drilling activities, if applicable. When the drilling is complete, the finished well will consist of an open borehole from the ground surface to the bottom of the well. There is no inner casing, and the outer surface casing, installed down into bedrock, extends above the ground surface, and also serves as the outer protective casing. If the protective casing becomes cracked or is sheared off at the ground surface, the well is open to direct contamination from the ground surface and will have to be repaired immediately or abandoned. Another limitation to the open rock well is that the entire bedrock interval serves as the monitoring zone. In this situation, it is very difficult or even impossible to monitor a specific zone, because the contaminants being monitored could be diluted to the extent of being non-detectable. The installation of open bedrock wells is generally not acceptable in the Superfund and RCRA programs, because of the uncontrolled monitoring intervals. However, some site conditions might exist, especially in cavernous limestone areas (karst topography) or in areas of highly fractured bedrock, where the installation of the filter pack and its structural integrity are questionable. Under these conditions the design of an open bedrock well may be warranted.

2. The second method of installing a monitoring well into bedrock is to install the outer surface casing and drill the borehole (by an approved method) into bedrock, and then install an inner casing and well screen with the filter pack, bentonite seal, and annular grout. The well is completed with a surface protective casing and concrete pad. This well installation method gives the flexibility of isolating the monitoring zone(s) and minimizing inter-aquifer flow. In addition, it gives structural integrity to the well, especially in unstable areas (steeply dipping shales, etc.) where the bedrock has a tendency to shift or move when disturbed. Omitting the filter pack around the well screen is a general practice in some open rock borehole installations, especially in drinking water and irrigation wells. However, without the filter pack to protect the screened interval, sediment particles from the well installation and/or from the monitoring zone could clog the well screen and/or fill the screened portion of the well rendering it inoperable. Also, the filter pack serves as a barrier between the bentonite seal and the screened interval. Rubber inflatable packers have been used to place the bentonite seal when the filter pack is omitted, but the packers have to remain in the well permanently and, over a period of time, will decompose and possibly contribute contaminants to the monitoring zone.

2.5 Well Construction Materials

2.5.1 Introduction

Well construction materials are chosen based on the goals and objectives of the proposed monitoring program and the geologic conditions at the site(s). In this section, the different types of available materials will be discussed.

2.5.2 Well Screen and Casing Materials

When selecting the materials for well construction, the prime concern should be to select materials that will not contribute foreign constituents, or remove contaminants of concern from the ground water. If the monitoring program is designed to analyze for organic compounds, stainless steel materials are the preferred choice. If the monitoring program calls for the analyses of only inorganic compounds or the contaminants or formation are highly corrosive, then rigid PVC materials meeting National Sanitary Foundation (NSF) Standard 14 type WC (Well Casing) are acceptable. PVC materials may be acceptable for monitoring identified organic compounds in a soluble aqueous phase where incompatibilities are known to not exist. EPA document EPA/540/S-95/503, Nonaqueous Phase Liquids Compatibility with Materials Used in Well Construction, Sampling, and Remediation should be used for guidance in this area and in the use of PVC with non-aqueous phase liquids (NAPLs). Another concern is to select materials that will be rugged enough to endure the entire monitoring period. Site conditions will generally dictate the type of materials that can be used. A preliminary field investigation should be conducted to determine the geologic conditions, so that the most suitable materials can be selected. The best grade or highest quality material for that particular application should be selected. Each manufacturer can supply the qualitative data for each grade of material that is being considered. All materials selected for monitoring well installation should be evaluated and approved by a senior field geologist prior to field activities.

Well screen and casing materials generally used in monitoring well construction on RCRA and Superfund sites are listed in order of preference:

- 1. Stainless Steel (304 or 316)
- 2. Rigid PVC meeting NSF Standard 14 (type WC)
- 3. Other (where applicable)

There are other materials used for well screens and casings such as black iron, carbon steel, galvanized steel, and fiberglass, but these materials are not recommended for use in long term monitoring programs at hazardous waste sites, because of their low resistance to chemical attack and potential constituent contribution to the ground water. In cases where a driven casing is used, or a high strength outer casing is needed, carbon steel may be acceptable in non-corrosive aquifers. This outer casing should have threaded connections. Welding casing is not an acceptable practice unless all relevant safety issues have been adequately addressed.

The minimum nominal casing size for most permanent monitoring wells will be 2". Where a complete program of installation, monitoring, and abandonment is being designed, smaller wells may be installed if suitable purging and sampling equipment for the smaller diameter wells can be specified and obtained. The length of well screens in permanent monitoring wells should be long enough to effectively monitor the interval or zone of interest. However, well screens designed for long term monitoring purposes should normally not be less than 5 feet in length. Well screens less than 5 feet long are generally only used in temporary monitoring wells where ground water samples are collected for screening purposes.

2.5.3 Filter Pack Materials

The filter pack materials should consist of clean, rounded to well-rounded, hard, insoluble particles of siliceous composition. The required grain-size distribution or particle sizes of the filter pack materials should be selected based upon a sieve analysis conducted on the soil samples collected from the aquifer materials and/or the formation(s) to be monitored. Filter pack materials should not be accepted unless proper documentation can be furnished as to the composition, grain-size distribution, cleaning procedure, and chemical analysis. If a data search reveals that there is enough existing data to adequately design the well screen and filter pack, then it may not be necessary to conduct a sieve analysis on the formation materials to be monitored. However, all data and design proposals will be evaluated and approved by a senior staff geologist before field activities begin.

2.5.4 Filter Pack and Well Screen Design

The majority of monitoring wells are installed in shallow ground water aquifers that consist of silts, clays, and sands in various combinations. These shallow aquifers are not generally characteristic of aquifers used for drinking water. Therefore, modifications to the procedures used for the design of water well filter packs may be required. In cases where insufficient experience exists with local or similar materials, the filter pack and well screen design should be based on the results of a sieve analysis conducted on soil samples collected from the aquifer or the formation(s) that will be monitored.

In formations consisting primarily of fines (silts and clays), the procedures for water well screen design may result in requirements for filter packs and screen slot sizes that are not available. In those cases the selection of 0.010" screen slots with a 20-40 sand filter pack, or 0.005" screen slots with 100 sand filter pack for very fine formations, will be acceptable practice. Table 6.6.1 provides size specifications for the selection of sand packs for fine formation materials. ASTM standard D5092, *Design and Installation of Ground Water Monitoring Wells in Aquifers*, may be consulted for further guidance on specifications for sand appropriate for these applications.

Screen Opening (in)	Sand Pack Mesh Name	1% Passing Size (d-1) (in)	10% Passing Size (d-10) (in)	30% Passing Size (d-30) (in)	Derived 60% Passing Size (d-60) (in)	Range for Uniformity Coefficient
0.005-0.006	100	.0035 - .0047	.0055 - .0067	.0067 - .0083	.0085 - .0134	1.3 - 2.0
0.010"	20-40	.0098 - .0138	.0157 - .0197	.01970236	.0200315	1.1 - 1.6

Table 6.6.1 Sand Pack Specifications

The following procedure should be used in coarser grained formations:

The data from the sieve analysis are plotted on a grain-size distribution graph, and a grain-size distribution curve is generated. From this grain-size distribution curve, the uniformity coefficient (Cu) of the aquifer material is determined. The Cu is the ratio of the 60 percent finer material (d60) to the 10 percent finer material (d10)

$$Cu = (d60/d10)$$

The Cu ratio is a way of grading or rating the uniformity of grain size. For example, a Cu of unity means that the individual grain sizes of the material are nearly all the same, while a Cu with a large number indicates a large range of particle sizes. As a general rule, a Cu of 2.5 or less should be used in designing the filter pack and well screen.

Before designing the filter pack and well screen, the following factors should be considered:

- 1. Select the well screen slot openings that will retain 90 percent of the filter pack material.
- 2. The filter pack material should be of the size that minimizes head losses through the pack and also prevents excessive sediment (sand, silt, clay) movement into the well.
- 3. A filter material of varying grain sizes is not acceptable because the smaller particles fill the spaces between the larger particles thereby reducing the void spaces and increasing resistance to flow. Therefore, filter material of the same grain size and well-rounded is preferred.

4. The filter pack design is based on the gradation of the finest aquifer materials being analyzed.

Steps to design a filter pack in aquifers:

- 1. Construct a grain-size distribution curve, on a grain-size distribution graph, from the sieve analysis of the aquifer materials. The filter pack design (as stated above) is based on the gradation of the finest aquifer materials.
- 2. Multiply the d30 size from the grain-size distribution graph by a factor of four to nine (Pack-Aquifer ratio). A factor of four is used if the formation is fine-grained and uniform (Cu is less than 3), six if it is coarse-grained and non-uniform, and up to nine if it is highly non-uniform and contains silt. Head losses through filter packs increase as the Pack-Aquifer (P-A) ratios decrease. In order to design a fairly stable filter pack with a minimum head loss, the d30 size should be multiplied by a factor of four.
- 3. Plot the point from step 2 on the d30 abscissa of a grain-size distribution graph and draw a smooth curve with a uniformity coefficient of approximately 2.5.
- 4. A curve for the permissible limits of the filter pack is drawn plus or minus 8 per cent of the desired curve with the Cu of 2.5.
- 5. Select the slot openings for the well screen that will retain 90 per cent or more of the filter pack material.

The specific steps and procedures for sieve analysis and filter pack design can be found in soil mechanics, ground water, and water well design books. The staff geologists and/or engineers should be responsible for the correct design of the monitoring wells and should be able to perform the design procedures.

2.6 Safety Procedures for Drilling Activities

A site health and safety plan should be developed and approved by the Branch Safety Officer or designee prior to any drilling activities, and should be followed during all drilling activities. The driller or designated safety person should be responsible for the safety of the drilling team performing the drilling activities. All personnel conducting drilling activities should be qualified in proper drilling and safety procedures. Before any drilling activity is initiated, utilities should be marked or cleared by the appropriate state or municipal utility protection organization. In developed areas, additional measures should be taken to locate utilities not covered by the utility protection program. Before operating the drill rig, a pilot hole should be dug (with hand equipment) to a depth of three feet to check for undetected utilities or buried objects. Proceed with caution until a safe depth is reached where utilities normally would not be buried. The following safety requirements should be adhered to while performing drilling activities:

- 1. All drilling personnel should wear safety hats, safety glasses, and steel toed boots. Ear plugs are required and will be provided by the safety officer or driller.
- 2. Work gloves (cotton, leather, etc.) should be worn when working around or while handling drilling equipment.
- 3. All personnel directly involved with the drilling rig(s) should know where the kill switch(s) is located in case of emergencies.
- 4. All personnel should stay clear of the drill rods or augers while in motion, and should not grab or attempt to attach a tool to the drill rods or augers until they have completely stopped rotating. Rod wipers, rather than gloves or bare hands should be used to remove mud, or other material, from drill stem as it is withdrawn from the borehole.
- 5. Do not hold drill rods or any part of the safety hammer assembly while taking standard penetration tests or while the hammer is being operated.
- 6. Do not lean against the drill rig or place hands on or near moving parts at the rear of the rig while it is operating.
- 7. Keep the drilling area clear of any excess debris, tools, or drilling equipment.
- 8. The driller will direct all drilling activities. No work on the rig or work on the drill site will be conducted outside of the driller's direction. Overall drill site activities will be in consultation with the site geologist or engineer, if present.
- 9. Each drill rig will have a first-aid kit and a fire extinguisher located on the rig in a location quickly accessible for emergencies. All drilling personnel will be familiarized with their location.
- 10. Work clothes will be firm fitting, but comfortable and free of straps, loose ends, strings etc., that might catch on some moving part of the drill rig.
- 11. Rings, watches, or other jewelry will not be worn while working around the drill rig.
- 12. The drill rig should not be operated within a minimum distance of 20 feet of overhead electrical power lines and/or buried utilities that might cause a safety hazard. In addition, the drill rig should not be operated while there is lightening in the area of the drilling site. If an electrical storm moves in during drilling activities, the area will be vacated until it is safe to return.

2.7 Well Development

A newly completed monitoring well should not be developed for at least 24 hours after the surface pad and outer protective casing are installed. This will allow sufficient time for the well materials to cure before development procedures are initiated. The main purpose of developing new monitoring wells is to remove the residual materials remaining in the wells after installation has been completed, and to try to re-establish the natural hydraulic flow

conditions of the formations which may have been disturbed by well construction, around the immediate vicinity of each well. A new monitoring well should be developed until the column of water in the well is free of visible sediment, and the pH, temperature, turbidity, and specific conductivity have stabilized. In most cases the above requirements can be satisfied; however, in some cases the pH, temperature, and specific conductivity may stabilize but the water remains turbid. In this case the well may still contain well construction materials, such as drilling mud in the form of a mud cake and/or formation soils that have not been washed out of the borehole. Excessive or thick drilling mud cannot be flushed out of a borehole with one or two well volumes of flushing. Continuous flushing over a period of several days may be necessary to complete the well development. If the well is pumped to dryness or near dryness, the water table should be allowed to sufficiently recover (to the static water level) before the next development period is initiated. Caution should be taken when using high rate pumps and/or large volume air compressors during well development because excessive high rate pumping and high air pressures can damage or destroy the well screen and filter pack. The onsite geologist should make the decision as to the development completion of each well. All field decisions should be documented in the field log book.

The following development procedures, listed in approximate increasing order of the energy applied to the formation materials, are generally used to develop wells:

- 1. Bailing
- 2. Pumping/overpumping
- 3. Surging
- 4. Backwashing ("rawhiding")
- 5. Jetting
- 6. Compressed air (with appropriate filtering): airlift pumping and air surging

These development procedures can be used, individually or in combination, in order to achieve the most effective well development. In most cases, over-pumping and surging will adequately develop the well without imparting undue forces on the formation or well materials. Because of the danger of introducing contaminants with the airstream, the possibility of entraining air in the aquifer, and the violent forces imparted to the formation, air surging is the least desired method of development and should only be used where there is a specific need for the procedure. Air-lift pumping is permissible where an eductor pipe is used and several well volumes of water are removed from the well by other pumping means after air-lift pumping. Additional time before the first sampling event should be allowed when using air development methods, particularly airlift. The selected development method(s) should be approved by a senior field geologist before any well installation activities are initiated.

Wells can require a considerable length of time to equilibrate with the aquifer after construction and development. The length of time between development and the first sampling event should be as long as possible with times from 1 to 14 days recommended. The possibility of the first sampling event's results being non-representative should always be considered.

2.8 Well Decommissioning (Abandonment)

When a decision is made to decommission (abandon) a monitoring well, the borehole should be sealed in such a manner that the well cannot act as a conduit for migration of contaminants from the ground surface to the water table or between aquifers. To properly decommission a well, the preferred method is to completely remove the well casing and screen from the borehole, clean out the borehole, and backfill with a cement or bentonite grout, neat cement, or concrete. In order to comply with state well decommissioning requirements, the appropriate state agency should be notified (if applicable) of monitoring well decommissioning. However, some state requirements are not explicit, so a technically sound well abandonment method should be designed based on the site geology, well casing materials, and general condition of the well(s).

2.8.1 Decommissioning Procedures

As previously stated, the preferred method should be to completely remove the well casing and screen from the borehole. This may be accomplished by augering with a hollow-stem auger over the well casing down to the bottom of the borehole, thereby removing the grout and filter pack materials from the hole. The well casing should then be removed from the hole with the drill rig. The clean borehole can then be backfilled with the appropriate grout material. The backfill material should be placed into the borehole from the bottom to the top by pressure grouting with the positive displacement method (tremie method). This abandonment method can be accomplished on small diameter (1-inch to 4-inch) wells without too much difficulty. With wells having 6-inch or larger diameters, the use of hollow-stem augers for casing removal is very difficult or almost impossible. Instead of trying to ream the borehole with a hollow-stem auger, it is more practical to force a drill stem with a tapered wedge assembly or a solid-stem auger into the well casing and extract it out of the borehole. Wells with little or no grouted annular space and/or sound well casings can be removed in this manner. However, old wells with badly corroded casings and/or thickly grouted annular space have a tendency to twist and/or break-off in the borehole. When this occurs, the well will have to be grouted with the remaining casing left in the borehole. The preferred method in this case should be to pressure grout the borehole by placing the tremie tube to the bottom of the well casing, which will be the well screen or the bottom sump area below the well screen. The pressurized grout will be forced out through the well screen into the filter material and up the inside of the well casing sealing holes and breaks that are present.

A PVC well casing may be more difficult to remove from the borehole than a metal casing, because of its brittleness. If the PVC well casing breaks during removal, the borehole should be cleaned out by using a drag bit or roller cone bit with the wet rotary method to grind the casing into small cuttings that will be flushed out of the borehole by water or drilling mud. Another method is to use a solid-stem auger with a carbide tooth pilot bit to grind the PVC casing into small cuttings that will be brought to the surface on the rotating flights. After the casing materials have been removed from the borehole, the borehole should be cleaned out and pressure grouted with the approved grouting materials.

Where state regulations and conditions permit, it may be permissible to grout the casing in place. This decision should be based on confidence in the original well construction practice, protection of drinking water aquifers, and anticipated future property uses. The pad should be demolished and the area around the casing excavated. The casing should be sawn off at a depth of three feet below ground surface. The screen and riser should be tremie grouted with a 30% solids bentonite grout. Pouring bentonite chips into the well will be acceptable with wells large enough for the chips to fall to the bottom (generally 4" or larger).

3 Temporary Monitoring Well Installation

3.1 Introduction

Five types of temporary monitoring well installation techniques have been demonstrated as acceptable. The type selected for a particular site is dependent upon site conditions. The project leader and site geologist should be prepared to test temporary well installations on site and select the best solution. Temporary wells are cost effective, may be installed quickly, and can provide a rapid assessment of ground water quality.

Temporary monitoring well locations are not permanently marked, nor are their elevations normally determined. Sand pack materials may or may not be used, but typically there is no bentonite seal, grout, surface completion, or extensive development (as it normally applies to permanent monitoring wells). Temporary wells are generally installed, purged, sampled, removed, and backfilled in a matter of hours.

Due to the nature of construction, turbidity levels may initially be high. However, these levels may be reduced by low flow purging and sampling techniques as described in SESD Operating Procedure for Groundwater Sampling, SESDPROC-301.

Temporary wells may be left overnight, for sampling the following day, but the well must be secured, both against tampering and against the fall hazard of the open annulus. If the well is not sampled immediately after construction, the well should be purged prior to sampling as specified in SESD Operating Procedure for Groundwater Sampling, SESDPROC-301.

3.2 Data Limitation

Temporary wells described in this section are best used for delineation of contaminant plumes at a point in time, for some site screening purposes, or for determination of groundwater elevations and gradients. They are not intended to replace permanent monitoring wells. Temporary wells can be used in conjunction with a mobile laboratory, where quick-turnaround analytical results can be used to rapidly delineate contaminant plumes.

3.3 Temporary Well Materials

Materials used in construction of temporary monitoring wells are the same standard materials used in the construction of permanent monitoring wells. Sand used for the filter pack (if any) should be as specified in Section 2.5.3, Filter Pack Materials. The well screen and casing should be stainless steel for ruggedness and suitability for steam cleaning and solvent rinsing. Other materials may be acceptable, on a case by case basis. Some commercially available temporary well materials, pre-packed riser, screen and filter pack assemblies are available commercially; however, these pre-assembled materials cannot be

cleaned. Appropriate QA/QC must be performed to assure there will be no introduction of contamination.

3.4 Temporary Monitoring Well Borehole Construction

Borehole construction for temporary wells is as specified in Section 2.3, using a drill rig. Alternatively, boreholes may be constructed using hand augers or portable powered augers (generally limited to depths of ten feet or less). If a drill rig is used to advance the borehole, the augers must be pulled back the length of the well screen (or removed completely) prior to sampling. When hand augers are used, the borehole is advanced to the desired depth (or to the point where borehole collapse occurs). In situations where borehole collapse occurs, the auger bucket is typically left in the hole at the point of collapse while the temporary well is assembled. When the well is completely assembled, a final auger bucket of material is quickly removed and the well is immediately inserted into the borehole, pushing, as needed, to achieve maximum penetration into the saturated materials.

3.5 Temporary Monitoring Well Types

Five types of monitoring wells which have been shown to be acceptable are presented in the order of increasing difficulty to install and increasing cost:

3.5.1 No Filter Pack

This is the most common temporary well and is effective in many situations. After the borehole is completed, the casing and screen are simply inserted. This is the least expensive and fastest well to install. This type of well is extremely sensitive to turbidity fluctuations because there is no filter pack. Care should be taken to not disturb the casing during purging and sampling.

3.5.2 Inner Filter Pack

This type differs from the "No Filter Pack" well in that a filter pack is placed inside the screen to a level approximately 6 inches above the well screen. This ensures that all water within the casing has passed through the filter pack. For this type well to function properly, the static water level must be at least 6-12 inches above the filter pack. The screen slots may plug with this construction method.

3.5.3 Traditional Filter Pack

For this type of well, the screen and casing are inserted into the borehole, and the sand is poured into the annular space surrounding the screen and casing. It may be difficult to effectively place a filter pack in open boreholes, due to collapse.

3.5.4 Double Filter Pack

The borehole is advanced to the desired depth. As with the "inner filter pack" the well screen is filled with filter pack material and the well screen and casing inserted

until the top of the filter pack is at least 6 inches below the water table. Filter pack material is poured into the annular space around the well screen. This type temporary well construction can be effective in aquifers where fine silts or clays predominate.

3.5.5 Well-in-a-Well

The borehole is advanced to the desired depth. At this point, a 1-inch well screen and sufficient riser is inserted into a 2-inch well screen with sufficient riser, and centered. Filter pack material is then placed into the annular space surrounding the 1-inch well screen, to approximately 6 inches above the screen. The well is then inserted into the borehole.

This system requires twice as much well screen and riser, with attendant increases in assembly and installation time. The increased amount of well construction materials results in a corresponding increase in decontamination time and costs. The use of pre-packed well screens in this application will require rinse blanks of each batch of screens. Pre-pack Screen assemblies cannot be decontaminated for reuse.

3.6 Decommissioning

Temporary well boreholes must be decommissioned after sampling and removal of the screen and riser. Use of cuttings for backfilling holes will not be acceptable practice.

4 Direct-Push Technology in Groundwater Investigations

4.1 Screen Point Samplers

Screen Point samplers allow temporary wells to be established quickly and can return high quality samples. The sampler consists of a stainless steel or PVC screen housed in a hollow steel sheath and topped with a drive cap to adapt to the drive rods in use. A disposable point is inserted in the bottom of the sheath and serves to prevent soil from entering the sheath and damaging the screen during driving.

After driving the sampler to the target depth, an inner rod is inserted to hold the screen down at the bottom of the borehole while the sheath and rods are withdrawn to expose the screen. The disposable point stays at the bottom of the borehole. The inner rod system is withdrawn and sampling can commence immediately.

O-rings are commonly used on the disposable point. The additional friction from the O-ring can prevent the point from being driven off of the sampler in loose material or when encountering a hollow space such as during redriving.

Screen point samplers are deployed to a specified interval. If a greater sampling depth is desired after deployment, the sampler must be withdrawn, reassembled with a new point, and redriven to the greater depth. The standard screens can be withdrawn to a shallower interval if needed, but the sampler would still be accessing the deeper aquifer to some extent.

4.1.1 Special Considerations for Screen Point Samplers Decommissioning (Abandonment)

Like other wells, temporary screen points should be properly decommissioned. The most common means of decommissioning at SESD is to withdraw the screen point sampler, remove the screen, install a new disposable point, and redrive the sheath to the previously screened interval. A grouting head is attached to the probe rods, and grout pressure applied while withdrawing the rods to pull the disposable point free. The grout volume pumped is carefully managed to match the volume grouted during rod withdrawal.

Where preventing cross-connection of aquifers is critical or potential caving would prevent re-entry, a disposable screen can be used with some systems. The disposable screen is not linked to the sheath and will pull out and be left in the borehole. After sampling, the grouting head is attached to the rods, the rods pumped full of grout, and the sampler sheath is pulled off of the screen. Grouting proceeds as with re-entry grouting.

Geoprobe® Screen Points samplers have a feature available to knock a plug out of the bottom of the screen and thread a small diameter high-pressure grouting tube to

the bottom of the borehole. Grout is pumped through the tubing while rods are withdrawn and left threaded over the tubing aboveground. As this system is unwieldy and cannot reliably pump grout over 20% solids, it is not used at SESD.

SESD pressure-grouts soil sampling boreholes by reentry grouting or tremie grouting when depths exceed 10 ft, or groundwater is encountered. Shallower boreholes can be decommissioned by pouring pellets in short lifts and hydrating each lift with water, or by pouring a pourable grout.

Screen Material Selection

The screen point screens are available in stainless steel and PVC. Because of stainless steel's durability, ability to be cleaned and re-used, and overall inertness and compatibility with most contaminants, it is the material most used for SESD investigations. When stainless steel screens are stowed wet, they should be segregated from carbon steel components. Contact of the stainless screens with carbon steel when wet will cause galvanic corrosion that will shed chrome-bearing material when first flushed.

4.2 Groundwater Profiling

Rapid investigations can be facilitated by the use of groundwater profiling systems. A groundwater profiler allows a sampler to be advanced from one area of interest to the next with a discrete groundwater sample collected at each. The system may allow soil samples to be collected during advancement. As some sampler components are common for all samples, the groundwater profiler does not offer the same protection from cross-contamination that separate screen point samples would.

4.3 Small-Diameter Well Installation

With some limitations, direct push technology can be used to install permanent monitoring wells of quality commensurate with other drilling systems. The use of small diameter wells limits the possibilities for the pumps to be used in sampling. For shallow groundwater with water levels higher than 25 ft below ground surface, peristaltic pumps can be used with no limitation on minimum well diameter. For water levels deeper than 25 feet below ground surface, bladder pumps may be the only pumping option and well diameters should be 1" nominal diameter with an absolute minimum of $\frac{3}{4}$ " nominal diameter.

Well materials are difficult to place with DPT systems and best results will be achieved with total depths less than 50 ft. It is also difficult or impossible to place bentonite seals, and caution should be used when aquifer isolation is particularly

important. Grout should be placed in the annular space by tremie pipe, as with conventional drilling installation. Grout placement by tremie will likely rule out the use of the smaller diameter tool strings such as 2.125" and 2.25" outside diameter (od). A 3.5" tool string with 2.75" inside diameter (id) will allow room for a 1" nom. diam. casing with grout pumped through $\frac{1}{2}$ " nom. dia. tremie. Prepack screens are available to install 2" nom. dia. wells in 3.5" od tool string, but grout cannot be placed by tremie with these systems and they should not be used.

Pre-packed screens are typically used, consisting of a slotted well screen surrounded by a sand filter pack wrapped in stainless steel screen wire. Sand packs wrapped by textile materials capable of or intended to filter fines or lower turbidity are unacceptable. Above the pre-packed screen standard well casing matching the slotted screen diameter is used.

Installation involves driving a tool string with disposable point to depth, placing the screen and casing inside, and withdrawing the tool string to dislodge the disposable point. The drive casing is withdrawn to fully expose the screen. Filter pack sand is then added during drive casing withdrawal until sand is placed to 2 ft above the screen. There is a narrow annular space between the pre-pack screen and borehole walls that the added sand may not fully fill. The placement of 2 ft of sand above the screen allows for settling.

Bentonite grout mixed to 30% solids content is then installed by tremie pipe while withdrawing the remaining drive casing. Care must be taken to not jet out the placed filter sand by resting the tremie on the bottom.

Alternate systems are available that use a polyethylene and foam skirt to isolate a bentonite seal wrapped in kraft paper from the screened interval. These systems result in natural development of the entire annular space around the pre-pack screen and introduce several materials that may have compatibility, contaminant leaching, or long-term stability issues. Although the placement of a bentonite seal is desirable, SESD does not use these systems due to concern over the other issues.

APPENDIX E – Field Forms

PARSC	PARSONS # DAILY PRODUCTION REPORT Page 1 of 2								Page 1 of 2
Contract NO	008	Title and Location				Date			
Contractor	or Superintendent								
Parsons			Arnold Pimentel						
Description of tasks									EMPLOYER
				Work F	Perfo	ormed Today			
				Work Pla	nnec	I for Tomorrow			
	1			S	Staff	Onsite			
EMPLOYER		Who		Time Onsite		Time Offsite		Time Onsite	Time Offsite
					Vis	itors			
AFFILIATION	Who	Vho Time Onsite Time Offsite Notes:							
IOP		WAS A J	OB SAFET	TY MEETING HELD THI	IS DA	ATE?		YES	NO
SAFETY	JOB (IT YES attach copy of the meeting minutes) SAFETY WERE THERE ANY LOST TIME ACCIDENTS THIS DATE?								
Deeneneihle	(If YES attach copy of completed OSHA report)					L YES	L NO		
Party	Stop Wo	p Work/Safety Inspections Conducted					Safety Requi	rements Met	
Equipment and/c	or Materia	al Receiv	ed or Lea	ving Jobsite Today					
Responsible Party	Quant	tity Def	inable Fe	ature of Work and Des	cript	ion of Equipment Receiv	/ed		
- i arty									
IDW Generated/F	Removed								
Responsible	0.000		orintiar	of IDW/					
Party	Quant	ity Des	scription (

PARSONS	l	DAILY PRODUCTION REPORT (ATTACH ADDITIONAL SHEETS IF NECESSARY)					Page 2 of 2	
Contract NO W91238-21-D-0008	Title and Location Former Titan 1-A	e and Location Former Titan 1-A Missile Facility, Lincoln, California						
Contractor			S	Superinter	ndent			
Parsons			Samples Shipped T	oday		Arnold Piment	el	
Sample ID	Media		Samples Shipped T	ouay			COC	
oumple ib	Media		Dec	Simation				
Wall Installation/Dovelon	mont Datas/ Soil Va	nor Broho In	stallation Dates					
	Drillod		Installed		Doveloped		lell hox installed	
	Dimed		installed	L	Jeveloped	-		
PARSONS PROJECT MANAGER DATE								

Photo 1:

Photo 2:

			Hole No	We	ll No		
DRILLI	NG LOO	CLIEN	Г	INSTALLATION Missile Facility, Linc	rmer Titan 1-A oln, California	SHEET OF SHEETS	
1. PROJEC	T Treatabi	lity Study		10. DATE STARTE HOLE	D	COMPLETED	
2. LOCATI	ON (Coordir	ates or Statio	on)	11. DRILLING METHO	DD / DRILLING	RIG	
3. DRILLIN	G CONTRA	CTOR		12. SIZE AND TYPE C)F BIT		
4. NAME OF DRILLER				13. TOTAL NO. OF ANALYTICAL OTHER SAMPLES TAKEN IDW			
5. NAME O	F GEOLOGI	ST		14. TOTAL RECOVER	Y FOR BORIN	G	
6. DIRECTI	ON OF HOL	E		15. TOTAL NUMBER	CORE BOXES		
	0		DEGREES FROM VERTICAL	16. DATUM FOR ELE		/N 2	
7. THICKN	ESS OF OVE	ERBURDEN		17. ELEVATION GROUND SURFACE		TOP OF CASING	
8. DEPTH I	DRILLED IN	TO ROCK		18. ELEVATION GRO	UND WATER		
9. TOTAL I	DEPTH OF H	IOLE		19. SIGNATURE OF G	EOLOGIST		
DEPTH (FT)	GRAPHIC LOG	ASTM SOIL CLASS SYMBOLS	CLASSIFICATION O (Descripti	F MATERIALS	PID (ppm)	REMARKS (Drilling time, water loss, depth of weathering, type of PID reading, etc., if significant)	
a	b	C	d		e	9	

DRILLIN	IG LOG (Cont. She	et)	ELEVATION		Hole No.		
PROJECT				I	INSTALLATION	Form	er Titan 1-A	SHEET
Treatability Study				Missile F	acility, Lincolı	n, California	OF SHEETS	
DEPTH (FT) a	GRAPHIC LOG b	ASTM SOIL CLASS SYMBOLS c		CLASSIFICATIO (Des	ON OF MATERIA cription) d	LS	PID (ppm) e	REMARKS (Drilling time, water loss, depth of weathering, type of PID reading, etc., if significant) g
—								
—								

CONTRACTOR		WELL NUM	Date					
PARSONS								
Groundwater Monitoring Well								
Completion Data Record								
	Marchine The State							
PROJECT : Treatability Study at Former Titan 1-A	Missile Facility		DRILLER	Lincoln, California				
DRILLING METHOD / EQUIPMENT:			HELPERS:					
WATER LEVEL:	START:	END:	GEOLOGIST:					
	Flush Mount Surface							
	Completion]						
	2		DRAWING NOT TO SCALE					
feet bos	/ 3	/ 3 0 1-	Ground elevation at well :					
(approximate)		1						
0.5	6667	2-	Measuring point elevation :	top of the casing - north side				
1.0								
1.5	2	3-	Surface completion casing :					
2.0	8		a) type / diameter					
2.5			b) Pad Material					
3.0		- 4	c) Pad Dimensions					
3.5		4-	Well casing :					
4.5	- 7	-	a) type / diameter					
5.0			b) height above ground					
5.5			c) length below ground					
6.0			d) type / quantity of sealant					
6.5			e) well centralizers					
7.0								
7.5		5-	Well screen :					
8.0			a) type / diameter					
9.0	2		c) top screen (feet bgs)					
9.5			d) bottom screen (feet bgs)					
10.0								
10.5	ž Š	6-	Well screen filter pack :					
11.0			a) type					
11.5			b) top filter pack (feet bgs)					
12.0			c) bottom mer pack (reet bgs)					
13.0		7-	Bentonite seal :					
13.5			a) method of placement					
14.0			b) type					
14.5	5		c) top seal (feet bgs)					
15.0			d) bottom seal (feet bgs)					
15.5		0	Grout :					
16.5		6-	a) type					
17.0			b) grout mix					
17.5			c) method of placement					
18.0	5 S		c) top grout (feet bgs)					
18.5			d) bottom grout (feet bgs)					
19.0		-	Developing					
19.5		9-	Borenole diameter:					
20.0								
21.0	C. Carton							
21.5	1. A. C.							
22.0	OK STATES							
	← _{8 in} →							

L

FUDS Project J09CA1108-01

PARSONS

WELL DEVELOPMENT FIELD FORM

PARSO	INS													PAGE	OF
Well ID:			Project Name	: Treatal	oility Study	at Fori	ner Tit	an 1-A M	issile Facility	,				Start Date):
Site Locatio	on: Lincoln, Ca	alifornia		Screen	Interval (ft):		(TOC / bgs)	Well Diam	eter (inch):			End Date:	
Date Well In	stalled:			⁽¹⁾ Depth	to Water (DTW)	(ft):		(TOC / bgs)	⁽²⁾ Total We	ll Depth (ft): Start:	En	d:	(TOC / bgs)
Well Drilling	g Company:			DTW Af	ter Develo	pment	: (ft):		(TOC / bgs)	Volume FI	uid / Water	Lost to Fo	ormation (ga	l) =	
Developmer	nt Operator:			Parson	s Oversigh	t:				PID initial	(TOC) (ppr	n) =			
Calculations: Well Develop () Bailing	ment Method a	L and Equipmen	ength of the wate Purge Vol t:	er column: ume (PV):	(2) 1. PV = 2. PV =	(ft) -	volum	(1) (1) ne of fluid lo x	=(3) ost (gal) x 3 = (gal/ft) x 3 =	_ (ft) (ga	al) I)	Volu <u>Well</u>	me of Schedu <u>Diameter (inc</u> 1.0 2.0 3.0 4.0	le 40 PVC P <u>hes)</u> ga	ipe <u>al/linear ft. ⁽⁴⁾</u> 0.041 0.163 0.367 0.653
() Surge E	Block					(3)		(4)			ľ	Well Devel	opment Crit	eria	
()Over-P ()Other: _ Type of Meter	umping r(s) Used:				3. PV =	(3)	(ft)	x(4)	(gal/ft) x 10 =	(g	al) ·	Volume Purg Turbidity < 30 Have field pa	led > PV#1 an 0 NTU? Irameters stab	d PV#2 ilized?	Yes / No Yes / No Yes / No
 () YSI											rend . (3.) "A'd?				
Time	Vol. Purged	Purge Rate	Water Level	рН		Spec.	Cond.	DO	ORP	Turbidity					
(24 hrs)	(gallons)	(GPM)	(ft)	(units)	(°C or °F)	(uS	5/cm) 3%)	(mg/l)	(mv)	(NIUS)		(e.g	., color, odd	or, pump p	lacement)
				(<u>·</u> 0.1)		<u>(.</u>		(<u>+</u> 0.3)	(<u>+</u> 10111V)	(< 30 & <u>1</u> 1070)		51A		J Stabilizat	

Notes/Recommendations:

WELL GAUGING DATA

roject #_	750764.010	003		Date_		Client												
Project N	ame: Treata	bility Stud	dy			Site: Former	• Titan 1-A Miss	sile Facility, Lin	coln, CA									
Sampler:						Date:			-									
Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes								

LOW FLOW	WELL MONITORING DAT	CA SHEET
----------	---------------------	-----------------

Project N	ame: <i>Treatabili</i>	ty Study		Site: Former Titan 1-A Missile Facility, Lincoln, California											
Sampler:				Start Date:											
Well I.D.	:			Well Diam	eter: 2	3 4 6	5 8								
Total We	ll Depth:			Depth to W	Vater	Pre:	Post:								
Depth to 3	Free Product:			Thickness	of Free Pro	duct (feet):									
Reference	ed to:	PVC	Grade	Flow Cell	Type:										
Purge Method:Electric SubmersibleSampling Method:Dedicated TubingFlow Rate:					Peristaltic Pump Bladder Pump New Tubing Other Pump Depth:										
Time	Temp. (°C or °F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL) Depth to Water								
Did well	dewater?	Yes	No	1	Amount ac	tually evac	uated:								
Sampling	Time:				Sampling I	Date:									
Sample I.	D.:				Laboratory	•									
Analyzed	for: See CO	С				Other:									
Equipmer	nt Blank I.D.:		(a) Time		Duplicate I	.D.:									

EQUIPMENT CALIBRATION LOG

Equipment Type	Serial Number	Date	Calibration Time	Calibration Gas	Zero Air	Calibration Gas Reading	Calibrated By	Comments

PASSIVE FLUX METER DATA SHEET

Project Name: Treatability Study	Site: Former Titan 1-A Missile Facility, Lincoln, California							
Sampler:	Start Date:							
Well I.D.:	Well Diameter: 2 3 4 6 8							
Total Well Depth:	Well Condition:							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced to: PVC Grade								

Length of PFM:	Diameter of PFM:										
Number of sample intervals:	Length of sample intervals:										
Date and Time Deployed:	Depth to Water	Pre:	Post:								
	Depth to top of PFM:										
Date and Time Retrieved:	Depth to Water	Pre:	Post:								

Comments:

Sample Collection Data

		Samr	ole Depth	
Date Time		Тор	Bottom	Sample I.D.
Commen	ts:			
Laborato	ry:		Analyzed for: See C	OC
Duplicate	e I.D.:		(a) Time	
Equipme	nt Blank I.D.:		@ Time	

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION SHEET

Project Name: <u>Treatability Study at</u>	Former Titan 1-A Missil	e Facility, Lincoln, CA	
Job Number:			
Date and Time:			
Technician (Printed Name / Signature	e):		
	Field Parameter Mu	ltimeter	
Model:			
Serial Number:			
Rental ID:			
Specific Conductivity Standard, 1.413	3 mS/cm @ 25°C reads:	mS/cm @	°C
pH Standard 7.00 SU@ 25° ^C reads:	SU @	°C / ORP reads:	mV
pH Standard 4.00 SU@ 25° ^C reads:	SU @	°C / ORP reads:	mV
pH Standard 10.00 SU@ 25°C reads:	SU @	°C / ORP reads:	mV
ORP Standard 240 mV @ 25°C reads:	Mv @	• ^{°C} / pH reads:	SU
Dissolved Oxygen is calibrated to 10 saturated air at the current barometri	00% c pressure of	mb x 0.0295 =	inHg
Calibration Standard Specific Conductivity	Batch / Lot Number	Expiration Da	ite
pH Standard 4.00			
pH Standard 7.00			
pH Standard 10.00			
ORP Standard 240mV			
DO sensor electrode solution			

Turbidity Meter

SITE VISITOR LOG

Treatability Study at Former Titan 1-A Missile Facility, Lincoln, California

Date	Time	Visitor Name	Company	Received Safety Briefing?	Staff Conducting Safety Briefing

CHAIN OF CUSTODY

EMAX	2051 Fujita St., Torrance, CA 90505 Tel # : 310-618-8889 FAX#: 310-618-0818) NUN	IBER:	00154	61				E	EMAX CONTROL NO.						
Laboratories, inc.	Email: info@emaxlal	bs.com	618-0818		SAMPI	E STORAG	E						PI	ROJI	ЕСТ	CO	DE:			
CLIENT: Parsons					Ν	IATRIX	CODE	PRESER CO	VATIVE DE				ANAI	LYSIS	REQU	JIRED)			TAT
PROJECT: Titan 1-A Semi-Annual Grou	ndwater and Soil Vapor Sampling				DW=D	rinking Wate	r	IC = Ice	IC = Ice				471	471						Rush24hrs.
COORDINATOR					GW=G	round Water		HC = HCl			7471	60	10/7	010/7						Rush48_hrs
TEL	FAX	EMAIL			WW=W	Vaste Water		HN=HNO3	3		010/	1/82	11/60	ET/6						Rush_72_hrs
SEND REPORT TO : carrie.ross@parson	ns.com; mark.rigby@parsons.com; sa	andra.delasfuentes@j	parsons.us		SD=So	lid Waste SI	_=Sludge	SH=NaO3			SW6	W13	W13	[M_M						7 days
COMPANY					SS=Soi	l/ Sediment		ST=Na2S2	ST=Na2S2O3		s via	∕ia S'	via S	via S						14 days
ADDRESS						ipes PP=Pur	re Products	ZA=Zinc A	cetate	a SW	netal	DCs 1	stals	etals '						21 days
						AR=Air HS=H2SO4			22 n	P V(Pme	C me								
EMAX PM										00A	Title	TCL	TCL	STL						
SAMPLE ID SAMPLING					CONTAI	NER	MATRIX	QC			1	PRES	PRESERVATIVE CODE					Ī	COMMENTS	
LAB CL	IENT	LOCATION	DATE	TIME	NO.	SIZE	TYPE	CODE												
* 1																				
* 2																				
* 3																				
* 4																		_		
* 5																		_		
* 6																				
* 7																				
* 8																				
* 9																				
10																				
Instructions: Please have the an	nalytical results sent to													Coo	ler#		Temp.	(°C)		Sample #s
Mark.rigby@parsons.com																				
carrie.ross@parsons.com																				
sandra.delasfuentes@parsons.	<u>18</u>																			
SAMPLER					COU	RIER/AII	RBILL													
RELINQUISHED BY Date Time							RECEIV	ED BY												
NOTICE: Turn-around-time (TAT) for sa	mples shall not begin until all discre	pancies have been re	solved. For samples re	eceived and dis	crepancie	s resolved af	ter 1500 hrs, '	TAT shall sta	art at 0800	hrs the ne	ext busir	ness day.	The clie	ent is resp	onsible	for all co	st associa	ted with	sample	disposal. Samples shall be disposed of as soon as practical (but not

APPENDIX F – Laboratory Accreditation

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

EMAX Laboratories, Inc. 3051 Fujita Street Torrance, CA 90505

Fulfills the requirements of

ISO/IEC 17025:2017

and

U.S. Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories (DoD QSM V5.4)

In the field of

TESTING

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 10 January 2026 Certificate Number: L2278

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

and

U.S. Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories (DoD QSM V5.4)

EMAX Laboratories, Inc.

3051 Fujita Street Torrance, CA 90505 Farina Madamba 310-618-8889

TESTING

Valid to: January 10, 2026

Certificate Number: L2278

Environmental

Non-Potable Water		
Technology	Method	Analyte
GC	AK101	GRO
GC	AK102	DRO
GC	AK 103	RRO
GFAA	CA 939M	Organo Lead
Platinum Electrode	EPA 120.1	Specific Conductance
Electrode	EPA 150.1	pН
Turbidimetric	EPA 180.1	Turbidity
ICP	EPA 200.7	Aluminum
ICP	EPA 200.7	Antimony
ICP	EPA 200.7	Arsenic
ICP	EPA 200.7	Barium
ICP	EPA 200.7	Beryllium
ICP	EPA 200.7	Boron
ICP	EPA 200.7	Cadmium
ICP	EPA 200.7	Calcium
ICP	EPA 200.7	Chromium
ICP	EPA 200.7	Cobalt

Non-Potable Water		
Technology	Method	Analyte
ICP	EPA 200.7	Copper
ICP	EPA 200.7	Iron
ICP	EPA 200.7	Lead
ICP	EPA 200.7	Lithium
ICP	EPA 200.7	Magnesium
ICP	EPA 200.7	Manganese
ICP	EPA 200.7	Molybdenum
ICP	EPA 200.7	Nickel
ICP	EPA 200.7	Potassium
ICP	EPA 200.7	Selenium
ICP	EPA 200.7	Silver
ICP	EPA 200.7	Sodium
ICP	EPA 200.7	Strontium
ICP	EPA 200.7	Thallium
ICP	EPA 200.7	Tin
ICP	EPA 200.7	Titanium
ICP	EPA 200.7	Vanadium
ICP	EPA 200.7	Zinc
ICP-MS	EPA 200.8	Aluminum
ICP-MS	EPA 200.8	Antimony
ICP-MS	EPA 200.8	Arsenic
ICP-MS	EPA 200.8	Barium
ICP-MS	EPA 200.8	Beryllium
ICP-MS	EPA 200.8	Boron
ICP-MS	EPA 200.8	Cadmium
ICP-MS	EPA 200.8	Calcium
ICP-MS	EPA 200.8	Chromium
ICP-MS	EPA 200.8	Cobalt
ICP-MS	EPA 200.8	Copper
ICP-MS	EPA 200.8	Iron
ICP-MS	EPA 200.8	Lead
ICP-MS	EPA 200.8	Lithium
ICP-MS	EPA 200.8	Magnesium
ICP-MS	EPA 200.8	Manganese
ICP-MS	EPA 200.8	Molybdenum
ICP-MS	EPA 200.8	Nickel
ICP-MS	EPA 200.8	Potassium
ICP-MS	EPA 200.8	Selenium

Non-Potable Water		
Technology	Method	Analyte
ICP-MS	EPA 200.8	Silver
ICP-MS	EPA 200.8	Sodium
ICP-MS	EPA 200.8	Strontium
ICP-MS	EPA 200.8	Thallium
ICP-MS	EPA 200.8	Tin
ICP-MS	EPA 200.8	Titanium
ICP-MS	EPA 200.8	Uranium
ICP-MS	EPA 200.8	Vanadium
ICP-MS	EPA 200.8	Zinc
IC	EPA 218.6	Hexavalent Chromium
COLD VAPOR	EPA 245.1	Mercury
IC	EPA 300.0	Fluoride
IC	ÉPA 300.0	Chloride
IC	EPA 300.0	Nitrite
IC	EPA 300.0	Bromide
IC	EPA 300.0	Nitrate
IC	EPA 300.0	Phosphate
IC	EPA 300.0	Sulfate
IC	EPA 300.0	Bromate
IC	EPA 300.0	Chlorate
IC	EPA 300.0	Nitrate-Nitrite
IC	EPA 300M	Lactate
IC	EPA 300M	Acetate
IC	EPA 300M	Propionate
IC	EPA 300M	Butyrate
IC	EPA 300M	Pyruvate
IC	EPA 314.0	Perchlorate
Spectrometric	EPA 410.4	COD
Spectrometric	EPA 420.1	Phenols
GC	EPA 504.1	DBCP
GC	EPA 504.1	EDB
GC	EPA 608/608.3	Aldrin
GC	EPA 608/608.3	alpha-BHC
GC	EPA 608/608.3	beta-BHC
GC	EPA 608/608.3	delta-BHC
GC	EPA 608/608.3	gamma-BHC (Lindane)
GC	EPA 608/608.3	DDD (4,4)
GC	EPA 608/608.3	DDE (4,4)

Technology	Method	Analyte
GC	EPA 608/608.3	DDT (4,4)
GC	EPA 608/608.3	Dieldrin
GC	EPA 608/608.3	Endosulfan I
GC	EPA 608/608.3	Endosulfan II
GC	EPA 608/608.3	Endosulfan sulfate
GC	EPA 608/608.3	Endrin
GC	EPA 608/608.3	Endrin Aldehyde
GC	EPA 608/608.3	Heptachlor
GC	EPA 608/608.3	Heptachlor epoxide
GC	EPA 608/608.3	Methoxychlor
GC	EPA 608/608.3	alpha-Chlordane
GC	EPA 608/608.3	gamma-Chlordane
GC	EPA 608/608.3	Endrin Ketone
GC	EPA 608/608.3	Toxaphene
GC	EPA 608/608.3	Technical Chlordane
GC	EPA 608/608.3	cis-Nonachlor
GC	EPA 608/608.3	DDD (2,4)
GC	EPA 608/608.3	DDE (2,4)
GC	EPA 608/608.3	DDT (2,4)
GC	EPA 608/608.3	Mirex
GC	EPA 608/608.3	Oxychlordane
GC	EPA 608/608.3	trans-Nonachlor
GC	EPA 608/608.3	PCB1016
GC	EPA 608/608.3	PCB1221
GC	EPA 608/608.3	PCB1232
GC	EPA 608/608.3	PCB1242
GC	EPA 608/608.3	PCB1248
GC	EPA 608/608.3	PCB1254
GC	EPA 608/608.3	PCB1260
GC	EPA 608/608.3	PCB1262
GC	EPA 608/608.3	PCB1268
GC-MS	EPA 624/624.1	Acrolein
GC-MS	EPA 624/624.1	Acrylonitrile
GC-MS	EPA 624/624.1	Benzene
GC-MS	EPA 624/624.1	Bromodichloromethane
GC-MS	EPA 624/624.1	Bromoform
GC-MS	EPA 624/624.1	Bromomethane
GC-MS	EPA 624/624.1	Carbon tetrachloride

TechnologyMethGC-MSEPA 624GC-MSEPA 624	nodAnalyte4/624.1Chlorobenzene4/624.12-Chloroethyl vinyl ether
GC-MS EPA 624 GC-MS EPA 624	4/624.1Chlorobenzene4/624.12-Chloroethyl vinyl ether
GC-MS EPA 624	4/624.1 2-Chloroethyl vinyl ether
GC-MS EPA 624	4/624.1 Chloroethane
GC-MS EPA 624	4/624.1 Chloroform
GC-MS EPA 624	4/624.1 Chloromethane
GC-MS EPA 624	1/624.1 Dibromochloromethane
GC-MS EPA 624	1/624.1 1,1-Dichloroethane
GC-MS EPA 624	4/624.1 1,2-Dichloroethane
GC-MS EPA 624	1/624.1 1,2-Dichlorobenzene
GC-MS EPA 624	4/624.1 1,3-Dichlorobenzene
GC-MS EPA 624	1/624.1 1,4-Dichlorobenzene
GC-MS EPA 624	1/624.1 Dichlorodifluoromethane
GC-MS EPA 624	1/624.1 1,1-Dichloroethene
GC-MS EPA 624	4/624.1 cis-1,2-Dichloroethene
GC-MS EPA 624	trans-1,2-Dichloroethene
GC-MS EPA 624	1/624.1 1,2-Dichloropropane
GC-MS EPA 624	4/624.1 cis-1,3-Dichloropropene
GC-MS EPA 624	4/624.1 trans-1,3-Dichloropropene
GC-MS EPA 624	1/624.1 Ethylbenzene
GC-MS EPA 624	4/624.1 Methylene Chloride
GC-MS EPA 624	tert-Butyl methyl ether
GC-MS EPA 624	1/624.1 Styrene
GC-MS EPA 624	1/624.1 1.1.2.2-Tetrachloroethane
GC-MS EPA 624	1/624.1 Tetrachloroethene
GC-MS EPA 624	1/624.1 Toluene
GC-MS EPA 624	1/624.1 1,1,1-Trichloroethane
GC-MS EPA 624	1/624.1 1,1,2-Trichloroethane
GC-MS EPA 624	1/624.1 1,2,4-Trichlorobenzene
GC-MS EPA 624	1/624.1 Trichloroethene
GC-MS EPA 624	1/624.1 Trichlorofluoromethane
	1,1,2-Trichloro1,2,2-
GC-MS EPA 624	trifluoroethane
GC-MS EPA 624	4/624.1 Vinyl Chloride
GC-MS EPA 624	4/624.1 m-Xylene & p-xylene
GC-MS EPA 624	4/624.1 o-Xylene
GC-MS EPA 625	5/625.1 Acenaphthene
GC-MS EPA 625	5/625.1 Acenaphthylene
GC-MS EPA 625	5/625.1 Aniline

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 625/625.1	Anthracene
GC-MS	EPA 625/625.1	Azobenzene
GC-MS	EPA 625/625.1	Benzidine
GC-MS	EPA 625/625.1	Benzo(a)anthracene
GC-MS	EPA 625/625.1	benzo(a)pyrene
GC-MS	EPA 625/625.1	Benzo(b)fluoranthene
GC-MS	EPA 625/625.1	Benzo(e)pyrene
GC-MS	EPA 625/625.1	Benzo(g,h,i)perylene
GC-MS	EPA 625/625.1	Benzo(k)fluoranthene
GC-MS	EPA 625/625.1	Benzoic Acid
GC-MS	EPA 625/625.1	Benzyl Alcohol
GC-MS	EPA 625/625.1	Biphenyl
GC-MS	EPA 625/625.1	bis(2-chloroethoxy)methane
GC-MS	EPA 625/625.1	bis(2-chloroethyl)ether
GC-MS	EPA 625/625.1	2,2-oxybis(1-chloropropane)
GC-MS	EPA 625/625.1	bis(2-Ethylhexyl)adipate
GC-MS	EPA 625/625.1	bis(2-Ethylhexyl)phthalate
GC-MS	EPA 625/625.1	4-Bromophenyl-phenylether
GC-MS	EPA 625/625.1	Butylbenzylphthalate
GC-MS	EPA 625/625.1	Carbazole
GC-MS	EPA 625/625.1	4-Chloro-3-methylphenol
GC-MS	EPA 625/625.1	4-Chloroaniline
GC-MS	EPA 625/625.1	2-Chloronaphthalene
GC-MS	EPA 625/625.1	2-Chlorophenol
GC-MS	EPA 625/625.1	4-Chlorophenyl-phenylether
GC-MS	EPA 625/625.1	Chrysene
GC-MS	EPA 625/625.1	Dibenzo(a,h)anthracene
GC-MS	EPA 625/625.1	Dibenzofuran
GC-MS	EPA 625/625.1	1,2-Dichlorobenzene
GC-MS	EPA 625/625.1	1,3-Dichlorobenzene
GC-MS	EPA 625/625.1	1,4-Dichlorobenzene
GC-MS	EPA 625/625.1	3,3'-Dichlorobenzidine
GC-MS	EPA 625/625.1	2,4-Dichlorophenol
GC-MS	EPA 625/625.1	Diethylphthalate
GC-MS	EPA 625/625.1	2,6-Dimethylnaphthalene
GC-MS	EPA 625/625.1	2,4-Dimethylphenol
GC-MS	EPA 625/625.1	Dimethylphthalate
GC-MS	EPA 625/625.1	Di-n-butylphthalate

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 625/625.1	4,6-Dinitro-2-methylphenol
GC-MS	EPA 625/625.1	2,4-Dinitrophenol
GC-MS	EPA 625/625.1	2,4-Dinitrotoluene
GC-MS	EPA 625/625.1	2,6-Dinitrotoluene
GC-MS	EPA 625/625.1	Di-n-octylphthalate
GC-MS	EPA 625/625.1	1,2-Diphenylhydrazine
GC-MS	EPA 625/625.1	Fluoranthene
GC-MS	EPA 625/625.1	Fluorene
GC-MS	EPA 625/625.1	Hexachlorobenzene
GC-MS	EPA 625/625.1	Hexachlorobutadiene
GC-MS	EPA 625/625.1	Hexachlorocyclopentadiene
GC-MS	EPA 625/625.1	Hexachloroethane
GC-MS	EPA 625/625.1	Indeno(1,2,3-cd)pyrene
GC-MS	EPA 625/625.1	Isophorone
GC-MS	EPA 625/625.1	1-Methylnaphthalene
GC-MS	EPA 625/625.1	2-Methylnaphthalene
GC-MS	EPA 625/625.1	1-Methylphenanthrene
GC-MS	EPA 625/625.1	2-Methylphenol
GC-MS	EPA 625/625.1	3/4-Methylphenol
GC-MS	EPA 625/625.1	Naphthalene
GC-MS	EPA 625/625.1	2-Nitroaniline
GC-MS	EPA 625/625.1	3-Nitroaniline
GC-MS	EPA 625/625.1	4-Nitroaniline
GC-MS	EPA 625/625.1	Nitrobenzene
GC-MS	EPA 625/625.1	2-Nitrophenol
GC-MS	EPA 625/625.1	4-Nitrophenol
GC-MS	EPA 625/625.1	n-Nitrosodimethylamine
GC-MS	EPA 625/625.1	n-Nitroso-di-n-propylamine
GC-MS	EPA 625/625.1	n-Nitrosodiphenylamine
GC-MS	EPA 625/625.1	Pentachlorophenol
GC-MS	EPA 625/625.1	Perylene
GC-MS	EPA 625/625.1	Phenanthrene
GC-MS	EPA 625/625.1	Phenol
GC-MS	EPA 625/625.1	Pyrene
GC-MS	EPA 625/625.1	Pyridine
GC-MS	EPA 625/625.1	2,3,4,6-Tetrachlorophenol
GC-MS	EPA 625/625.1	1,2,4-Trichlorobenzene
GC-MS	EPA 625/625.1	2,3,4-Trichlorophenol

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 625/625.1	2,3,5-Trichlorophenol
GC-MS	EPA 625/625.1	2,4,5-Trichlorophenol
GC-MS	EPA 625/625.1	2,4,6-Trichlorophenol
GC-MS	EPA 625/625.1	2,3,5-Trimethylnaphthalene
Gravimetric	EPA 1664A / 1664 B	Oil & Grease
Pensky-Martens	EPA 1010 / 1010A	Ignitability
ICP	EPA 6010B / 6010C	Aluminum
ICP	EPA 6010B / 6010C	Antimony
ICP	EPA 6010B / 6010C	Arsenic
ICP	EPA 6010B / 6010C	Barium
ICP	EPA 6010B / 6010C	Beryllium
ICP	EPA 6010B / 6010C	Boron
ICP	EPA 6010B / 6010C	Cadmium
ICP	EPA 6010B / 6010C	Calcium
ICP	EPA 6010B / 6010C	Chromium
ICP	EPA 6010B / 6010C	Cobalt
ICP	EPA 6010B / 6010C	Copper
ICP	EPA 6010B / 6010C	Iron
ICP	EPA 6010B / 6010C	Lead
ICP	EPA 6010B / 6010C	Lithium
ICP	EPA 6010B / 6010C	Magnesium
ICP	EPA 6010B / 6010C	Manganese
ICP	EPA 6010B / 6010C	Molybdenum
ICP	EPA 6010B / 6010C	Nickel
ICP	EPA 6010B / 6010C	Potassium
ICP	EPA 6010B / 6010C	Selenium
ICP	EPA 6010B / 6010C	Silver
ICP	EPA 6010B / 6010C	Sodium
ICP	EPA 6010B / 6010C	Strontium
ICP	EPA 6010B / 6010C	Thallium
ICP	EPA 6010B / 6010C	Tin
ICP	EPA 6010B / 6010C	Titanium
ICP	EPA 6010B / 6010C	Vanadium
ICP	EPA 6010B / 6010C	Zinc
ICP-MS	EPA 6020A	Aluminum
ICP-MS	EPA 6020A	Antimony
ICP-MS	EPA 6020A	Arsenic
ICP-MS	EPA 6020A	Barium

TechnologyMethodICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020A	Analyte Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron
ICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020A	Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron
ICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020A	Boron Cadmium Calcium Chromium Cobalt Copper Iron
ICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020A	Cadmium Calcium Chromium Cobalt Copper
ICP-MSEPA 6020AICP-MSEPA 6020AICP-MSEPA 6020A	Calcium Chromium Cobalt Copper
ICP-MS EPA 6020A	Chromium Cobalt Copper
	Cobalt Copper
ICP-MS EPA 6020A	Copper
ICP-MS EPA 6020A	Iron
ICP-MS EPA 6020A	non
ICP-MS EPA 6020A	Lead
ICP-MS EPA 6020A	Lithium
ICP-MS EPA 6020A	Magnesium
ICP-MS EPA 6020A	Manganese
ICP-MS EPA 6020A	Mercury
ICP-MS EPA 6020A	Molybdenum
ICP-MS EPA 6020A	Nickel
ICP-MS EPA 6020A	Potassium
ICP-MS EPA 6020A	Selenium
ICP-MS EPA 6020A	Silver
ICP-MS EPA 6020A	Sodium
ICP-MS EPA 6020A	Strontium
ICP-MS EPA 6020A	Thallium
ICP-MS EPA 6020A	Tin
ICP-MS EPA 6020A	Titanium
ICP-MS EPA 6020A	Tungsten
ICP-MS EPA 6020A	Uranium
ICP-MS EPA 6020A	Vanadium
ICP-MS EPA 6020A	Zinc
HPLC-MS EPA 6850	Perchlorate
Spectrometric EPA 7196A	Hex. Chromium
IC EPA 7199	Hex. Chromium
Cold-Vapor EPA 7470A	Mercury
GC EPA 8015B / 8015C /	8015D GRO
GC EPA 8015B / 8015C /	8015D DRO
GC EPA 8015B / 8015C /	8015D ORO
GC EPA 8015B / 8015	C Diethylene Glycol
GC EPA 8015B / 8015	C Ethanol
GC EPA 8015B / 8015	C Ethylene Glycol
GC EPA 8015B / 8015	C Isopropanol

Non-Potable Water		
Technology	Method	Analyte
GC	EPA 8015B / 8015C / 801 <mark>5</mark> D	JP4
GC	EPA 8015B / 8015C	Methanol
GC	EPA 8015B / 8015C	Propylene Glycol
GC	EPA 8015B / 8015C / 80 <mark>15D</mark>	JP5
GC	EPA 8015B / 8015C	Triethylene Glycol
GC	EPA 8081A / 8081B	Aldrin
GC	EPA 8081A / 8081B	alpha-BHC
GC	EPA 8081A / 8081B	beta-BHC
GC	EPA 8081A / 8081B	delta-BHC
GC	EPA 8081A / 8081B	gamma-BHC (Lindane)
GC	EPA 8081A / 8081B	DDD (4,4)
GC	EPA 8081A / 8081B	DDE (4,4)
GC	EPA 8081A / 8081B	DDT (4,4)
GC	EPA 8081A / 8081B	Dieldrin
GC	EPA 8081A / 8081B	Endosulfan I
GC	EPA 8081A / 8081B	Endosulfan II
GC	EPA 8081A / 8081B	Endosulfan sulfate
GC	EPA 8081A / 8081B	Endrin
GC	EPA 8081A / 8081B	Endrin Aldehyde
GC	EPA 8081A / 8081B	Heptachlor
GC	EPA 8081A / 8081B	Heptachlor epoxide
GC	EPA 8081A / 8081B	Methoxychlor
GC	EPA 8081A / 8081B	alpha-Chlordane
GC	EPA 8081A / 8081B	gamma-Chlordane
GC	EPA 8081A / 8081B	Endrin Ketone
GC	EPA 8081A / 8081B	Toxaphene
GC	EPA 8081A / 8081B	Technical Chlordane
GC	EPA 8081A / 8081B	cis-Nonachlor
GC	EPA 8081A / 8081B	DDD (2,4)
GC	EPA 8081A / 8081B	DDE (2,4)
GC	EPA 8081A / 8081B	DDT (2,4)
GC	EPA 8081A / 8081B	Mirex
GC	EPA 8081A / 8081B	Oxychlordane
GC	EPA 8081A / 8081B	trans-Nonachlor
GC	EPA 8082 / 8082A	PCB1016
GC	EPA 8082 / 8082A	PCB1221
GC	EPA 8082 / 8082A	PCB1232
GC	EPA 8082 / 8082A	PCB1242

Non-Potable Water		
Technology	Method	Analyte
GC	EPA 8082 / 8082A	PCB1248
GC	EPA 8082 / 8082A	PCB1254
GC	EPA 8082 / 8082A	PCB1260
GC	EPA 8082 / 8082A	PCB1262
GC	EPA 8082 / 8082A	PCB1268
GC	EPA 8082 / 8082A	PCB 8
GC	EPA 8082 / 8082A	PCB 18
GC	EPA 8082 / 8082A	PCB 28
GC	EPA 8082 / 8082A	PCB 44
GC	EPA 8082 / 8082A	PCB 52
GC	EPA 8082 / 8082A	PCB 66
GC	EPA 8082 / 8082A	PCB 77
GC	EPA 8082 / 8082A	PCB 81
GC	EPA 8082 / 8082A	PCB 101
GC	EPA 8082 / 8082A	PCB 105
GC	EPA 8082 / 8082A	PCB 114
GC	EPA 8082 / 8082A	PCB 118
GC	EPA 8082 / 8082A	PCB 123
GC	EPA 8082 / 8082A	PCB 126
GC	EPA 8082 / 8082A	PCB 128
GC	EPA 8082 / 8082A	PCB 138
GC	EPA 8082 / 8082A	PCB 153
GC	EPA 8082 / 8082A	PCB 156
GC	EPA 8082 / 8082A	PCB 157
GC	EPA 8082 / 8082A	PCB 167
GC	EPA 8082 / 8082A	PCB 169
GC	EPA 8082 / 8082A	PCB 170
GC	EPA 8082 / 8082A	PCB 180
GC	EPA 8082 / 8082A	PCB 187
GC	EPA 8082 / 8082A	PCB 189
GC	EPA 8082 / 8082A	PCB 195
GC	EPA 8082 / 8082A	PCB 206
GC	EPA 8082 / 8082A	PCB 209
GC	EPA 8082 / 8082A	PCB 110
GC	EPA 8141A / 8141B	Azinphos-methyl
GC	EPA 8141A / 8141B	Bolstar
GC	EPA 8141A / 8141B	Chlorpyrifos
GC	EPA 8141A / 8141B	Coumaphos

Non-Potable Water		
Technology	Method	Analyte
GC	EPA 8141A / 8141B	Total Demeton
GC	EPA 8141A / 8141B	Diazinon
GC	EPA 8141A / 8141B	Dichlorvos
GC	EPA 8141A / 8141B	Disulfoton
GC	EPA 8141A / 8141B	Ethoprop
GC	EPA 8141A / 8141B	Fensulfothion
GC	EPA 8141A / 8141B	Fenthion
GC	EPA 8141A / 8141B	Merphos
GC	EPA 8141A / 8141B	Mevinphos
GC	EPA 8141A / 8141B	Naled
GC	EPA 8141A / 8141B	Methyl Parathion
GC	EPA 8141A / 8141B	Phorate
GC	EPA 8141A / 8141B	Ronnel
GC	EPA 8141A / 8141B	Stirophos
GC	EPA 8141A / 8141B	Tokuthion
GC	EPA 8141A / 8141B	Trichloronate
GC	EPA 8141A / 8141B	Dimethoate
GC	EPA 8141A / 8141B	EPN
GC	EPA 8141A / 8141B	Famphur
GC	EPA 8141A / 8141B	Malathion
GC	EPA 8141A / 8141B	Ethyl Parathion
GC	EPA 8141A / 8141B	O,O,O-Triethylphosphorothioate
GC	EPA 8141A / 8141B	Sulfotepp
GC	EPA 8141A / 8141B	Thionazin
GC	EPA 8141A / 8141B	Tributyl Phosphate
GC	EPA 8151A	Acifluorfen
GC	EPA 8151A	Bentazon
GC	EPA 8151A	Chloramben
GC	EPA 8151A	2,4-D
GC	EPA 8151A	2,4-DB
GC	EPA 8151A	Dacthal
GC	EPA 8151A	Dalapon
GC	EPA 8151A	Dicamba
GC	EPA 8151A	3,5-Dichlorobenzoic acid
GC	EPA 8151A	Dichlorprop
GC	EPA 8151A	Dinoseb
GC	EPA 8151A	MCPA
GC	EPA 8151A	MCPP

Non-Potable Water		
Technology	Method	Analyte
GC	EPA 8151A	4-Nitrophenol
GC	EPA 8151A	Pentachlorophenol
GC	EPA 8151A	Picloram
GC	EPA 8151A	Silvex
GC	EPA 8151A	2,4,5-T
GC-MS	EPA 8260B / 8260 <mark>C</mark>	Acetone
GC-MS	EPA 8260B / 8260C	Acetonitrile
GC-MS	EPA 8260B / 8260C	Acrolein
GC-MS	EPA 8260B / 8260C	Acrylonitrile
GC-MS	EPA 8260B / 8260C	Benzene
GC-MS	EPA 8260B / 8260C	Bromobenzene
GC-MS	EPA 8260B / 8260C	Bromochloromethane
GC-MS	EPA 8260B / 8260C	Bromodichloromethane
GC-MS	EPA 8260B / 8260C	Bromoform
GC-MS	EPA 8260B / 8260C	Bromomethane
GC-MS	EPA 8260B / 8260C	tert-Butyl alcohol
GC-MS	EPA 8260B / 8260C	2-Butanone (MEK)
GC-MS	EPA 8260B / 8260C	n-Butylbenzene
GC-MS	EPA 8260B / 8260C	sec-Butylbenzene
GC-MS	EPA 8260B / 8260C	tert-Butylbenzene
GC-MS	EPA 8260B / 8260C	Carbon disulfide
GC-MS	EPA 8260B / 8260C	Carbon tetrachloride
GC-MS	EPA 8260B / 8260C	Chlorobenzene
GC-MS	EPA 8260B / 8260C	2-Chloroethyl vinyl ether
GC-MS	EPA 8260B / 8260C	Chloroethane
GC-MS	EPA 8260B / 8260C	Chloroform
GC-MS	EPA 8260B / 8260C	1-Chlorohexane
GC-MS	EPA 8260B / 8260C	Chloromethane
GC-MS	EPA 8260B / 8260C	2-Chlorotoluene
GC-MS	EPA 8260B / 8260C	4-Chlorotoluene
GC-MS	EPA 8260B / 8260C	Isopropyl ether (DIPE)
GC-MS	EPA 8260B / 8260C	Dibromochloromethane
GC-MS	EPA 8260B / 8260C	1,2-Dibromo-3-chloropropane
GC-MS	EPA 8260B / 8260C	1,2-Dibromoethane
GC-MS	EPA 8260B / 8260C	Dibromomethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloroethane
GC-MS	EPA 8260B / 8260C	1,2-Dichloroethane
GC-MS	EPA 8260B / 8260C	1,2-Dichlorobenzene

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C	1,3-Dichlorobenzene
GC-MS	EPA 8260B / 8260C	trans-1,4-Dichloro-2-Butene
GC-MS	EPA 8260B / 8260C	1,4-Dichlorobenzene
GC-MS	EPA 8260B / 8260C	Dichlorodifluoromethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloroethene
GC-MS	EPA 8260B / 8260C	cis-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C	trans-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C	Dichlorofluoromethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloropropene
GC-MS	EPA 8260B / 8260C	1,2-Dichloropropane
GC-MS	EPA 8260B / 8260C	1,3-Dichloropropane
GC-MS	EPA 8260B / 8260C	2,2-Dichloropropane
GC-MS	EPA 8260B / 8260C	cis-1,3-Dichloropropene
GC-MS	EPA 8260B / 8260C	trans-1,3-Dichloropropene
GC-MS	EPA 8260B / 8260C	tert-Butyl ethyl ether (ETBE)
GC-MS	EPA 8260B / 8260C	Ethyl Methacrylate
GC-MS	EPA 8260B / 8260C	Ethylbenzene
GC-MS	EPA 8260B / 8260C	2-Hexanone (MBK)
GC-MS	EPA 8260B / 8260C	Hexachlorobutadiene
GC-MS	EPA 8260B / 8260C	Iodomethane
GC-MS	EPA 8260B / 8260C	Isopropylbenzene
GC-MS	EPA 8260B / 8260C	p-Isopropyltoluene
GC-MS	EPA 8260B / 8260C	Methylene Chloride
GC-MS	EPA 8260B / 8260C	4-Methyl-2-pentanone (MIBK)
GC-MS	EPA 8260B / 8260C	tert-Butyl methyl ether
GC-MS	EPA 8260B / 8260C	Naphthalene
GC-MS	EPA 8260B / 8260C	n-Propylbenzene
GC-MS	EPA 8260B / 8260C	Styrene
GC-MS	EPA 8260B / 8260C	tert-Amyl methyl ether (TAME)
GC-MS	EPA 8260B / 8260C	1,1,1,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C	1,1,2,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C	Tetrachloroethene
GC-MS	EPA 8260B / 8260C	Toluene
GC-MS	EPA 8260B / 8260C	1,1,1-Trichloroethane
GC-MS	EPA 8260B / 8260C	1,1,2-Trichloroethane
GC-MS	EPA 8260B / 8260C	1,2,3-Trichlorobenzene
GC-MS	EPA 8260B / 8260C	1,2,4-Trichlorobenzene
GC-MS	EPA 8260B / 8260C	Trichloroethene

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C	Trichlorofluoromethane
GC-MS	EPA 8260B / 8260C	1,2,3-Trichloropropane
GC-MS	EPA 8260B / 8260C	1,1,2-Trichloro1,2,2- trifluoroethane
GC-MS	EPA 8260B / 8260C	1,2,4-Trimethylbenzene
GC-MS	EPA 8260B / 8260C	1,3,5-Trimethylbenzene
GC-MS	EPA 8260B / 8260C	Vinyl Acetate
GC-MS	EPA 8260B / 8260C	Vinyl Chloride
GC-MS	EPA 8260B / 8260C	m-Xylene & p-xylene
GC-MS	EPA 8260B / 8260C	o-Xylene
GC-MS	EPA 8260B / 8260C	Allyl Chloride
GC-MS	EPA 8260B / 8260C	Benzyl chloride
GC-MS	EPA 8260B / 8260C	Chloroprene
GC-MS	EPA 8260B / 8260C	Cyclohexane
GC-MS	EPA 8260B / 8260C	1,4-Dioxane
GC-MS	EPA 8260B / 8260C	2-Chloro-1,1,1-trifluoroethane
GC-MS	EPA 8260B / 8260C	Chlorotrifluoroethylene
GC-MS	EPA 8260B / 8260C	cis-1,4-Dichloro-2-butene
GC-MS	EPA 8260B / 8260C	Ethanol
GC-MS	EPA 8260B / 8260C	Ethyl Methacrylate
GC-MS	EPA 8260B / 8260C	Isobutyl Alcohol
GC-MS	EPA 8260B / 8260C	Methacrylonitrile
GC-MS	EPA 8260B / 8260C	Methyl Methacrylate
GC-MS	EPA 8260B / 8260C	Pentachloroethane
GC-MS	EPA 8260B / 8260C	Propionitrile
GC-MS	EPA 8260B / 8260C	Sec-Propyl alcohol
GC-MS	EPA 8260B / 8260C	Tetrahydrofuran
GC-MS	EPA 8260B / 8260C	trans-1,4-Dichloro-2-butene
GC-MS	EPA 8260B / 8260C SIM	Benzene
GC-MS	EPA 8260B / 8260C SIM	Carbon tetrachloride
GC-MS	EPA 8260B / 8260C SIM	Chloroform
GC-MS	EPA 8260B / 8260C SIM	Chloromethane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dibromo-3-chloropropane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dibromoethane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dichloroethane
GC-MS	EPA 8260B / 8260C SIM	1,1-Dichloroethene
GC-MS	EPA 8260B / 8260C SIM	cis-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C SIM	trans-1,2-Dichloroethene

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C SI <mark>M</mark>	1,1,2,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C SIM	Tetrachloroethene
GC-MS	EPA 8260B / 8260C SIM	1,1,1-Trichloroethane
GC-MS	EPA 8260B / 8260C SIM	1,1,2-Trichloroethane
GC-MS	EPA 8260B / 8260C SIM	Trichloroethene
GC-MS	EPA 8260B / 8260C SIM	1,2,3-Trichloropropane
GC-MS	EPA 8260B / 8260C SIM	Vinyl Chloride
GC-MS	EPA 8260B / 8260C SIM	1,4-Dioxane
GC-MS	EPA 8270C / 8270D	Acenaphthene
GC-MS	EPA 8270C / 8270D	Acenaphthylene
GC-MS	EPA 8270C / 8270D	Aniline
GC-MS	EPA 8270C / 8270D	Anthracene
GC-MS	EPA 8270C / 8270D	Azobenzene
GC-MS	EPA 8270C / 8270D	Benzidine
GC-MS	EPA 8270C / 8270D	Benzo(a)anthracene
GC-MS	EPA 8270C / 8270D	benzo(a)pyrene
GC-MS	EPA 8270C / 8270D	Benzo(b)fluoranthene
GC-MS	EPA 8270C / 8270D	Benzo(e)pyrene
GC-MS	EPA 8270C / 8270D	Benzo(g,h,i)perylene
GC-MS	EPA 8270C / 8270D	Benzo(k)fluoranthene
GC-MS	EPA 8270C / 8270D	Benzoic Acid
GC-MS	EPA 8270C / 8270D	Benzyl Alcohol
GC-MS	EPA 8270C / 8270D	Biphenyl
GC-MS	EPA 8270C / 8270D	bis(2-chloroethoxy)methane
GC-MS	EPA 8270C / 8270D	bis(2-chloroethyl)ether
GC-MS	EPA 8270C / 8270D	2,2-oxybis(1-chloropropane)
GC-MS	EPA 8270C / 8270D	bis(2-Ethylhexyl)adipate
GC-MS	EPA 8270C / 8270D	bis(2-Ethylhexyl)phthalate
GC-MS	EPA 8270C / 8270D	4-Bromophenyl-phenylether
GC-MS	EPA 8270C / 8270D	Butylbenzylphthalate
GC-MS	EPA 8270C / 8270D	Carbazole
GC-MS	EPA 8270C / 8270D	4-Chloro-3-methylphenol
GC-MS	EPA 8270C / 8270D	4-Chloroaniline
GC-MS	EPA 8270C / 8270D	2-Chloronaphthalene
GC-MS	EPA 8270C / 8270D	2-Chlorophenol
GC-MS	EPA 8270C / 8270D	4-Chlorophenyl-phenylether
GC-MS	EPA 8270C / 8270D	Chrysene
GC-MS	EPA 8270C / 8270D	Dibenzo(a,h)anthracene

www.anab.org Page 16 of 46

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8270C / 8270D	Dibenzofuran
GC-MS	EPA 8270C / 8270D	1,2-Dichlorobenzene
GC-MS	EPA 8270C / 8270D	1,3-Dichlorobenzene
GC-MS	EPA 8270C / 8270D	1,4-Dichlorobenzene
GC-MS	EPA 8270C / 8270D	3,3'-Dichlorobenzidine
GC-MS	EPA 8270C / 8270D	2,4-Dichlorophenol
GC-MS	EPA 8270C / 8270D	Diethylphthalate
GC-MS	EPA 8270C / 8270D	2,6-Dimethylnaphthalene
GC-MS	EPA 8270C / 8270D	2,4-Dimethylphenol
GC-MS	EPA 8270C / 8270D	Dimethylphthalate
GC-MS	EPA 8270C / 8270D	Di-n-butylphthalate
GC-MS	EPA 8270C / 8270D	4,6-Dinitro-2-methylphenol
GC-MS	EPA 8270C / 8270D	2,4-Dinitrophenol
GC-MS	EPA 8270C / 8270D	2,4-Dinitrotoluene
GC-MS	EPA 8270C / 8270D	2,6-Dinitrotoluene
GC-MS	EPA 8270C / 8270D	Di-n-octylphthalate
GC-MS	EPA 8270C / 8270D	Fluoranthene
GC-MS	EPA 8270C / 8270D	Fluorene
GC-MS	EPA 8270C / 8270D	Hexachlorobenzene
GC-MS	EPA 8270C / 8270D	Hexachlorobutadiene
GC-MS	EPA 8270C / 8270D	Hexachlorocyclopentadiene
GC-MS	EPA 8270C / 8270D	Hexachloroethane
GC-MS	EPA 8270C / 8270D	Indeno(1,2,3-cd)pyrene
GC-MS	EPA 8270C / 8270D	Isophorone
GC-MS	EPA 8270C / 8270D	1-Methylnaphthalene
GC-MS	EPA 8270C / 8270D	2-Methylnaphthalene
GC-MS	EPA 8270C / 8270D	1-Methylphenanthrene
GC-MS	EPA 8270C / 8270D	2-Methylphenol
GC-MS	EPA 8270C / 8270D	3/4-Methylphenol
GC-MS	EPA 8270C / 8270D	Naphthalene
GC-MS	EPA 8270C / 8270D	2-Nitroaniline
GC-MS	EPA 8270C / 8270D	3-Nitroaniline
GC-MS	EPA 8270C / 8270D	4-Nitroaniline
GC-MS	EPA 8270C / 8270D	Nitrobenzene
GC-MS	EPA 8270C / 8270D	2-Nitrophenol
GC-MS	EPA 8270C / 8270D	4-Nitrophenol
GC-MS	EPA 8270C / 8270D	n-Nitrosodimethylamine
GC-MS	EPA 8270C / 8270D	n-Nitroso-di-n-propylamine

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8270C / 8270D	n-Nitrosodiphenylamine
GC-MS	EPA 8270C / 8270D	Pentachlorophenol
GC-MS	EPA 8270C / 8270D	Perylene
GC-MS	EPA 8270C / 8270D	Phenanthrene
GC-MS	EPA 8270C / 8270D	Phenol
GC-MS	EPA 8270C / 8270D	Pyrene
GC-MS	EPA 8270C / 8270D	Pyridine
GC-MS	EPA 8270C / 8270D	2,3,4,6-Tetrachlorophenol
GC-MS	EPA 8270C / 8270D	1,2,4-Trichlorobenzene
GC-MS	EPA 8270C / 8270D	2,3,4-Trichlorophenol
GC-MS	EPA 8270C / 8270D	2,3,5-Trichlorophenol
GC-MS	EPA 8270C / 8270D	2,4,5-Trichlorophenol
GC-MS	EPA 8270C / 8270D	2,4,6-Trichlorophenol
GC-MS	EPA 8270C / 8270D	2,3,5-Trimethylnaphthalene
GC-MS	EPA 8270C / 8270D	1,2,4,5-Tetrachlorobenzene
GC-MS	EPA 8270C / 8270D	1,3,5-Trinitrobenzene
GC-MS	EPA 8270C / 8270D	1,3-Dinitrobenzene
GC-MS	EPA 8270C / 8270D	1,4-Dioxane
GC-MS	EPA 8270C / 8270D	1,4-Naphthoquinone
GC-MS	EPA 8270C / 8270D	1-Chloronaphthalene
GC-MS	EPA 8270C / 8270D	1-Naphthylamine
GC-MS	EPA 8270C / 8270D	2,6-Dichlorophenol
GC-MS	EPA 8270C / 8270D	2-acetylaminofluorene
GC-MS	EPA 8270C / 8270D	2-Naphthylamine
GC-MS	EPA 8270C / 8270D	2-Picoline
GC-MS	EPA 8270C / 8270D	3,3-Dimethylbenzidine
GC-MS	EPA 8270C / 8270D	3,4-Dimethylphenol
GC-MS	EPA 8270C / 8270D	3,5-Dimethylphenol
GC-MS	EPA 8270C / 8270D	3-Methylchlolanthrene
GC-MS	EPA 8270C / 8270D	4-Aminobiphenyl
GC-MS	EPA 8270C / 8270D	4-Nitroquinoline-N-oxide
GC-MS	EPA 8270C / 8270D	5-Nitro-o-toluidine
GC-MS	EPA 8270C / 8270D	7,12-Dimethylbenz(a)anthracene
GC-MS	EPA 8270C / 8270D	a,a-dimethylphenethylamine
GC-MS	EPA 8270C / 8270D	Acetophenone
GC-MS	EPA 8270C / 8270D	Aramite
GC-MS	EPA 8270C / 8270D	Atrazine
GC-MS	EPA 8270C / 8270D	Biphenyl

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8270C / 8270D	Chlorobenzilate
GC-MS	EPA 8270C / 8270D	Diallate
GC-MS	EPA 8270C / 8270D	Dibenzo(a,j)acridine
GC-MS	EPA 8270C / 8270D	Dimethoate
GC-MS	EPA 8270C / 8270D	Dinoseb
GC-MS	EPA 8270C / 8270D	Diphenyl ether
GC-MS	EPA 8270C / 8270D	Disulfoton
GC-MS	EPA 8270C/ 8270D	Ethyl methacrylate
GC-MS	EPA 8270C / 8270D	Ethyl methanesulfonate
GC-MS	EPA 8270C / 8270D	Ethyl parathion
GC-MS	EPA 8270C / 8270D	Famphur
GC-MS	EPA 8270C / 8270D	Hexachlorophene
GC-MS	EPA 8270C / 8270D	Hexachloropropene
GC-MS	EPA 8270C / 8270D	Isodrin
GC-MS	EPA 8270C / 8270D	Isosafrole
GC-MS	EPA 8270C / 8270D	kepone
GC-MS	EPA 8270C / 8270D	Methapyrilene
GC-MS	EPA 8270C / 8270D	Methyl methanesulfonate
GC-MS	EPA 8270C / 8270D	Methyl parathion
GC-MS	EPA 8270C / 8270D	N-nitrosodiethylamine
GC-MS	EPA 8270C / 8270D	N-Nitrosodi-n-butylamine
GC-MS	EPA 8270C / 8270D	N-Nitrosomethylethylamine
GC-MS	EPA 8270C / 8270D	N-Nitrosomorpholine
GC-MS	EPA 8270C / 8270D	N-Nitrosopiperdine
GC-MS	EPA 8270C / 8270D	N-Nitrosopyrrolidine
GC-MS	EPA 8270C / 8270D	O,O,O-triethyl phosphorothi
GC-MS	EPA 8270C / 8270D	o-toluidine
GC-MS	EPA 8270C / 8270D	p-Dimethylaminoazobenze
GC-MS	EPA 8270C / 8270D	Pentachlorobenzene
GC-MS	EPA 8270C / 8270D	Pentachloroethane
GC-MS	EPA 8270C / 8270D	Pentachloronitrobenzene
GC-MS	EPA 8270C / 8270D	Phenacetin
GC-MS	EPA 8270C / 8270D	Phorate
GC-MS	EPA 8270C / 8270D	p-phenylenediamine
GC-MS	EPA 8270C / 8270D	Pronamide
GC-MS	EPA 8270C / 8270D	Safrole
GC-MS	EPA 8270C / 8270D	Sulfotepp
GC-MS	EPA 8270C / 8270D	Thionazin

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8270C / 8270D	Benzaldehyde
GC-MS	EPA 8270C / 8270D	Caprolactam
GC-MS	EPA 8270C / 8270D SIM	Acenaphthene
GC-MS	EPA 8270C / 8270D SIM	Acenaphthylene
GC-MS	EPA 8270C / 8270D S <mark>IM</mark>	Anthracene
GC-MS	EPA 8270C / 8270D SIM	Azobenzene
GC-MS	EPA 8270C / 8270 <mark>D SIM</mark>	Benzo(a)anthracene
GC-MS	EPA 8270C / 8270D SIM	benzo(a)pyrene
GC-MS	EPA 8270C / 8270D SIM	Benzo(b)fluoranthene
GC-MS	EPA 8270C / 8270D SIM	Benzo(e)pyrene
GC-MS	EPA 8270C/ 8270D SIM	Benzo(g,h,i)perylene
GC-MS	EPA 8270C / 8270D SIM	Benzo(k)fluoranthene
GC-MS	EPA 8270C / 8270D SIM	Biphenyl
GC-MS	EPA 8270C / 8270D SIM	bis(2-chloroethyl)ether
GC-MS	EPA 8270C / 8270D SIM	bis(2-Ethylhexyl)phthalate
GC-MS	EPA 8270C / 8270D SIM	Carbazole
GC-MS	EPA 8270C / 8270D SIM	4-Chloro-3-methylphenol
GC-MS	EPA 8270C / 8270D SIM	2-Chlorophenol
GC-MS	EPA 8270C / 8270D SIM	Chrysene
GC-MS	EPA 8270C / 8270D SIM	Dibenzo(a,h)anthracene
GC-MS	EPA 8270C / 8270D SIM	2,4-Dichlorophenol
GC-MS	EPA 8270C / 8270D SIM	2,6-Dimethylnaphthalene
GC-MS	EPA 8270C / 8270D SIM	2,4-Dimethylphenol
GC-MS	EPA 8270C / 8270D SIM	Fluoranthene
GC-MS	EPA 8270C / 8270D SIM	Fluorene
GC-MS	EPA 8270C / 8270D SIM	Hexachlorobenzene
GC-MS	EPA 8270C / 8270D SIM	Indeno(1,2,3-cd)pyrene
GC-MS	EPA 8270C / 8270D SIM	1-Methylnaphthalene
GC-MS	EPA 8270C / 8270D SIM	2-Methylnaphthalene
GC-MS	EPA 8270C / 8270D SIM	1-Methylphenanthrene
GC-MS	EPA 8270C / 8270D SIM	Naphthalene
GC-MS	EPA 8270C / 8270D SIM	n-Nitrosodimethylamine
GC-MS	EPA 8270C / 8270D SIM	n-Nitroso-di-n-propylamine
GC-MS	EPA 8270C / 8270D SIM	Pentachlorophenol
GC-MS	EPA 8270C / 8270D SIM	Perylene
GC-MS	EPA 8270C / 8270D SIM	Phenanthrene
GC-MS	EPA 8270C / 8270D SIM	Phenol
GC-MS	EPA 8270C / 8270D SIM	Pyrene

Non-Potable Water		
Technology	Method	Analyte
GC-MS	EPA 8270C / 8270D SIM	2,4,5-Trichlorophenol
GC-MS	EPA 8270C / 8270D SIM	2,4,6-Trichlorophenol
GC-MS	EPA 8270C / 8270D SIM	2,3,5-Trimethylnaphthalene
GC-MS	EPA 8270C / 8270D SIM	1,4-Dioxane
GC-MS	EPA 8270C / 8270D SIM	Butylbenzylphthalate
GC-MS	EPA 8270C / 8270D SIM	Diethylphthalate
GC-MS	EPA 8270C / 8270D SIM	Dimethylphthalate
GC-MS	EPA 8270C / 8270D SIM	Di-n-butylphthalate
GC-MS	EPA 8270C / 8270D SIM	Di-n-octylphthalate
HPLC	EPA 8310	Acenaphthene
HPLC	EPA 8310	Acenaphthylene
HPLC	EPA 8310	Anthracene
HPLC	EPA 8310	Benzo(a)anthracene
HPLC	EPA 8310	Benzo(a)pyrene
HPLC	EPA 8310	Benzo(b)fluoranthene
HPLC	EPA 8310	Benzo(g,h,i)perylene
HPLC	EPA 8310	Benzo(k)fluoranthene
HPLC	EPA 8310	Chrysene
HPLC	EPA 8310	Dibenzo(a,h)anthracene
HPLC	EPA 8310	Fluoranthene
HPLC	EPA 8310	Fluorene
HPLC	EPA 8310	Indeno(1,2,3-cd)pyrene
HPLC	EPA 8310	1-Methylnaphthalene
HPLC	EPA 8310	2-Methylnaphthalene
HPLC	EPA 8310	Naphthalene
HPLC	EPA 8310	Phenanthrene
HPLC	EPA 8310	Pyrene
HPLC	EPA 8330A / 8330 B	HMX
HPLC	EPA 8330A / 8330 B	RDX
HPLC	EPA 8330A / 8330 B	1,3,5-TNB
HPLC	EPA 8330A / 8330 B	1,3-DNB
HPLC	EPA 8330A / 8330 B	Tetryl
HPLC	EPA 8330A / 8330 B	Nitrobenzene
HPLC	EPA 8330A / 8330 B	2,4,6-TNT
HPLC	EPA 8330A / 8330 B	4-AM-2,6-DNT
HPLC	EPA 8330A / 8330 B	2-AM-4,6-DNT
HPLC	EPA 8330A / 8330 B	2,6-DNT
HPLC	EPA 8330A / 8330 B	2,4-DNT

Non-Potable Water		
Technology	Method	Analyte
HPLC	EPA 8330A / 8330 B	2-Nitrotoluene
HPLC	EPA 8330A / 8330 B	4-Nitrotoluene
HPLC	EPA 8330A / 8330 B	3-Nitrotoluene
HPLC	EPA 8330A	3,5-Dinitroaniline
HPLC	EPA 8330A	2,4-Diamino-6-nitrotoluene
HPLC	EPA 8330A	2,6-Diamino-4-nitrotoluene
HPLC	EPA 8330A	Picric Acid
HPLC	EPA 8332	Nitroglycerine
HPLC	EPA 8332	PETN
Spectrometric	EPA 9014	Cyanide
Electrode	EPA 9040B / 9040C	pH
IC	EPA 9056 / 9056A	Bromate
IC	EPA 9056 / 9056A	Bromide
IC	EPA 9056 / 9056A	Chloride
IC	EPA 9056 / 9056A	Fluoride
IC	EPA 9056 / 9056A	Nitrate
IC	EPA 9056 / 9056A	Nitrite
IC	EPA 9056 / 9056A	Phosphate
IC	EPA 9056 / 9056A	Sulfate
IC	EPA 9056 / 9056A	Chlorate
IC	EPA 9056 / 9056A	Nitrate - Nitrite
Combustion-IR	EPA 9060A	TOC
Spectrometric	EPA 9065	Phenols
Gravimetric	EPA 9070A	Oil & Grease
GC	RSK175	Methane
GC	RSK175	Acetylene
GC	RSK175	Ethylene
GC	RSK175	Ethane
GC	RSK175	Propane
GC	RSK175	Carbon dioxide
GC	RSK175	Propene
Spectrometric	SM 4500-NH3F-2011 SM 4500-NH3F-1997	Ammonia
Spectrometric	SM 4500-NOrgC-2011NH3F-2011 SM 4500-NOrgC-1997NH3F-1997	TKN
Spectrometric	SM 4500-PE-2011 SM 4500-PE-1999	Phosphorus
Turbidimetric	SM 2130B-2011/ SM 2130B-2001	Turbidity

Non-Potable Water		
Technology	Method	Analyte
Titrimetric	SM 2310B-2011/ SM 2310B-1997	Acidity
Titrimetric	SM 2320B-2011/ SM 2320B-1997	Alkalinity
Titrimetric	SM 2340C-2011/ SM 2340C-1997	Hardness
Platinum Electrode	SM 2510B-2011/ SM 2510B-1997	Specific Conductance
Electrical Conductivity	SM 2520B-1993	Salinity
Gravimetric	SM 2540C-2011/ SM 2540C-1997	TDS
Gravimetric	SM 2540D-2011/ SM 2540D-1997	TSS
Gravimetric	SM 2540B-2011/ SM 2540B-1997	Total Residue
Gravimetric	SM 2540F-2011/ SM 2540F-1997	Settleable Residue
Spectrometric	SM 3500-FeB-2011 SM 3500-FeB-1997	Ferrous iron
IC	SM 4110B-2011/ SM 4110B-2000	Bromate
IC	SM 4110B-2011/ SM 4110B-2000	Bromide
IC	SM 4110B-2011/ SM 4110B-2000	Chloride
IC	SM 4110B-2011/ SM 4110B-2000	Fluoride
IC	SM 4110B-2011/ SM 4110B-2000	Nitrate
IC	SM 4110B-2011/ SM 4110B-2000	Nitrite
IC	SM 4110B-2011/ SM 4110B-2000	Phosphate
IC	SM 4110B-2011/ SM 4110B-2000	Sulfate
IC	SM 4110B-2011/ SM 4110B-2000	Chlorate
IC	SM 4110B-2011/ SM 4110B-2000	Nitrate – Nitrite
Titrimetric	SM 4500-Cl-B-2011 SM 4500-Cl-B-1997	Chloride
Spectrometric	SM 4500-CN E-2011 SM 4500-CN E-1999	Cyanide
Electrode	SM 4500-HB-2011/SM 4500-HB-2000	рН
Spectrometric	SM 4500-NO2B-2011 SM 4500-NO2B-2000	Nitrite-N
Spectrometric	SM 4500-NO3E-2011 SM 4500-NO3E-2000	Nitrate-N
Spectrometric	SM 4500-P E-2011/ SM 4500-P E-1999	Ortho-phosphate
Spectrometric	SM 4500-P E(PB5)-2011 SM 4500-P E(PB5)-1999	Phosphorus
Spectrometric	SM 4500-S2D-2011 SM 4500-S2D-2000	Sulfide
Titrimetric	SM 4500-S2F-2011 SM 4500-S2F-2000	Sulfide
Spectrometric	SM 4500-SiO2C-2011 SM 4500-SiO2C-1997	Silica

Non-Potable V	Water
---------------	--------------

Technology	Method	Analyte
Electrode	SM 5210B-2011/ SM 5210B-2001	BOD
Spectrometric	SM 5220D-2011/ SM 5220D-1997	COD
Combustion-IR	SM 5310B-2011/ SM 5310B-2000	TOC
Spectrometric	SM 5540C-2011/ SM 5540C-2000	Surfactants (MBAS)
Distillation	EPA 9010C	Cyanide
MicroDistillation	QuickChem 10-204-00-1-X	Cyanide
ICP/ICP-MS	SM 2340B-2011/ SM 2340B-1997	Hardness
GC	EPA 8011	DBCP
GC	EPA 8011	EDB
Platinum Electrode	EPA 9050A	Specific Conductance
Gravimetric	SM 5520B-2011/ SM 5520B-2001	Oil & Grease
Preparation	Method	Туре
Purge & Trap	EPA 5030B / EPA 5030C	Volatiles Prep
Acid Digestion	EPA 3010A / EPA 200.8 / EPA 200.7	Metals Prep
Continuous Liquid-Liquid	EPA 3520C	Organic Extraction
Waste Dilution	EPA 3580A	Organic Extraction
TCLP	EPA 1311	Leaching
SPLP	EPA 1312	Leaching

Drinking Water			
Technology	Method	Analyte	
Platinum Electrode	EPA 120.1	Specific Conductance	
Electrode	EPA 150.1	pH	
Turbidimetric	EPA 180.1	Turbidity	
Turbidimetric	SM 2130B-2011/ SM 2130B-2001	Turbidity	
ICP-MS	EPA 200.8	Aluminum	
ICP-MS	EPA 200.8	Antimony	
ICP-MS	EPA 200.8	Arsenic	
ICP-MS	EPA 200.8	Barium	
ICP-MS	EPA 200.8	Beryllium	
ICP-MS	EPA 200.8	Boron	
ICP-MS	EPA 200.8	Cadmium	
ICP-MS	EPA 200.8	Calcium	
ICP-MS	EPA 200.8	Chromium	
ICP-MS	EPA 200.8	Cobalt	

Drinking Water			
Technology	Method	Analyte	
ICP-MS	EPA 200.8	Copper	
ICP-MS	EPA 200.8	Iron	
ICP-MS	EPA 200.8	Lithium	
ICP-MS	EPA 200.8	Lead	
ICP-MS	EPA 200.8	Magnesium	
ICP-MS	EPA 200.8	Manganese	
ICP-MS	EPA 200.8	Molybdenum	
ICP-MS	EPA 200.8	Nickel	
ICP-MS	EPA 200.8	Potassium	
ICP-MS	EPA 200.8	Selenium	
ICP-MS	EPA 200.8	Silver	
ICP-MS	EPA 200.8	Sodium	
ICP-MS	EPA 200.8	Strontium	
ICP-MS	EPA 200.8	Thallium	
ICP-MS	EPA 200.8	Tin	
ICP-MS	EPA 200.8	Titanium	
ICP-MS	EPA 200.8	Uranium	
ICP-MS	EPA 200.8	Vanadium	
ICP-MS	EPA 200.8	Zinc	
IC	EPA 218.6	Hexavalent Chromium	
Cold Vapor	EPA 245.1	Mercury	
IC	EPA 300.0	Bromate	
IC	EPA 300.0	Bromide	
IC	EPA 300.0	Chloride	
IC	EPA 300.0	Fluoride	
IC	EPA 300.0	Nitrate	
IC	EPA 300.0	Nitrite	
IC	EPA 300.0	Phosphate	
IC	EPA 300.0	Sulfate	
IC	EPA 300.0	Chlorate	
IC	EPA 300.0	Nitrate - Nitrite	
IC	EPA 300M	Acetate	
IC	EPA 300M	Butyrate	
IC	EPA 300M	Lactate	
IC	EPA 300M	Propionate	
IC	EPA 300M	Pyruvate	

Drinking Water		
Technology	Method	Analyte
IC	EPA 314.0	Perchlorate
Spectrometric	EPA 410.4	COD
Spectrometric	EPA 420.1	Phenols
GC	EPA 504.1	DBCP
GC	EPA 504.1	EDB
GC-MS	EPA 524.2	Acetone
GC-MS	EPA 524.2	Benzene
GC-MS	EPA 524.2	Bromobenzene
GC-MS	EPA 524.2	Bromochloromethane
GC-MS	EPA 524.2	Bromodichloromethane
GC-MS	EPA 524.2	Bromoform
GC-MS	EPA 524.2	Bromomethane
GC-MS	EPA 524.2	tert-Butyl alcohol
GC-MS	EPA 524.2	2-Butanone (MEK)
GC-MS	EPA 524.2	n-Butylbenzene
GC-MS	EPA 524.2	sec-Butylbenzene
GC-MS	EPA 524.2	tert-Butylbenzene
GC-MS	EPA 524.2	Carbon disulfide
GC-MS	EPA 524.2	Carbon tetrachloride
GC-MS	EPA 524.2	Chlorobenzene
GC-MS	EPA 524.2	Chloroethane
GC-MS	EPA 524.2	Chloroform
GC-MS	EPA 524.2	Chloromethane
GC-MS	EPA 524.2	2-Chlorotoluene
GC-MS	EPA 524.2	4-Chlorotoluene
GC-MS	EPA 524.2	Dibromochloromethane
GC-MS	EPA 524.2	1,2-Dibromo-3-chloropropane
GC-MS	EPA 524.2	1,2-Dibromoethane
GC-MS	EPA 524.2	Dibromomethane
GC-MS	EPA 524.2	1,1-Dichloroethane
GC-MS	EPA 524.2	1,2-Dichloroethane
GC-MS	EPA 524.2	1,2-Dichlorobenzene
GC-MS	EPA 524.2	1,3-Dichlorobenzene
GC-MS	EPA 524.2	1,4-Dichlorobenzene
GC-MS	EPA 524.2	Dichlorodifluoromethane
GC-MS	EPA 524.2	1,1-Dichloroethene

Drinking Water		
Technology	Method	Analyte
GC-MS	EPA 524.2	cis-1,2-Dichloroethene
GC-MS	EPA 524.2	trans-1,2-Dichloroethene
GC-MS	EPA 524.2	1,1-Dichloropropene
GC-MS	EPA 524.2	1,2-Dichloropropane
GC-MS	EPA 524.2	1,3-Dichloropropane
GC-MS	EPA 524.2	2,2-Dichloropropane
GC-MS	EPA 524.2	cis-1,3-Dichloropropene
GC-MS	EPA 524.2	trans-1,3-Dichloropropene
GC-MS	EPA 524.2	tert-Butyl ethyl ether (ETBE)
GC-MS	EPA 524.2	Ethylbenzene
GC-MS	EPA 524.2	2-Hexanone (MBK)
GC-MS	EPA 524.2	Hexachlorobutadiene
GC-MS	EPA 524.2	Isopropyl ether (DIPE)
GC-MS	EPA 524.2	Isopropylbenzene
GC-MS	EPA 524.2	p-Isopropyltoluene
GC-MS	EPA 524.2	Methylene Chloride
GC-MS	EPA 524.2	4-Methyl-2-pentanone (MIBK)
GC-MS	EPA 524.2	tert-Butyl methyl ether
GC-MS	EPA 524.2	Naphthalene
GC-MS	EPA 524.2	n-Propylbenzene
GC-MS	EPA 524.2	Styrene
GC-MS	EPA 524.2	tert-Amyl methyl ether (TAME)
GC-MS	EPA 524.2	1,1,1,2-Tetrachloroethane
GC-MS	EPA 524.2	1,1,2,2-Tetrachloroethane
GC-MS	EPA 524.2	Tetrachloroethene
GC-MS	EPA 524.2	Toluene
GC-MS	EPA 524.2	1,1,1-Trichloroethane
GC-MS	EPA 524.2	1,1,2-Trichloroethane
GC-MS	EPA 524.2	1,2,3-Trichlorobenzene
GC-MS	EPA 524.2	1,2,4-Trichlorobenzene
GC-MS	EPA 524.2	Trichloroethene
GC-MS	EPA 524.2	Trichlorofluoromethane
GC-MS	EPA 524.2	1,2,3-Trichloropropane
GC-MS	EPA 524.2	1,1,2-Trichloro1,2,2- trifluoroethane
GC-MS	EPA 524.2	1,2,4-Trimethylbenzene

Drinking Water		
Technology	Method	Analyte
GC-MS	EPA 524.2	1,3,5-Trimethylbenzene
GC-MS	EPA 524.2	Vinyl Chloride
GC-MS	EPA 524.2	m-Xylene & p-xylene
GC-MS	EPA 524.2	o-Xylene
Titrimetric	SM 2320B-2011/ SM 2320 <mark>B-199</mark> 7	Alkalinity
HPLC-MS	EPA 6850	Perchlorate
Colorimetric	SM 2120B-2011/ SM 2120B-2001	Color
Threshold Odor Test	SM 2150B-2011/ SM 2150B-1997	Odor
ICP/ICP-MS by Calculation	SM 2340B-2011/ SM 2340B-1997	Hardness
Titrimetric	SM 2340C-2011/ SM 2340C-1997	Hardness
Platinum Electrode	SM 2510B-2011/ SM 2510B-1997	Specific Conductance
Gravimetric	SM 2540B-2011/ SM 2540B-1997	Total Residue
Gravimetric	SM 2540C-2011/ SM 2540C-1997	TDS
Gravimetric	SM 2540D-2011/ SM 2540D-1997	TSS
Spectrometric	SM 3500-Fe B-2011/ SM 3500-Fe B-1997	Ferrous Iron
IC	SM 4110B-2011/ SM 4110B-2000	Bromate
IC	SM 4110B-2011/ SM 4110B-2000	Bromide
IC	SM 4110B-2011/ SM 4110B-2000	Chloride
IC	SM 4110B-2011/ SM 4110B-2000	Fluoride
IC	SM 4110B-2011/ SM 4110B-2000	Nitrate
IC	SM 4110B-2011/ SM 4110B-2000	Nitrite
IC	SM 4110B-2011/ SM 4110B-2000	Nitrate - Nitrite
IC	SM 4110B-2011/ SM 4110B-2000	Phosphate
IC	SM 4110B-2011/ SM 4110B-2000	Sulfate
IC	SM 4110B-2011/ SM 4110B-2000	Chlorate
Titrimetric	SM 4500-Cl B-2011/SM 4500-Cl B-1997	Chloride
Spectrometric	SM 4500-CN E-2011 SM 4500-CN E-1999	Cyanide
Spectrometric	SM 4500-CN G-2011 SM 4500-CN G-1999	Cyanides Amenable to Chlorination
Electrode	SM 4500-HB-2011/ SM 4500-HB-2000	pН
Spectrometric	SM 4500-NH3 F-2011 SM 4500-NH3 F-1997	Ammonia
Spectrometric	SM 4500-NO2 B-2011 SM 4500-NO2 B-2000	Nitrite-N
Spectrometric	SM 4500-NO3 E-2011 SM 4500-NO3 E-2000	Nitrate-N

Drinking Water		
Technology	Method	Analyte
Spectrometric	SM 4500-NOrgC-2011 NH3F-2011 SM 4500-NOrgC-1997 NH3F-1997	TKN
Spectrometric	SM 4500-P E-2011/ SM 4500-P E-1999	Ortho-phosphate
Spectrometric	SM 4500-P E(PB5)-2011 SM 4500-P E(PB5)-1999	Phosphorus
Spectrometric	SM 4500-S2D-2011 SM 4500-S2D-2000	Sulfide
Titrimetric	SM 4500-S2 F-2011 SM 4500-S2 F-2000	Sulfide
Spectrometric	SM 4500-SiO2 C-2011 SM 4500-SiO2 C-1997	Silica
Spectrometric	SM 5220D-2011/ SM 5220D-1997	COD
Combustion-IR	S <mark>M 5310</mark> B-2011/ SM 5310B-2000	TOC
Spectrometric	SM 5540C-2011/ SM 5540C-2000	Surfactants
MicroDistillation	QuickChem 10-204-00-1-X	Cyanide

Solid and Chemical Materials

Technology	Method	Analyte
GC	AK101	GRO
GC	AK102	DRO
GC	AK103	RRO
GC	AZ8015	DRO (C10-C22)
GC	AZ8015	ORO (C22-C32)
Visual	s.7.3 SW-846	Reactive Cyanide
Visual	s.7.3 SW-846	Reactive Sulfide
Spectrometric	SM 4500-NH3 F-2011 SM 4500-NH3 F-1997	Ammonia
Spectrometric	SM 4500-NOrgC-2011 NH3F-2011 SM 4500-NOrgC-1997 NH3F-1997	TKN
Spectrometric	SM 4500-NO2B-2011 SM 4500-NO2B-2000	Nitrite-N
Spectrometric	SM 4500-NO3E-2011 SM 4500-NO3E-2000	Nitrate-N
Spectrometric	SM 4500-P E-2011/ SM 4500-P E-1999	Ortho-phosphate
Spectrometric	SM 4500-P E(PB5)-2011 SM 4500-P E(PB5)-1999	Phosphorus
Titrimetric	Walkley Black	TOC
Electrode	EPA 9045C / 9045D	pH

Solid and Chemical Materials		
Technology	Method	Analyte
Spectrometric	EPA 9065	Phenols
Pensky-Martens	EPA 1010 / 1010A	Ignitability
ICP	EPA 6010B / 6010C	Aluminum
ICP	EPA 6010B / 6010C	Antimony
ICP	EPA 6010B / 6010C	Arsenic
ICP	EPA 6010B / 6010C	Barium
ICP	EPA 6010B / 6010C	Beryllium
ICP	EPA 6010B / 6010C	Boron
ICP	EPA 6010B / 6010C	Cadmium
ICP	EPA 6010B / 6010C	Calcium
ICP	EPA 6010B / 6010C	Chromium
ICP	EPA 6010B / 6010C	Cobalt
ICP	EPA 6010B / 6010C	Copper
ICP	EPA 6010B / 6010C	Iron
ICP	EPA 6010B / 6010C	Lead
ICP	EPA 6010B / 6010C	Lithium
ICP	EPA 6010B / 6010C	Magnesium
ICP	EPA 6010B / 6010C	Manganese
ICP	EPA_6010B / 6010C	Molybdenum
ICP	EPA 6010B / 6010C	Nickel
ICP	EPA 6010B / 6010C	Potassium
ICP	EPA 6010B / 6010C	Selenium
ICP	EPA 6010B / 6010C	Silver
ICP	EPA 6010B / 6010C	Sodium
ICP	EPA 6010B / 6010C	Strontium
ICP	EPA 6010B / 6010C	Thallium
ICP	EPA 6010B / 6010C	Tin
ICP	EPA 6010B / 6010C	Titanium
ICP	EPA 6010B / 6010C	Vanadium
ICP	EPA 6010B / 6010C	Zinc
ICP-MS	EPA 6020A	Aluminum
ICP-MS	EPA 6020A	Antimony
ICP-MS	EPA 6020A	Arsenic
ICP-MS	EPA 6020A	Barium
ICP-MS	EPA 6020A	Beryllium
ICP-MS	EPA 6020A	Boron
ICP-MS	EPA 6020A	Cadmium
ICP-MS	EPA 6020A	Calcium

Solid and Chemical Materials		
Technology	Method	Analyte
ICP-MS	EPA 6020A	Chromium
ICP-MS	EPA 6020A	Cobalt
ICP-MS	EPA 6020A	Copper
ICP-MS	EPA 6020A	Iron
ICP-MS	EPA 6020A	Lead
ICP-MS	EPA 6020A	Lithium
ICP-MS	EPA 6020A	Magnesium
ICP-MS	EPA 6020A	Manganese
ICP-MS	EPA 6020A	Mercury
ICP-MS	EPA 6020A	Molybdenum
ICP-MS	EPA 6020A	Nickel
ICP-MS	EPA 6020A	Potassium
ICP-MS	ÉPA 6020A	Selenium
ICP-MS	EPA 6020A	Silver
ICP-MS	EPA 6020A	Sodium
ICP-MS	EPA 6020A	Strontium
ICP-MS	EPA 6020A	Thallium
ICP-MS	EPA 6020A	Tin
ICP-MS	EPA 6020A	Titanium
ICP-MS	EPA 6020A	Tungsten
ICP-MS	EPA 6020A	Uranium
ICP-MS	EPA 6020A	Vanadium
ICP-MS	EPA 6020A	Zinc
HPLC-MS	EPA 6850	Perchlorate
Spectrometric	EPA 7196A	Hex. Chromium
IC	EPA 7199	Hex. Chromium
Cold-Vapor	EPA 7471A / 7471B	Mercury
GC	EPA 8011	DBCP
GC	EPA 8011	EDB
GC	EPA 8015B / 8015C / 8015D	GRO
GC	EPA 8015B / 8015C / 8015D	DRO
GC	EPA 8015B / 8015C / 8015D	ORO
GC	EPA 8015B / 8015C / 8015D	JP5
GC	EPA 8015B / 8015C	Ethanol
GC	EPA 8015B / 8015C	Isopropanol
GC	EPA 8015B / 8015C	Diethylene Glycol
GC	EPA 8015B / 8015C	Ethylene Glycol
GC	EPA 8015B / 8015C	Triethylene Glycol

Solid and Chemical Materials		
Technology	Method	Analyte
GC	EPA 8015B / 8015C / 80 <mark>1</mark> 5D	JP4
GC	EPA 8015B / 8015C	Methanol
GC	EPA 8015B / 8015C	Propylene Glycol
GC	EPA 8081A / 8081B	Aldrin
GC	EPA 8081A / 8081B	alpha-BHC
GC	EPA 8081A / 8081B	beta-BHC
GC	EPA 8081A / 8081B	delta-BHC
GC	EPA 8081A / 8081B	gamma-BHC (Lindane)
GC	EPA 8081A / 8081B	DDD (4,4)
GC	EPA 8081A / 8081B	DDE (4,4)
GC	EPA 8081A / 8081B	DDT (4,4)
GC	EPA 8081A / 8081B	Dieldrin
GC	EPA 8081A / 8081B	Endosulfan I
GC	EPA 8081A / 8081B	Endosulfan II
GC	EPA 8081A / 8081B	Endosulfan sulfate
GC	EPA 8081A / 8081B	Endrin
GC	EPA 8081A / 8081B	Endrin Aldehyde
GC	EPA 8081A / 8081B	Heptachlor
GC	EPA 8081A / 8081B	Heptachlor epoxide
GC	EPA 8081A / 8081B	Methoxychlor
GC	EPA 8081A / 8081B	alpha-Chlordane
GC	EPA 8081A / 8081B	gamma-Chlordane
GC	EPA 8081A / 8081B	Endrin Ketone
GC	EPA 8081A / 8081B	Toxaphene
GC	EPA 8081A / 8081B	Technical Chlordane
GC	EPA 8081A / 8081B	cis-Nonachlor
GC	EPA 8081A / 8081B	DDD (2,4)
GC	EPA 8081A / 8081B	DDE (2,4)
GC	EPA 8081A / 8081B	DDT (2,4)
GC	EPA 8081A / 8081B	Mirex
GC	EPA 8081A / 8081B	Oxychlordane
GC	EPA 8081A / 8081B	trans-Nonachlor
GC	EPA 8082 / 8082A	PCB1016
GC	EPA 8082 / 8082A	PCB1221
GC	EPA 8082 / 8082A	PCB1232
GC	EPA 8082 / 8082A	PCB1242
GC	EPA 8082 / 8082A	PCB1248
GC	EPA 8082 / 8082A	PCB1254

Solid and Chemical Materials		
Technology	Method	Analyte
GC	EPA 8082 / 8082A	PCB1260
GC	EPA 8082 / 8082A	PCB1262
GC	EPA 8082 / 8082A	PCB1268
GC	EPA 8082 / 8082A	PCB 8
GC	EPA 8082 / 8082A	PCB 18
GC	EPA 8082 / 8082A	PCB 28
GC	EPA 8082 / 8082A	PCB 44
GC	EPA 8082 / 8082A	PCB 52
GC	EPA 8082 / 8082A	PCB 66
GC	EPA 8082 / 8082A	PCB 77
GC	EPA 8082 / 8082A	PCB 81
GC	EPA 8082 / 8082A	PCB 101
GC	EPA 8082 / 8082A	PCB 105
GC	EPA 8082 / 8082A	PCB 110
GC	EPA 8082 / 8082A	PCB 114
GC	EPA 8082 / 8082A	PCB 118
GC	EPA 8082 / 8082A	PCB 123
GC	EPA 8082 / 8082A	PCB 126
GC	EPA 8082 / 8082A	PCB 128
GC	EPA 8082 / 8082A	PCB 138
GC	EPA 8082 / 8082A	PCB 153
GC	EPA 8082 / 8082A	PCB 156
GC	EPA 8082 / 8082A	PCB 157
GC	EPA 8082 / 8082A	PCB 167
GC	EPA 8082 / 8082A	PCB 169
GC	EPA 8082 / 8082A	PCB 170
GC	EPA 8082 / 8082A	PCB 180
GC	EPA 8082 / 8082A	PCB 187
GC	EPA 8082 / 8082A	PCB 189
GC	EPA 8082 / 8082A	PCB 195
GC	EPA 8082 / 8082A	PCB 206
GC	EPA 8082 / 8082A	PCB 209
GC	EPA 8141A / 8141B	Azinphos-methyl
GC	EPA 8141A / 8141B	Bolstar
GC	EPA 8141A / 8141B	Chlorpyrifos
GC	EPA 8141A / 8141B	Coumaphos
GC	EPA 8141A / 8141B	Total Demeton
GC	EPA 8141A / 8141B	Diazinon

Solid and Chemical Materials		
Technology	Method	Analyte
GC	EPA 8141A / 8141B	Dichlorvos
GC	EPA 8141A / 8141B	Disulfoton
GC	EPA 8141A / 8141B	Ethoprop
GC	EPA 8141A / 8141B	Fensulfothion
GC	EPA 8141A / 8141B	Fenthion
GC	EPA 8141A / 8141 <mark>B</mark>	Merphos
GC	EPA 8141A / 8141B	Mevinphos
GC	EPA 8141A / 8141B	Naled
GC	EPA 8141A / 8141B	Methyl Parathion
GC	EPA 8141A / 8141B	Phorate
GC	EPA 8141A / 8141B	Ronnel
GC	EPA 8141A / 8141B	Stirophos
GC	EPA 8141A / 8141B	Tokuthion
GC	EPA 8141A / 8141B	Trichloronate
GC	EPA 8141A / 8141B	Dimethoate
GC	EPA 8141A / 8141B	EPN
GC	EPA 8141A / 8141B	Famphur
GC	EPA 8141A / 8141B	Malathion
GC	EPA 8141A / 8141B	Ethyl Parathion
GC	EPA 8141A / 8141B	O,O,O-Triethylphosphorothioate
GC	EPA 8141A / 8141B	Sulfotepp
GC	EPA 8141A / 8141B	Thionazin
GC	EPA 8141A / 8141B	Tributyl Phosphate
GC-MS	EPA 8260B / 8260C	Acetone
GC-MS	EPA 8260B / 8260C	Acrolein
GC-MS	EPA 8260B / 8260C	Acrylonitrile
GC-MS	EPA 8260B / 8260C	Benzene
GC-MS	EPA 8260B / 8260C	Bromobenzene
GC-MS	EPA 8260B / 8260C	Bromochloromethane
GC-MS	EPA 8260B / 8260C	Bromodichloromethane
GC-MS	EPA 8260B / 8260C	Bromoform
GC-MS	EPA 8260B / 8260C	Bromomethane
GC-MS	EPA 8260B / 8260C	tert-Butyl alcohol
GC-MS	EPA 8260B / 8260C	2-Butanone (MEK)
GC-MS	EPA 8260B / 8260C	n-Butylbenzene
GC-MS	EPA 8260B / 8260C	sec-Butylbenzene
GC-MS	EPA 8260B / 8260C	tert-Butylbenzene
GC-MS	EPA 8260B / 8260C	Carbon disulfide

Solid and Chemical Materials		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C	Carbon tetrachloride
GC-MS	EPA 8260B / 8260C	Chlorobenzene
GC-MS	EPA 8260B / 8260C	2-Chloroethyl vinyl ether
GC-MS	EPA 8260B / 8260C	Chloroethane
GC-MS	EPA 8260B / 8260C	Chloroform
GC-MS	EPA 8260B / 8260 <mark>C</mark>	1-Chlorohexane
GC-MS	EPA 8260B / 8260C	Chloromethane
GC-MS	EPA 8260B / 8260C	2-Chlorotoluene
GC-MS	EPA 8260B / 8260C	4-Chlorotoluene
GC-MS	EPA 8260B / 8260C	Isopropyl ether (DIPE)
GC-MS	EPA 8260B / 8260C	Dibromochloromethane
GC-MS	EPA 8260B / 8260C	1,2-Dibromo-3-chloropropane
GC-MS	EPA 8260B / 8260C	1,2-Dibromoethane
GC-MS	EPA 8260B / 8260C	Dibromomethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloroethane
GC-MS	EPA 8260B / 8260C	1,2-Dichloroethane
GC-MS	EPA 8260B / 8260C	1,2-Dichlorobenzene
GC-MS	EPA 8260B / 8260C	1,3-Dichlorobenzene
GC-MS	EPA 8260B / 8260C	trans-1,4-Dichloro-2-Butene
GC-MS	EPA 8260B / 8260C	1,4-Dichlorobenzene
GC-MS	EPA 8260B / 8260C	Dichlorodifluoromethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloroethene
GC-MS	EPA 8260B / 8260C	cis-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C	trans-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C	Dichlorofluoromethane
GC-MS	EPA 8260B / 8260C	1,1-Dichloropropene
GC-MS	EPA 8260B / 8260C	1,2-Dichloropropane
GC-MS	EPA 8260B / 8260C	1,3-Dichloropropane
GC-MS	EPA 8260B / 8260C	2,2-Dichloropropane
GC-MS	EPA 8260B / 8260C	cis-1,3-Dichloropropene
GC-MS	EPA 8260B / 8260C	trans-1,3-Dichloropropene
GC-MS	EPA 8260B / 8260C	tert-Butyl ethyl ether (ETBE)
GC-MS	EPA 8260B / 8260C	Ethyl Methacrylate
GC-MS	EPA 8260B / 8260C	Ethylbenzene
GC-MS	EPA 8260B / 8260C	2-Hexanone (MBK)
GC-MS	EPA 8260B / 8260C	Hexachlorobutadiene
GC-MS	EPA 8260B / 8260C	Iodomethane
GC-MS	EPA 8260B / 8260C	Isopropylbenzene

Solid and Chemical Materials		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C	p-Isopropyltoluene
GC-MS	EPA 8260B / 8260C	Methylene Chloride
GC-MS	EPA 8260B / 8260C	4-Methyl-2-pentanone (MIBK)
GC-MS	EPA 8260B / 8260C	tert-Butyl methyl ether
GC-MS	EPA 8260B / 8260C	Naphthalene
GC-MS	EPA 8260B / 8260C	n-Propylbenzene
GC-MS	EPA 8260B / 8260C	Styrene
GC-MS	EPA 8260B / 8260C	tert-Amyl methyl ether (TAME)
GC-MS	EPA 8260B / 8260C	1,1,1,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C	1,1,2,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C	Tetrachloroethene
GC-MS	EPA 8260B / 8260C	Toluene
GC-MS	EPA 8260B / 8260C	1,1,1-Trichloroethane
GC-MS	EPA 8260B / 8260C	1,1,2-Trichloroethane
GC-MS	EPA 8260B / 8260C	1,2,3-Trichlorobenzene
GC-MS	EPA 8260B / 8260C	1,2,4-Trichlorobenzene
GC-MS	EPA 8260B / 8260C	Trichloroethene
GC-MS	EPA 8260B / 8260C	Trichlorofluoromethane
GC-MS	EPA 8260B / 8260C	1,2,3-Trichloropropane
GC-MS	EPA 8260B / 8260C	1,1,2-Trichloro1,2,2- trifluoroethane
GC-MS	EPA 8260B / 8260C	1,2,4-Trimethylbenzene
GC-MS	EPA 8260B / 8260C	1,3,5-Trimethylbenzene
GC-MS	EPA 8260B / 8260C	Vinyl Acetate
GC-MS	EPA 8260B / 8260C	Vinyl Chloride
GC-MS	EPA 8260B / 8260C	m-Xylene & p-xylene
GC-MS	EPA 8260B / 8260C	o-Xylene
GC-MS	EPA 8260B / 8260C	2-Butanol
GC-MS	EPA 8260B / 8260C	Cyclohexane
GC-MS	EPA 8260B / 8260C	1,4-Dioxane
GC-MS	EPA 8260B / 8260C	2-Chloro-1,1,1-trifluoroethane
GC-MS	EPA 8260B / 8260C	Chlorotrifluoroethylene
GC-MS	EPA 8260B / 8260C	cis-1,4-Dichloro-2-butene
GC-MS	EPA 8260B / 8260C	Ethanol
GC-MS	EPA 8260B / 8260C	Ethyl Methacrylate
GC-MS	EPA 8260B / 8260C	Isobutyl Alcohol
GC-MS	EPA 8260B / 8260C	Methacrylonitrile
GC-MS	EPA 8260B / 8260C	Methyl Methacrylate

Solid and Chemical Materials		
Technology	Method	Analyte
GC-MS	EPA 8260B / 8260C	Pentachloroethane
GC-MS	EPA 8260B / 8260C	Propionitrile
GC-MS	EPA 8260B / 8260C	Sec-Propyl alcohol
GC-MS	EPA 8260B / 8260C	Tetrahydrofuran
GC-MS	EPA 8260B / 8260C	Allyl Chloride
GC-MS	EPA 8260B / 8260C	Benzyl chloride
GC-MS	EPA 8260B / 8260C	Chloroprene
GC-MS	EPA 8260B / 8260C	Methyl Acetate
GC-MS	EPA 8260B / 8260C	Methylcyclohexane
GC-MS	EPA 8260B / 8260C SIM	Benzene
GC-MS	EPA 8260B / 8260C SIM	Carbon tetrachloride
GC-MS	EPA 8260B / 8260C SIM	Chloroform
GC-MS	EPA 8260B / 8260C SIM	Chloromethane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dibromo-3-chloropropane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dibromoethane
GC-MS	EPA 8260B / 8260C SIM	1,2-Dichloroethane
GC-MS	EPA 8260B / 8260C SIM	1,1-Dichloroethene
GC-MS	EPA 8260B / 8260C SIM	cis-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C SIM	trans-1,2-Dichloroethene
GC-MS	EPA 8260B / 8260C SIM	1,1,2,2-Tetrachloroethane
GC-MS	EPA 8260B / 8260C SIM	Tetrachloroethene
GC-MS	EPA 8260B / 8260C SIM	1,1,1-Trichloroethane
GC-MS	EPA 8260B / 8260C SIM	1,1,2-Trichloroethane
GC-MS	EPA 8260B / 8260C SIM	Trichloroethene
GC-MS	EPA 8260B / 8260C SIM	1,2,3-Trichloropropane
GC-MS	EPA 8260B / 8260C SIM	Vinyl Chloride
GC-MS	EPA 8260B / 8260C SIM	1,4-Dioxane
GC-MS	EPA 8270C / 8270D	Acenaphthene
GC-MS	EPA 8270C / 8270D	Acenaphthylene
GC-MS	EPA 8270C / 8270D	Aniline
GC-MS	EPA 8270C / 8270D	Anthracene
GC-MS	EPA 8270C / 8270D	Azobenzene
GC-MS	EPA 8270C / 8270D	Benzidine
GC-MS	EPA 8270C / 8270D	Benzo(a)anthracene
GC-MS	EPA 8270C / 8270D	benzo(a)pyrene
GC-MS	EPA 8270C / 8270D	Benzo(b)fluoranthene
GC-MS	EPA 8270C / 8270D	Benzo(e)pyrene
GC-MS	EPA 8270C / 8270D	Benzo(g,h,i)perylene

Solid and Chemical Materials			
Technology	Method	Analyte	
GC-MS	EPA 8270C / 8270D	Benzo(k)fluoranthene	
GC-MS	EPA 8270C / 8270D	Benzoic Acid	
GC-MS	EPA 8270C / 8270D	Benzyl Alcohol	
GC-MS	EPA 8270C / 8270D	Biphenyl	
GC-MS	EPA 8270C / 8270D	bis(2-chloroethoxy)methane	
GC-MS	EPA 8270C / 8270D	bis(2-chloroethyl)ether	
GC-MS	EPA 8270C / 8270D	2,2-oxybis(1-chloropropane)	
GC-MS	EPA 8270C / 8270D	bis(2-Ethylhexyl)adipate	
GC-MS	EPA 8270C / 8270D	bis(2-Ethylhexyl)phthalate	
GC-MS	EPA 8270C / 8270D	4-Bromophenyl-phenylether	
GC-MS	EPA 8270C / 8270D	Butylbenzylphthalate	
GC-MS	EPA 8270C / 8270D	Carbazole	
GC-MS	EPA 8270C / 8270D	4-Chloro-3-methylphenol	
GC-MS	EPA 8270C / 8270D	4-Chloroaniline	
GC-MS	EPA 8270C / 8270D	2-Chloronaphthalene	
GC-MS	EPA 8270C / 8270D	2-Chlorophenol	
GC-MS	EPA 8270C / 8270D	4-Chlorophenyl-phenylether	
GC-MS	EPA 8270C / 8270D	Chrysene	
GC-MS	EPA 8270C / 8270D	Dibenzo(a,h)anthracene	
GC-MS	EPA 8270C / 8270D	Dibenzofuran	
GC-MS	EPA 8270C / 8270D	1,2-Dichlorobenzene	
GC-MS	EPA 8270C / 8270D	1,3-Dichlorobenzene	
GC-MS	EPA 8270C / 8270D	1,4-Dichlorobenzene	
GC-MS	EPA 8270C / 8270D	3,3'-Dichlorobenzidine	
GC-MS	EPA 8270C / 8270D	2,4-Dichlorophenol	
GC-MS	EPA 8270C / 8270D	Diethylphthalate	
GC-MS	EPA 8270C / 8270D	2,6-Dimethylnaphthalene	
GC-MS	EPA 8270C / 8270D	2,4-Dimethylphenol	
GC-MS	EPA 8270C / 8270D	Dimethylphthalate	
GC-MS	EPA 8270C / 8270D	Di-n-butylphthalate	
GC-MS	EPA 8270C / 8270D	4,6-Dinitro-2-methylphenol	
GC-MS	EPA 8270C / 8270D	2,4-Dinitrophenol	
GC-MS	EPA 8270C / 8270D	2,4-Dinitrotoluene	
GC-MS	EPA 8270C / 8270D	2,6-Dinitrotoluene	
GC-MS	EPA 8270C / 8270D	Di-n-octylphthalate	
GC-MS	EPA 8270C / 8270D	Fluoranthene	
GC-MS	EPA 8270C / 8270D	Fluorene	
GC-MS	EPA 8270C / 8270D	Hexachlorobenzene	

Solid and Chemical Materials			
Technology	Method	Analyte	
GC-MS	EPA 8270C / 8270D	Hexachlorobutadiene	
GC-MS	EPA 8270C / 8270D	Hexachlorocyclopentadiene	
GC-MS	EPA 8270C / 8270D	Hexachloroethane	
GC-MS	EPA 8270C / 8270D	Indeno(1,2,3-cd)pyrene	
GC-MS	EPA 8270C / 8270D	Isophorone	
GC-MS	EPA 8270C / 8270D	1-Methylnaphthalene	
GC-MS	EPA 8270C / 8270D	2-Methylnaphthalene	
GC-MS	EPA 8270C / 8270D	1-Methylphenanthrene	
GC-MS	EPA 8270C / 8270D	2-Methylphenol	
GC-MS	EPA 8270C / 8270D	3/4-Methylphenol	
GC-MS	EPA 8270C / 8270D	Naphthalene	
GC-MS	EPA 8270C / 8270D	2-Nitroaniline	
GC-MS	EPA 8270C / 8270D	3-Nitroaniline	
GC-MS	EPA 8270C / 8270D	4-Nitroaniline	
GC-MS	EPA 8270C / 8270D	Nitrobenzene	
GC-MS	EPA 8270C / 8270D	2-Nitrophenol	
GC-MS	EPA 8270C / 8270D	4-Nitrophenol	
GC-MS	EPA 8270C / 8270D	n-Nitrosodimethylamine	
GC-MS	EPA 8270C / 8270D	n-Nitroso-di-n-propylamine	
GC-MS	EPA 8270C / 8270D	n-Nitrosodiphenylamine	
GC-MS	EPA 8270C / 8270D	Pentachlorophenol	
GC-MS	EPA 8270C / 8270D	Perylene	
GC-MS	EPA 8270C / 8270D	Phenanthrene	
GC-MS	EPA 8270C / 8270D	Phenol	
GC-MS	EPA 8270C / 8270D	Pyrene	
GC-MS	EPA 8270C / 8270D	Pyridine	
GC-MS	EPA 8270C / 8270D	2,3,4,6-Tetrachlorophenol	
GC-MS	EPA 8270C / 8270D	1,2,4-Trichlorobenzene	
GC-MS	EPA 8270C / 8270D	2,3,4-Trichlorophenol	
GC-MS	EPA 8270C / 8270D	2,3,5-Trichlorophenol	
GC-MS	EPA 8270C / 8270D	2,4,5-Trichlorophenol	
GC-MS	EPA 8270C / 8270D	2,4,6-Trichlorophenol	
GC-MS	EPA 8270C / 8270D	2,3,5-Trimethylnaphthalene	
GC-MS	EPA 8270C / 8270D	1,2,4,5-Tetrachlorobenzene	
GC-MS	EPA 8270C / 8270D	1,3,5-Trinitrobenzene	
GC-MS	EPA 8270C / 8270D	1,3-Dinitrobenzene	
GC-MS	EPA 8270C / 8270D	1,4-Dioxane	
GC-MS	EPA 8270C / 8270D	1,4-Naphthoquinone	

Solid and Chemical Materials			
Technology	Method	Analyte	
GC-MS	EPA 8270C / 8270D	1-Chloronaphthalene	
GC-MS	EPA 8270C / 8270D	1-Naphthylamine	
GC-MS	EPA 8270C / 8270D	2,6-Dichlorophenol	
GC-MS	EPA 8270C / 8270D	2-acetylaminofluorene	
GC-MS	EPA 8270C / 8270D	2-Naphthylamine	
GC-MS	EPA 8270C / 8270D	2-Picoline	
GC-MS	EPA 8270C / 8270D	3,3-Dimethylbenzidine	
GC-MS	EPA 8270C / 8270D	3,4-Dimethylphenol	
GC-MS	EPA 8270C / 8270D	3,5-Dimethylphenol	
GC-MS	EPA 8270C / 8270D	3-Methylchlolanthrene	
GC-MS	EPA 8270C / 8270D	4-Aminobiphenyl	
GC-MS	EPA 8270C / 8270D	4-Nitroquinoline-N-oxide	
GC-MS	EPA 8270C / 8270D	5-Nitro-o-toluidine	
GC-MS	EPA 8270C / 8270D	7,12-Dimethylbenz(a)anthracene	
GC-MS	EPA 8270C / 8270D	Acetophenone	
GC-MS	EPA 8270C / 8270D	Aramite	
GC-MS	EPA 8270C / 8270D	Atrazine	
GC-MS	EPA 8270C / 8270D	Chlorobenzilate	
GC-MS	EPA 8270C / 8270D	Diallate	
GC-MS	EPA 8270C / 8270D	Dibenzo(a,j)acridine	
GC-MS	EPA 8270C / 8270D	Dimethoate	
GC-MS	EPA 8270C / 8270D	Dinoseb	
GC-MS	EPA 8270C / 8270D	Diphenyl ether	
GC-MS	EPA 8270C / 8270D	Disulfoton	
GC-MS	EPA 8270C / 8270D	Ethyl methacrylate	
GC-MS	EPA 8270C / 8270D	Ethyl methanesulfonate	
GC-MS	EPA 8270C / 8270D	Ethyl parathion	
GC-MS	EPA 8270C / 8270D	Famphur	
GC-MS	EPA 8270C / 8270D	Hexachlorophene	
GC-MS	EPA 8270C / 8270D	Hexachloropropene	
GC-MS	EPA 8270C / 8270D	Isodrin	
GC-MS	EPA 8270C / 8270D	Isosafrole	
GC-MS	EPA 8270C / 8270D	kepone	
GC-MS	EPA 8270C / 8270D	Methapyrilene	
GC-MS	EPA 8270C / 8270D	Methyl methanesulfonate	
GC-MS	EPA 8270C / 8270D	Methyl parathion	
GC-MS	EPA 8270C / 8270D	N-nitrosodiethylamine	
GC-MS	EPA 8270C / 8270D	N-Nitrosodi-n-butylamine	

Solid and Chemical Materials			
Technology	Method	Analyte	
GC-MS	EPA 8270C / 8270D	N-Nitrosomethylethylamine	
GC-MS	EPA 8270C / 8270D	N-Nitrosomorpholine	
GC-MS	EPA 8270C / 8270D	N-Nitrosopiperdine	
GC-MS	EPA 8270C / 8270D	N-Nitrosopyrrolidine	
GC-MS	EPA 8270C / 8270D	O,O,O-triethyl phosphorothi	
GC-MS	EPA 8270C / 8270D	o-toluidine	
GC-MS	EPA 8270C / 8270D	p-Dimethylaminoazobenze	
GC-MS	EPA 8270C / 8270D	Pentachlorobenzene	
GC-MS	EPA 8270C / 8270D	Pentachloroethane	
GC-MS	EPA 8270C / 8270D	Pentachloronitrobenzene	
GC-MS	EPA 8270C / 8270D	Phenacetin	
GC-MS	EPA 8270C / 8270D	Phorate	
GC-MS	EPA 8270C / 8270D	p-phenylenediamine	
GC-MS	EPA 8270C / 8270D	Pronamide	
GC-MS	EPA 8270C / 8270D	Safrole	
GC-MS	EPA 8270C / 8270D	Sulfotepp	
GC-MS	EPA 8270C / 8270D	Thionazin	
GC-MS	EPA 8270C / 8270D	Benzaldehyde	
GC-MS	EPA 8270C / 8270D	Caprolactam	
GC-MS	EPA 8270C / 8270D SIM	Acenaphthene	
GC-MS	EPA 8270C / 8270D SIM	Acenaphthylene	
GC-MS	EPA 8270C / 8270D SIM	Anthracene	
GC-MS	EPA 8270C / 8270D SIM	Azobenzene	
GC-MS	EPA 8270C / 8270D SIM	Benzo(a)anthracene	
GC-MS	EPA 8270C / 8270D SIM	benzo(a)pyrene	
GC-MS	EPA 8270C / 8270D SIM	Benzo(b)fluoranthene	
GC-MS	EPA 8270C / 8270D SIM	Benzo(e)pyrene	
GC-MS	EPA 8270C / 8270D SIM	Benzo(g,h,i)perylene	
GC-MS	EPA 8270C / 8270D SIM	Benzo(k)fluoranthene	
GC-MS	EPA 8270C / 8270D SIM	Biphenyl	
GC-MS	EPA 8270C / 8270D SIM	bis(2-chloroethyl)ether	
GC-MS	EPA 8270C / 8270D SIM	bis(2-Ethylhexyl)phthalate	
GC-MS	EPA 8270C / 8270D SIM	Carbazole	
GC-MS	EPA 8270C / 8270D SIM	4-Chloro-3-methylphenol	
GC-MS	EPA 8270C / 8270D SIM	2-Chlorophenol	
GC-MS	EPA 8270C / 8270D SIM	Chrysene	
GC-MS	EPA 8270C / 8270D SIM	Dibenzo(a,h)anthracene	
GC-MS	EPA 8270C / 8270D SIM	2,4-Dichlorophenol	

Solid and Chemical Materials			
Technology	Method	Analyte	
GC-MS	EPA 8270C / 8270D SIM	2,6-Dimethylnaphthalene	
GC-MS	EPA 8270C / 8270D SI <mark>M</mark>	2,4-Dimethylphenol	
GC-MS	EPA 8270C / 8270D SIM	Fluoranthene	
GC-MS	EPA 8270C / 8270D SIM	Fluorene	
GC-MS	EPA 8270C / 8270D SIM	Hexachlorobenzene	
GC-MS	EPA 8270C / 8270D SIM	Indeno(1,2,3-cd)pyrene	
GC-MS	EPA 8270C / 8270D SIM	1-Methylnaphthalene	
GC-MS	EPA 8270C / 8270D SIM	2-Methylnaphthalene	
GC-MS	EPA 8270C / 8270D SIM	1-Methylphenanthrene	
GC-MS	EPA 8270C / 8270D SIM	Naphthalene	
GC-MS	EPA 8270C / 8270D SIM	n-Nitrosodimethylamine	
GC-MS	EPA 8270C / 8270D SIM	n-Nitroso-di-n-propylamine	
GC-MS	EPA 8270C / 8270D SIM	Pentachlorophenol	
GC-MS	EPA 8270C / 8270D SIM	Perylene	
GC-MS	EPA 8270C / 8270D SIM	Phenanthrene	
GC-MS	EPA 8270C / 8270D SIM	Phenol	
GC-MS	EPA 8270C / 8270D SIM	Pyrene	
GC-MS	EPA 8270C / 8270D SIM	2,4,5-Trichlorophenol	
GC-MS	EPA 8270C / 8270D SIM	2,4,6-Trichlorophenol	
GC-MS	EPA 8270C / 8270D SIM	2,3,5-Trimethylnaphthalene	
GC-MS	EPA 8270C / 8270D SIM	1,4-Dioxane	
GC-MS	EPA 8270C / 8270D SIM	Butylbenzylphthalate	
GC-MS	EPA 8270C / 8270D SIM	Diethylphthalate	
GC-MS	EPA 8270C / 8270D SIM	Dimethylphthalate	
GC-MS	EPA 8270C / 8270D SIM	Di-n-butylphthalate	
GC-MS	EPA 8270C / 8270D SIM	Di-n-octylphthalate	
HPLC	EPA 8310	Acenaphthene	
HPLC	EPA 8310	Acenaphthylene	
HPLC	EPA 8310	Anthracene	
HPLC	EPA 8310	Benzo(a)anthracene	
HPLC	EPA 8310	Benzo(a)pyrene	
HPLC	EPA 8310	Benzo(b)fluoranthene	
HPLC	EPA 8310	Benzo(g h i)pervlene	
HPLC	EPA 8310	Benzo(k)fluoranthene	
	EDA 0210	Chrysene	
	EDA 9210	Dibenzo(a h)anthracena	
	ELA 0310	Elyopanthon a	
HPLC	EPA 8310	Fluoranthene	

Solid and Chemical Materials			
Technology	Method	Analyte	
HPLC	EPA 8310	Fluorene	
HPLC	EPA 8310	Indeno(1,2,3-cd)pyrene	
HPLC	EPA 8310	1-Methylnaphthalene	
HPLC	EPA 8310	2-Methylnaphthalene	
HPLC	EPA 8310	Naphthalene	
HPLC	EPA 8310	Phenanthrene	
HPLC	EPA 8310	Pyrene	
HPLC	EPA 8330A	HMX	
HPLC	EPA 8330A	RDX	
HPLC	EPA 8330A	1,3,5-TNB	
HPLC	EPA 8330A	1,3-DNB	
HPLC	EPA 8330A	Tetryl	
HPLC	EPA 8330A	Nitrobenzene	
HPLC	EPA 8330A	2,4,6-TNT	
HPLC	EPA 8330A	4-AM-2,6-DNT	
HPLC	EPA 8330A	2-AM-4,6-DNT	
HPLC	EPA 8330A	2,6-DNT	
HPLC	EPA 8330A	2,4-DNT	
HPLC	EPA 8330A	2-Nitrotoluene	
HPLC	EPA 8330A	4-Nitrotoluene	
HPLC	EPA 8330A	3-Nitrotoluene	
HPLC	EPA 8330A	3,5-Dinitroaniline	
HPLC	EPA 8330A	2,4-Diamino-6-nitrotoluene	
HPLC	EPA 8330A	2,6-Diamino-4-nitrotoluene	
HPLC	EPA 8330A	Picric Acid	
HPLC	EPA 8332	Nitroglycerine	
HPLC	EPA 8332	PETN	
IC	EPA 9056 / 9056A	Bromate	
IC	EPA 9056 / 9056A	Bromide	
IC	EPA 9056 / 9056A	Chloride	
IC	EPA 9056 / 9056A	Fluoride	
IC	EPA 9056 / 9056A	Nitrate	
IC	IC EPA 9056 / 9056A		
IC	EPA 9056 / 9056A	Phosphate	
IC	EPA 9056 / 9056A	Sulfate	
IC	EPA 9056 / 9056A	Chlorate	

Solid and Chemical Materials				
Technology	Method	Analyte		
GC	GC EPA 8151A			
GC	EPA 8151A	Bentazon		
GC	EPA 8151A	Chloramben		
GC	EPA 8151A	2,4-D		
GC	EPA 8151A	2,4-DB		
GC	EPA 8151A	Dacthal		
GC	EPA 8151A	Dalapon		
GC	EPA 8151A	Dicamba		
GC	EPA 8151A	3,5-Dichlorobenzoic acid		
GC	EPA 8151A	Dichlorprop		
GC	EPA 8151A	Dinoseb		
GC	EPA 8151A	MCPA		
GC	EPA 8151A	МСРР		
GC	EPA 8151A	Pentachlorophenol		
GC	EPA 8151A	Picloram		
GC	EPA 8151A	Silvex		
GC	EPA 8151A	2,4,5-T		
GC	EPA 8151A	4-Nitrophenol		
Spectrometric	EPA 9014	Cyanide		
Spectrometric	EPA 9014	Cyanides Amenable to Chlorination		
Gravimetric	EPA 9071B	Oil & Grease		
GFAA	CA 939M	Organo Lead		
Preparation	Method	Туре		
Purge &Trap	EPA 5030B / EPA 5035	Volatiles Prep		
Acid Digestion	EPA 3050B Modified	Metals Prep		
Alkaline Digestion	EPA 3060A	Hexavalent Chrom		
Soxhlet	EPA 3540C	Organic Extraction		
Sonication EPA 3550C		Organic Extraction		
Waste Dilution	EPA 3580A	Organic Extraction		
Microwave	EPA 3546	Organic Extraction		
TCLP	EPA 1311	Leaching		
SPLP	EPA 1312	Leaching		
Florisil Clean-up	EPA 3620C	Extract Clean-Up		
Sulfur Clean-up	Sulfur Clean-up EPA 3660B			
Acid/Permanganate Clean-up	Acid/Permanganate Clean-up EPA 3665A			

Air and Emissions			
Technology	Method	Analyte	
GC-MS	TO-15	1,1,1-trichloroethane	
GC-MS	TO-15	1,1,2,2-tetrachloroethane	
GC-MS	TO-15	1,1,2-Trichloro1,2,2- trifluoroethane	
GC-MS	TO-15	1,1,2-trichloroethane	
GC-MS	TO-15	1,1-dichloroethane	
GC-MS	TO-15	1,1-Dichloroethene	
GC-MS	TO-15	1,2,4-trichlorobenzene	
GC-MS	TO-15	1,2,4-trimethylbenzene	
GC-MS	TO-15	1,2-dibromoethane	
GC-MS	TO-15	1,2-dichloroethane	
GC-MS	TO-15	1,2-dichloroethene	
GC-MS	TO-15	1,2-dichloropropane	
GC-MS	TO-15	1,3,5-trimethylbenzene	
GC-MS	TO-15	1,3-Butadiene	
GC-MS	TO-15	1,3-Butadiene, 1,1,2,3,4,Hexachloro	
GC-MS	TO-15	1,2-dichlorobenzene	
GC-MS	TO-15	1,3-dichlorobenzene	
GC-MS	TO-15	1,4-dichlorobenzene	
GC-MS	TO-15	1,4-Dioxane	
GC-MS	TO-15	2,2,4-Trimethylpentane	
GC-MS	TO-15	4-Ethyltoluene	
GC-MS	TO-15	Acetone	
GC-MS	TO-15	Acrylonitrile	
GC-MS	TO-15	Allyl Chloride	
GC-MS	TO-15	Benzene	
GC-MS	TO-15	Benzyl Chloride	
GC-MS	TO-15	Bromodichloromethane	
GC-MS	TO-15	Bromoform	
GC-MS	TO-15	Bromomethane	
GC-MS	TO-15	Carbon Disulfide	
GC-MS	TO-15	Carbon Tetrachloride	
GC-MS	TO-15	Chlorobenzene	
GC-MS	TO-15	Chloroethane	

Air and Emissions			
Technology	Method	Analyte	
GC-MS	TO-15	Chloroethene	
GC-MS	TO-15	Chloroform	
GC-MS	TO-15	Chloromethane	
GC-MS	TO-15	cis-1,3-Dichloropropene	
GC-MS	TO-15	Cyclohexane	
GC-MS	TO-15	Dibromochloromethane	
GC-MS	TO-15	Dichlorodifluoromethane	
GC-MS	TO-15	Dichlorotetrafluoroethane	
GC-MS	TO-15	Ethyl Acetate	
GC-MS	TO-15	Ethylbenzene	
GC-MS	TO-15	Isopropyl Alcohol	
GC-MS	TO-15	m+p-Xylene	
GC-MS	TO-15	Methyl butyl Ketone	
GC-MS	TO-15	Methyl Ethyl Ketone	
GC-MS	TO-15	Methyl Isobutyl Ketone	
GC-MS	TO-15	Methyl Tert-Butyl Ether	
GC-MS	TO-15	Methylene Chloride	
GC-MS	-TO-15	n-Heptane	
GC-MS	TO-15	n-Hexane	
GC-MS	TO-15	o-Xylene	
GC-MS	TO-15	Styrene	
GC-MS	TO-15	Tetrachloroethylene	
GC-MS	TO-15	Tetrahydrofuran	
GC-MS	TO-15	Toluene	
GC-MS	TO-15	Trans-1,2-Dichloroethene	
GC-MS	TO-15	trans-1,3-Dichloropropene	
GC-MS	TO-15	Trichloroethylene	
GC-MS	TO-15	Trichloromonofluoromethan	
GC-MS	TO-15	Vinyl Acetate	
GC-MS	TO-15	Vinyl Bromide	

Note:

1. This scope is formatted as part of a single document including Certificate of Accreditation No. L2278.

Jason Stine, Vice President

CALIFORNIA STATE

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL LABORATORY ACCREDITATION

Is hereby granted to

EMAX Laboratories, Inc.

3051 Fujita St.

Torrance, CA 90505

Scope of the certificate is limited to the "Fields of Accreditation" which accompany this Certificate.

Continued accredited status depends on compliance with applicable laws and regulations, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 2672

Effective Date: 7/1/2023

Expiration Date: 6/30/2025

Christine Sotelo, Program Manager Environmental Laboratory Accreditation Program

Sacramento, California subject to forfeiture or revocation

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Fields of Accreditation

EMAX Laboratories, Inc.

3051 Fujita St. Torrance, CA 90505 Phone: 3106188889 Certificate Number: 2672 Expiration Date: 6/30/2025

Field of Accreditation:102 - Inorganic Chemistry of Drinking Water				
102.015	001	Hydrogen Ion (pH)	EPA 150.1	
102.020	001	Turbidity	EPA 180.1	
102.026	001	Calcium	EPA 200.7	
102.026	002	Magnesium	EPA 200.7	
102.026	003	Potassium	EPA 200.7	
102.026	005	Sodium	EPA 200.7	
102.026	006	Hardness (Calculation)	EPA 200.7	
102.030	001	Bromide	EPA 300.0	
102.030	002	Chlorate	EPA 300.0	
102.030	003	Chloride	EPA 300.0	
102.030	005	Fluoride	EPA 300.0	
102.030	006	Nitrate (as N)	EPA 300.0	
102.030	007	Nitrite (as N)	EPA 300.0	
102.030	008	Phosphate,Ortho (as P)	EPA 300.0	
102.030	009	Sulfate (as SO4)	EPA 300.0	
102.045	001	Perchlorate	EPA 314.0	
102.095	001	Turbidity	SM 2130 B-2001	
102.100	001	Alkalinity	SM 2320 B-1997	
102.120	001	Hardness (Calculation)	SM 2340 B-1997	
102.121	001	Hardness	SM 2340 C-1997	
102.130	001	Specific Conductance	SM 2510 B-1997	
102.140	001	Residue, Filterable TDS	SM 2540 C-1997	
102.150	001	Chloride	SM 4110 B-2000	
102.150	002	Fluoride	SM 4110 B-2000	
102.150	003	Nitrate (as N)	SM 4110 B-2000	
102.150	004	Nitrite (as N)	SM 4110 B-2000	
102.150	005	Phosphate,Ortho (as P)	SM 4110 B-2000	
102.150	006	Sulfate (as SO4)	SM 4110 B-2000	
102.170	001	Chloride	SM 4500-Chloride B-1997	
102.203	001	Hydrogen Ion (pH)	SM 4500-H+ B-2000	
102.220	001	Nitrite (as N)	SM 4500-NO2 B-2000	
102.232	002	Nitrate (as N)	SM 4500-NO3- E-2000	
102.240	001	Phosphate.Ortho (as P)	SM 4500-P E-1999	

102.260	001	Organic Carbon-Total (TOC)	SM 5310 B-2000
102.261	001	Dissolved Organic Carbon (DOC)	SM 5310 B-2000
102.270	001	Surfactants	SM 5540 C-2000
Field of	Accredi	itation:103 - Toxic Chemical Elements of Drinking Water	
103.130	001	Aluminum	EPA 200.7
103.130	003	Barium	EPA 200.7
103.130	004	Beryllium	EPA 200.7
103.130	007	Chromium	EPA 200.7
103.130	800	Copper	EPA 200.7
103.130	009	Iron	EPA 200.7
103.130	011	Manganese	EPA 200.7
103.130	012	Nickel	EPA 200.7
103.130	015	Silver	EPA 200.7
103.130	017	Zinc	EPA 200.7
103.130	018	Boron	EPA 200.7
103.140	001	Aluminum	EPA 200.8
103.140	002	Antimony	EPA 200.8
103.140	003	Arsenic	EPA 200.8
103.140	004	Barium	EPA 200.8
103.140	005	Beryllium	EPA 200.8
103.140	006	Cadmium	EPA 200.8
103.140	007	Chromium	EPA 200.8
103.140	009	Lead	EPA 200.8
103.140	010	Manganese	EPA 200.8
103.140	012	Nickel	EPA 200.8
103.140	013	Selenium	EPA 200.8
103.140	014	Silver	EPA 200.8
103.140	015	Thallium	EPA 200.8
103.140	016	Zinc	EPA 200.8
103.140	017	Boron	EPA 200.8
103.140	018	Vanadium	EPA 200.8
103.160	001	Mercury	EPA 245.1
103.310	001	Chromium VI (Hexavalent Chromium)	EPA 218.6
Field of Accreditation: 104 - Volatile Organic Chemistry of Drinking Water			
104.030	001	1,2-Dibromoethane (EDB)	EPA 504.1
104.030	002	1,2-Dibromo-3-chloropropane (DBCP)	EPA 504.1
104.200	001	1,1,1,2-Tetrachloroethane	EPA 524.2
104.200	002	1,1,1-Trichloroethane	EPA 524.2
104.200	003	1,1,2,2-Tetrachloroethane	EPA 524.2
104.200	004	1,1,2-Trichloroethane	EPA 524.2
104.200	005	1,1-Dichloroethane	EPA 524.2
104.200	006	1.1-Dichloroethylene (1.1-Dichloroethene)	EPA 524.2

104.200	007	1,2,3-Trichlorobenzene	EPA 524.2
104.200	800	1,2,4-Trichlorobenzene	EPA 524.2
104.200	009	1,2,4-Trimethylbenzene	EPA 524.2
104.200	010	1,2-Dichlorobenzene	EPA 524.2
104.200	011	1,2-Dichloroethane (Ethylene Dichloride)	EPA 524.2
104.200	012	1,2-Dichloropropane	EPA 524.2
104.200	013	1,3,5-Trimethylbenzene	EPA 524.2
104.200	014	1,3-Dichlorobenzene	EPA 524.2
104.200	015	1,4-Dichlorobenzene	EPA 524.2
104.200	016	2-Chlorotoluene	EPA 524.2
104.200	017	4-Chlorotoluene	EPA 524.2
104.200	018	Benzene	EPA 524.2
104.200	019	Carbon Disulfide	EPA 524.2
104.200	020	Carbon Tetrachloride	EPA 524.2
104.200	021	Chlorobenzene	EPA 524.2
104.200	022	cis-1,2-Dichloroethylene (cis 1,2 Dichloroethene)	EPA 524.2
104.200	023	cis-1,3-Dichloropropylene (cis 1,3 Dichloropropene)	EPA 524.2
104.200	024	Dichlorodifluoromethane	EPA 524.2
104.200	025	Dichloromethane (Methylene Chloride)	EPA 524.2
104.200	027	Ethyl tert-butyl Ether (ETBE)	EPA 524.2
104.200	028	Ethylbenzene	EPA 524.2
104.200	029	Isopropylbenzene	EPA 524.2
104.200	030	Methyl isobutyl ketone (MIBK, 4-Methyl-2-pentanone)	EPA 524.2
104.200	031	Methyl tert-butyl Ether (MTBE)	EPA 524.2
104.200	032	Naphthalene	EPA 524.2
104.200	033	n-Butylbenzene	EPA 524.2
104.200	034	N-propylbenzene	EPA 524.2
104.200	035	sec-Butylbenzene	EPA 524.2
104.200	036	Styrene	EPA 524.2
104.200	037	t-Butyl alcohol (2-Methyl-2-propanol)	EPA 524.2
104.200	038	tert-Amyl Methyl Ether (TAME)	EPA 524.2
104.200	039	tert-Butylbenzene	EPA 524.2
104.200	040	Tetrachloroethylene (Tetrachloroethene)	EPA 524.2
104.200	041	Toluene	EPA 524.2
104.200	042	trans-1,2-Dichloroethylene (trans- 1,2 Dichloroethene	EPA 524.2
104.200	043	trans-1,3-Dichloropropylene (trans-1,3 Dichloroprope	EPA 524.2
104.200	044	Trichloroethylene (Trichloroethene)	EPA 524.2
104.200	045	Trichlorofluoromethane	EPA 524.2
104.200	046	Trichlorotrifluoroethane	EPA 524.2
104.200	047	Vinyl Chloride	EPA 524.2
104.200	102	m+p-Xylene	EPA 524.2
104.200	103	o-Xylene	EPA 524.2

Certificate Number: 2672 Expiration Date: 6/30/2025

104.200	201	Bromodichloromethane	EPA 524.2
104.200	202	Bromoform	EPA 524.2
104.200	203	Chloroform	EPA 524.2
104.200	204	Dibromochloromethane (Chlorodibromomethane)	EPA 524.2
Field of	Accredi	itation:108 - Inorganic Constituents in Non-Potable Water	
108.001	001	Specific Conductance	EPA 120.1
108.009	001	Turbidity	EPA 180.1
108.013	001	Calcium	EPA 200.7
108.013	002	Magnesium	EPA 200.7
108.013	004	Potassium	EPA 200.7
108.013	006	Sodium	EPA 200.7
108.015	001	Calcium	EPA 200.8
108.015	002	Magnesium	EPA 200.8
108.015	003	Potassium	EPA 200.8
108.015	005	Sodium	EPA 200.8
108.017	001	Bromide	EPA 300.0
108.017	002	Chloride	EPA 300.0
108.017	003	Fluoride	EPA 300.0
108.017	004	Nitrate (as N)	EPA 300.0
108.017	005	Nitrate-Nitrite (as N)	EPA 300.0
108.017	006	Nitrite (as N)	EPA 300.0
108.017	007	Phosphate,Ortho (as P)	EPA 300.0
108.017	800	Sulfate (as SO4)	EPA 300.0
108.045	001	Chemical Oxygen Demand	EPA 410.4
108.047	001	Phenols, Total	EPA 420.1
108.053	001	Oil & Grease, Total Recoverable	EPA 1664 A
108.055	001	Color	SM 2120 B-2011
108.059	001	Turbidity	SM 2130 B-2011
108.061	001	Acidity	SM 2310 B-2011
108.063	001	Alkalinity	SM 2320 B-2011
108.065	001	Hardness (Calculation)	SM 2340 B-2011
108.067	001	Hardness	SM 2340 C-2011
108.069	001	Specific Conductance	SM 2510 B-2011
108.071	001	Residue, Total	SM 2540 B-2011
108.073	001	Residue, Filterable TDS	SM 2540 C-2011
108.075	001	Residue, Non-filterable TSS	SM 2540 D-2011
108.079	001	Residue, Settleable	SM 2540 F-2011
108.095	001	Bromide	SM 4110 B-2011
108.095	002	Chloride	SM 4110 B-2011
108.095	003	Fluoride	SM 4110 B-2011
108.095	004	Nitrate (as N)	SM 4110 B-2011
108.095	005	Nitrate-Nitrite (as N)	SM 4110 B-2011

108.095	006	Nitrite (as N)	SM 4110 B-2011
108.095	007	Phosphate,Ortho (as P)	SM 4110 B-2011
108.095	800	Sulfate (as SO4)	SM 4110 B-2011
108.115	001	Chloride	SM 4500-Chloride B-2011
108.125	001	Cyanide, Total	SM 4500-CN E-2011
108.137	001	Hydrogen Ion (pH)	SM 4500-H+ B-2011
108.145	001	Ammonia (as N)	SM 4500-NH3 F-2011
108.145	002	Kjeldahl Nitrogen,Total (as N)	SM 4500-NH3 F-2011
108.153	001	Nitrite (as N)	SM 4500-NO2 B-2011
108.157	001	Nitrate-Nitrite (as N)	SM 4500-NO3 E-2011
108.175	001	Phosphate,Ortho (as P)	SM 4500-P E-2011
108.175	002	Phosphorus, Total	SM 4500-P E-2011
108.184	001	Silica, Dissolved	SM 4500-SiO2 C-2011
108.201	001	Sulfide (as S)	SM 4500-S D-2011
108.203	001	Sulfide (as S)	SM 4500-S F-2011
108.207	001	Biochemical Oxygen Demand	SM 5210 B-2011
108.213	001	Chemical Oxygen Demand	SM 5220 D-2011
108.215	001	Organic Carbon-Total (TOC)	SM 5310 B-2011
108.221	001	Oil & Grease, Total Recoverable	SM 5520 B-2011
108.225	001	Surfactants	SM 5540 C-2011
Field of	Accred	itation:109 - Metals and Trace Elements in Non-Potable Water	
109.623	001	Aluminum	EPA 200.7
109.623	002	Antimony	EPA 200.7
109.623	003	Arsenic	EPA 200.7
109.623	004	Barium	EPA 200.7
109.623	005	Beryllium	EPA 200.7
109.623	006	Boron	EPA 200.7
109.623	007	Cadmium	EPA 200.7
109.623	800	Chromium	EPA 200.7
109.623	009	Cobalt	EPA 200.7
109.623	010	Copper	EPA 200.7
109.623			
109 623	011	Iron	EPA 200.7
	011 012	Iron Lead	EPA 200.7 EPA 200.7
109.623	011 012 013	Iron Lead Manganese	EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623	011 012 013 014	Iron Lead Manganese Molybdenum	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623	011 012 013 014 015	Iron Lead Manganese Molybdenum Nickel	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623 109.623	011 012 013 014 015 016	Iron Lead Manganese Molybdenum Nickel Selenium	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623 109.623 109.623	011 012 013 014 015 016 017	Iron Lead Manganese Molybdenum Nickel Selenium Silver	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623 109.623 109.623 109.623 109.623	011 012 013 014 015 016 017 018	Iron Lead Manganese Molybdenum Nickel Selenium Silver Thallium	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623 109.623 109.623 109.623 109.623 109.623	011 012 013 014 015 016 017 018 019	Iron Lead Manganese Molybdenum Nickel Selenium Silver Thallium Tin	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
109.623 109.623 109.623 109.623 109.623 109.623 109.623 109.623	011 012 013 014 015 016 017 018 019 020	Iron Lead Manganese Molybdenum Nickel Selenium Silver Thallium Tin Tin	EPA 200.7 EPA 200.7

109.623	022	Zinc	EPA 200.7
109.625	001	Aluminum	EPA 200.8
109.625	002	Antimony	EPA 200.8
109.625	003	Arsenic	EPA 200.8
109.625	004	Barium	EPA 200.8
109.625	005	Beryllium	EPA 200.8
109.625	006	Boron	EPA 200.8
109.625	007	Cadmium	EPA 200.8
109.625	008	Chromium	EPA 200.8
109.625	009	Cobalt	EPA 200.8
109.625	010	Copper	EPA 200.8
109.625	012	Iron	EPA 200.8
109.625	013	Lead	EPA 200.8
109.625	014	Manganese	EPA 200.8
109.625	015	Molybdenum	EPA 200.8
109.625	016	Nickel	EPA 200.8
109.625	017	Selenium	EPA 200.8
109.625	018	Silver	EPA 200.8
109.625	019	Thallium	EPA 200.8
109.625	020	Tin	EPA 200.8
109.625	021	Titanium	EPA 200.8
109.625	022	Vanadium	EPA 200.8
109.625	023	Zinc	EPA 200.8
109.629	001	Chromium VI (Hexavalent Chromium)	EPA 218.6
109.635	001	Mercury	EPA 245.1
Field of	Accred	itation:110 - Volatile Organic Constituents in Non-Potable Water	
110.040	003	Acrolein	EPA 624.1
110.040	004	Acrylonitrile	EPA 624.1
110.040	005	Benzene	EPA 624.1
110.040	006	Bromodichloromethane	EPA 624.1
110.040	007	Bromoform	EPA 624.1
110.040	800	Bromomethane (Methyl Bromide)	EPA 624.1
110.040	010	Carbon Tetrachloride	EPA 624.1
110.040	011	Chlorobenzene	EPA 624.1
110.040	012	Chloroethane	EPA 624.1
110.040	013	2-Chloroethyl vinyl Ether	EPA 624.1
110.040	014	Chloroform	EPA 624.1
110.040	015	Chloromethane (Methyl Chloride)	EPA 624.1
110.040	016	Dibromochloromethane (Chlorodibromomethane)	EPA 624.1
110.040	017	1,2-Dichlorobenzene	EPA 624.1
110.040	018	1,3-Dichlorobenzene	EPA 624.1

110.040	020	1,1-Dichloroethane	EPA 624.1
110.040	021	1,2-Dichloroethane (Ethylene Dichloride)	EPA 624.1
110.040	022	1,1-Dichloroethylene (1,1-Dichloroethene)	EPA 624.1
110.040	023	trans-1,2-Dichloroethylene (trans- 1,2 Dichloroethene	EPA 624.1
110.040	024	1,2-Dichloropropane	EPA 624.1
110.040	025	cis-1,3-Dichloropropylene (cis 1,3 Dichloropropene)	EPA 624.1
110.040	026	trans-1,3-Dichloropropylene (trans-1,3 Dichloroprope	EPA 624.1
110.040	029	Ethylbenzene	EPA 624.1
110.040	031	Methylene Chloride (Dichloromethane)	EPA 624.1
110.040	034	1,1,2,2-Tetrachloroethane	EPA 624.1
110.040	035	Tetrachloroethylene (Tetrachloroethene)	EPA 624.1
110.040	037	Toluene	EPA 624.1
110.040	038	1,1,1-Trichloroethane	EPA 624.1
110.040	039	1,1,2-Trichloroethane	EPA 624.1
110.040	040	Trichloroethylene (Trichloroethene)	EPA 624.1
110.040	041	Vinyl Chloride	EPA 624.1
110.040	043	o-Xylene	EPA 624.1
110.040	045	Trichlorofluoromethane	EPA 624.1
110.040	046	m+p-Xylene	EPA 624.1
Field of	Accred	itation:111 - Semi-volatile Organic Constituents in Non-Potable V	Vater
444.055			EBA 000 0
111.055	001	Aldrin	EPA 608.3
111.055 111.055	001 002	Aldrin alpha-BHC	EPA 608.3 EPA 608.3
111.055 111.055 111.055	001 002 003	Aldrin alpha-BHC beta-BHC	EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055	001 002 003 004	Aldrin alpha-BHC beta-BHC delta-BHC	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT	EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009 010	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin	EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009 010 011	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I	EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan II	EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate	EPA 608.3 EPA 608.3
111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin	EPA 608.3 EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	Aldrin alpha-BHC beta-BHC delta-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017	Aldrin alpha-BHC beta-BHC delta-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endosulfan Sulfate Endrin Heptachlor	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 017 019	Aldrin alpha-BHC beta-BHC delta-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan Sulfate Endosulfan Sulfate Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1016 (Aroclor-1016)	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Heptachlor Heptachlor Epoxide PCB-1016 (Aroclor-1016) PCB-1221 (Aroclor-1221)	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 014 015 016 017 019 020 021	Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan Sulfate Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1016 (Aroclor-1016) PCB-1232 (Aroclor-1232)	EPA 608.3
111.055 111.055	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 014 015 016 017 019 020 021 022	Aldrinalpha-BHCbeta-BHCdelta-BHCgamma-BHC (Lindane)Chlordane4,4'-DDD4,4'-DDE4,4'-DDTDieldrinEndosulfan IEndosulfan SulfateEndrinEndrinHeptachlorHeptachlor FpoxidePCB-1016 (Aroclor-1016)PCB-1232 (Aroclor-1232)PCB-1242 (Aroclor-1242)	EPA 608.3 EPA 608.3

111.055	024	PCB-1254 (Aroclor-1254)	EPA 608.3
111.055	025	PCB-1260 (Aroclor-1260)	EPA 608.3
111.055	046	Methoxychlor	EPA 608.3
111.055	060	Toxaphene	EPA 608.3
111.160	001	Acenaphthene	EPA 625.1
111.160	002	Acenaphthylene	EPA 625.1
111.160	003	Anthracene	EPA 625.1
111.160	004	Benzidine	EPA 625.1
111.160	005	Benzo(a)anthracene	EPA 625.1
111.160	006	Benzo(a)pyrene	EPA 625.1
111.160	007	Benzo(b)fluoranthene	EPA 625.1
111.160	800	Benzo(g,h,i)perylene	EPA 625.1
111.160	009	Benzo(k)fluoranthene	EPA 625.1
111.160	010	Bis(2-chloroethoxy) Methane	EPA 625.1
111.160	011	Bis(2-chloroethyl) Ether	EPA 625.1
111.160	012	bis(2-Chloroisopropyl) ether (2,2'-Oxybis[1-chloroprop	EPA 625.1
111.160	013	Bis(2-ethylhexyl)phthalate (Di(2-ethylhexyl) phthalate)	EPA 625.1
111.160	014	4-Bromophenyl Phenyl Ether	EPA 625.1
111.160	015	Butyl Benzyl Phthalate	EPA 625.1
111.160	016	2-Chloronaphthalene	EPA 625.1
111.160	017	4-Chlorophenyl Phenyl Ether	EPA 625.1
111.160	018	Chrysene	EPA 625.1
111.160	019	Dibenz(a,h)anthracene	EPA 625.1
111.160	020	3,3'-Dichlorobenzidine	EPA 625.1
111.160	021	Diethyl Phthalate	EPA 625.1
111.160	022	Dimethyl Phthalate	EPA 625.1
111.160	023	Di-n-butyl Phthalate	EPA 625.1
111.160	024	2,4-Dinitrotoluene	EPA 625.1
111.160	025	2,6-Dinitrotoluene	EPA 625.1
111.160	026	Di-n-octyl Phthalate	EPA 625.1
111.160	027	Fluoranthene	EPA 625.1
111.160	028	Fluorene	EPA 625.1
111.160	029	Hexachlorobenzene	EPA 625.1
111.160	030	Hexachlorobutadiene	EPA 625.1
111.160	031		
	001	Hexachioroethane	EPA 625.1
111.160	032	Indeno(1,2,3-c,d)pyrene	EPA 625.1 EPA 625.1
111.160 111.160	032 033	Indeno(1,2,3-c,d)pyrene Isophorone	EPA 625.1 EPA 625.1 EPA 625.1
111.160 111.160 111.160	032 033 034	Indeno(1,2,3-c,d)pyrene Isophorone Naphthalene	EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1
111.160 111.160 111.160 111.160	032 033 034 035	Indeno(1,2,3-c,d)pyrene Isophorone Naphthalene Nitrobenzene	EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1
111.160 111.160 111.160 111.160 111.160	032 033 034 035 036	Indeno(1,2,3-c,d)pyrene Isophorone Naphthalene Nitrobenzene N-nitroso-di-n-propylamine	EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1
111.160 111.160 111.160 111.160 111.160 111.160 111.160	032 033 034 035 036 037	Indeno(1,2,3-c,d)pyrene Isophorone Naphthalene Nitrobenzene N-nitroso-di-n-propylamine Phenanthrene	EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1 EPA 625.1

111.160	039	1,2,4-Trichlorobenzene	EPA 625.1
111.160	040	4-Chloro-3-methylphenol	EPA 625.1
111.160	041	2-Chlorophenol	EPA 625.1
111.160	042	2,4-Dichlorophenol	EPA 625.1
111.160	043	2,4-Dimethylphenol	EPA 625.1
111.160	044	2,4-Dinitrophenol	EPA 625.1
111.160	045	2-Methyl-4,6-dinitrophenol	EPA 625.1
111.160	046	2-Nitrophenol	EPA 625.1
111.160	047	4-Nitrophenol	EPA 625.1
111.160	048	Pentachlorophenol	EPA 625.1
111.160	049	Phenol	EPA 625.1
111.160	050	2,4,6-Trichlorophenol	EPA 625.1
111.160	098	Hexachlorocyclopentadiene	EPA 625.1
111.160	108	N-nitrosodimethylamine	EPA 625.1
111.160	110	N-nitrosodiphenylamine	EPA 625.1
111.160	140	Carbazole	EPA 625.1
111.160	141	o-Cresol	EPA 625.1
111.160	143	1,2-Diphenylhydrazine	EPA 625.1
111.160	145	Pyridine	EPA 625.1
111.160	147	m+p-Cresol	EPA 625.1
111.160	148	2-Methylnaphthalene	EPA 625.1
-			
111.160	149	1-Methylphenanthrene	EPA 625.1
111.160 111.160	149 151	1-Methylphenanthrene 2,4,5-Trichlorophenol	EPA 625.1 EPA 625.1
111.160 111.160 Field of <i>J</i>	149 151 Accred	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste	EPA 625.1 EPA 625.1
111.160 111.160 Field of <i>J</i> 114.315	149 151 Accred 001	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum	EPA 625.1 EPA 625.1 EPA 6010 B
111.160 111.160 Field of <i>J</i> 114.315 114.315	149 151 Accred 001 002	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 Field of <i>J</i> 114.315 114.315 114.315	149 151 Accred 001 002 003	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B EPA 6010 B
111.160 111.160 Field of <i>J</i> 114.315 114.315 114.315 114.315	149 151 Accred 001 002 003 004	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
111.160 111.160 Field of / 114.315 114.315 114.315 114.315 114.315 114.315	149 151 Accred 001 002 003 004 005	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
111.160 111.160 111.160 Field of J 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315	149 151 Accred 001 002 003 004 005 006	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
111.160 111.160 111.160 Field of J 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315	149 151 Accred 001 002 003 004 005 006 007	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008 009	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008 009 010	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008 009 010 011	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.160 114.315	149 151 001 002 003 004 005 006 007 008 009 010 011 012	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Cadmium Calcium Chromium Cobalt Copper Iron	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008 009 010 011 012 013	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 001 002 003 004 005 006 007 008 009 010 011 012 013 014	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	EPA 625.1 EPA 625.1 EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 001 002 003 004 005 006 007 008 007 008 009 010 011 012 013 014 015 016	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Ansenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B
111.160 111.160 111.160 111.315 114.315	149 151 Accred 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017	1-Methylphenanthrene 2,4,5-Trichlorophenol itation:114 - Inorganic Constituents in Hazardous Waste Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Malganese Molybdenum Nickel	EPA 625.1 EPA 625.1 EPA 6010 B EPA 6010 B

114.315 020 Silver EPA 6010 B 114.315 022 Storntum EPA 6010 B 114.315 022 Thallum EPA 6010 B 114.315 024 Tin EPA 6010 B 114.315 024 Tin EPA 6010 B 114.315 025 Titanium EPA 6010 B 114.315 026 Vanadium EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.335 001 Auminum EPA 6010 B 114.335 002 Antimory EPA 6020 114.335 003 Asenic EPA 6020 114.335 004 Barium EPA 6020 114.335 006 Cadmum EPA 6020 114.335 006 Cabalt EPA 6020 114.335 010 Lead EPA 6020 114.335 010 Lead EPA 6020 114.335 013 Silver	114.315	019	Selenium	EPA 6010 B
114.315 021 Statum EPA 6010 B 114.315 022 Tunlium EPA 6010 B 114.315 024 Tun EPA 6010 B 114.315 025 Titanium EPA 6010 B 114.315 026 Vanadum EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.315 026 Vanadum EPA 6010 B 114.315 027 Zinc EPA 6020 114.335 001 Auminum EPA 6020 114.335 003 Arsenic EPA 6020 114.335 004 Banum EPA 6020 114.335 006 Cadmium EPA 6020 114.335 010 Laad EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nare	114.315	020	Silver	EPA 6010 B
114.315 022 Strentum EPA 6010 B 114.315 024 Tin EPA 6010 B 114.315 024 Tin EPA 6010 B 114.315 025 Ttanium EPA 6010 B 114.315 027 Zine EPA 6010 B 114.315 027 Zine EPA 6010 B 114.315 027 Zine EPA 6010 B 114.335 001 Auminum EPA 6020 114.335 002 Arisinic EPA 6020 114.335 003 Assanic EPA 6020 114.335 004 Barium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cobalt EPA 6020 114.335 006 Cobalt EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickal EPA 6020 114.335 014 Thallium <td>114.315</td> <td>021</td> <td>Sodium</td> <td>EPA 6010 B</td>	114.315	021	Sodium	EPA 6010 B
114.315 023 Thellium EPA 6010 B 114.315 024 Tun EPA 6010 B 114.315 026 Vanadum EPA 6010 B 114.315 026 Vanadum EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.335 001 Aluminum EPA 6020 114.335 002 Antmony EPA 6020 114.335 003 Assenic EPA 6020 114.335 004 Benium EPA 6020 114.335 005 Benylium EPA 6020 114.335 006 Codumu EPA 6020 114.335 007 Chronium EPA 6020 114.335 007 Chronium EPA 6020 114.335 007 Chronium EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickal EPA 6020 114.335 014	114.315	022	Strontium	EPA 6010 B
114.315 024 Tin EPA 6010 B 114.315 025 Tinalum EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.335 001 Auminum EPA 6010 B 114.335 001 Auminum EPA 6020 114.335 003 Araenic EPA 6020 114.335 004 Barium EPA 6020 114.335 005 Beryllum EPA 6020 114.335 006 Cadmium EPA 6020 114.335 000 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallum	114.315	023	Thallium	EPA 6010 B
114.315 025 Titanium EPA 6010 B 114.315 027 Znc EPA 6010 B 114.315 001 Aluminum EPA 6010 B 114.315 001 Aluminum EPA 6020 114.335 002 Antimony EPA 6020 114.335 002 Antimony EPA 6020 114.335 004 Barium EPA 6020 114.335 005 Berglium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Codent EPA 6020 114.335 007 Chronium EPA 6020 114.335 007 Chronium EPA 6020 114.335 007 Codeat EPA 6020 114.335 010 Lead EPA 6020 114.335 012 Nickel EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Sher EPA 6020 114.335 014 Thallu	114.315	024	Tin	EPA 6010 B
114.315 026 Vanadium EPA 6010 B 114.315 027 Zinc EPA 6010 B 114.335 001 Aluminum EPA 6020 114.335 002 Antimony EPA 6020 114.335 003 Arsenic EPA 6020 114.335 004 Barlum EPA 6020 114.335 005 Beryllium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadper EPA 6020 114.335 006 Cadper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thalium EPA 6020 114.335 014 Thalium EPA 60	114.315	025	Titanium	EPA 6010 B
114.315 027 Zinc EPA 6010 B 114.335 001 Aluminum EPA 6020 114.335 002 Antinony EPA 6020 114.335 004 Barium EPA 6020 114.335 005 Beryllium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 008 Cabalt EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 014 Thallum EPA 6020 114.335 014 Thallum EPA 6020 114.435 001 Chro	114.315	026	Vanadium	EPA 6010 B
114.335 001 Aluminum EPA 6020 114.335 002 Antinony EPA 6020 114.335 004 Barum EPA 6020 114.335 005 Baryllium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cobelt EPA 6020 114.335 006 Cobelt EPA 6020 114.335 006 Cobelt EPA 6020 114.335 007 Chromium EPA 6020 114.335 010 Lead EPA 6020 114.335 012 Nickel EPA 6020	114.315	027	Zinc	EPA 6010 B
114.335 002 Antimony EPA 6020 114.335 004 Barlum EPA 6020 114.335 004 Barlum EPA 6020 114.335 006 Cadmium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 008 Cobat EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Marganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Marganese EPA 6020 114.335 014 Marganese EPA 6020 114.335 015 Zinc EPA 6020 114.335 014 Thalium EPA 7190 114.335 014 Chromium VI (Hexavalent Chromium) EPA 7190 114.335 014 Chromium VI (Hexavalent Chromium) EPA 7190 114	114.335	001	Aluminum	EPA 6020
114.335 003 Arsenic EPA 6020 114.335 004 Barium EPA 6020 114.335 005 Beryllum EPA 6020 114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 008 Cobalt EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Maganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 012 Nickel EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 011 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A <td>114.335</td> <td>002</td> <td>Antimony</td> <td>EPA 6020</td>	114.335	002	Antimony	EPA 6020
114.335 004 Barium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 007 Chromium EPA 6020 114.335 007 Chromium EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Maganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 010 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium)	114.335	003	Arsenic	EPA 6020
114.335 005 Beryllium EPA 6020 114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 008 Cobalt EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 014 Thallium EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 001 Chromium VI (Hexavalent Chromium) EPA 7196 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7196 114.455 001 Chromium VI (Hexavalent Chromium) EPA 9014	114.335	004	Barium	EPA 6020
114.335 006 Cadmium EPA 6020 114.335 007 Chromium EPA 6020 114.335 008 Cobalt EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 014 Thallium EPA 6020 114.335 014 Thallium EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 709 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Cyanide, Total EPA 9014 114.725 001 Cyanide, Total EPA 9014	114.335	005	Beryllium	EPA 6020
114.335 007 Chromium EPA 6020 114.335 008 Cobalt EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7114 114.725 001 Cyanide, Total EPA 9014 114.725 001 Silver EPA 8001 <td>114.335</td> <td>006</td> <td>Cadmium</td> <td>EPA 6020</td>	114.335	006	Cadmium	EPA 6020
114.335 008 Cobalt EPA 6020 114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7199 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 115.055 001 Waste Extraction Test	114.335	007	Chromium	EPA 6020
114.335 009 Copper EPA 6020 114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7199 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 3056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.065 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.065 001 Synthetic Precipitation Leaching Procedure (TCLP) EPA 1311	114.335	800	Cobalt	EPA 6020
114.335 010 Lead EPA 6020 114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 EVA 9016 CCR Chapter11, Article 5, Ap Interim 115.065 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.065 001 Synthetic Precipitation Leaching Procedure (TCLP) EPA 1311 <tr< td=""><td>114.335</td><td>009</td><td>Copper</td><td>EPA 6020</td></tr<>	114.335	009	Copper	EPA 6020
114.335 011 Manganese EPA 6020 114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9014 114.745 001 Fluoride EPA 9014 114.745 001 Fluoride EPA 9014 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.055 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 131	114.335	010	Lead	EPA 6020
114.335 012 Nickel EPA 6020 114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.335 011 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.055 001 Synthetic Precipitation Leaching Procedure (TCLP) EPA 1312 115.055 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.055 001 Synthetic Precipitation Compounds in Hazardous Waste 116.215 001 1,2-Di	114.335	011	Manganese	EPA 6020
114.335 013 Silver EPA 6020 114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Mercury EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.085 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1312 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste <	114.335	012	Nickel	EPA 6020
114.335 014 Thallium EPA 6020 114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7199 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.085 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 8012	114.335	013	Silver	EPA 6020
114.335 015 Zinc EPA 6020 114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.455 001 Mercury EPA 7199 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.055 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromoethane (DBCP) EPA 8011	114.335	014	Thallium	EPA 6020
114.435 001 Chromium VI (Hexavalent Chromium) EPA 7196 A 114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.055 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	114.335	015	Zinc	EPA 6020
114.465 001 Chromium VI (Hexavalent Chromium) EPA 7199 114.535 001 Mercury EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.085 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromoethane (EDB) EPA 8011	114.435	001	Chromium VI (Hexavalent Chromium)	EPA 7196 A
114.535 001 Mercury EPA 7471 A 114.725 001 Cyanide, Total EPA 9014 114.745 001 Fluoride EPA 9056 Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.085 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	114.465	001	Chromium VI (Hexavalent Chromium)	EPA 7199
114.725001Cyanide, TotalEPA 9014114.745001FluorideEPA 9056Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste115.055001Waste Extraction Test (WET)CCR Chapter11, Article 5, Ap Interim115.085001Toxicity Characteristic Leaching Procedure (TCLP)EPA 1311115.095001Synthetic Precipitation Leaching Procedure (SPLP)EPA 1312115.135001Corrosivity - pH DeterminationEPA 9045 CField of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste116.2150011,2-Dibromoethane (EDB)EPA 8011116.2150021,2-Dibromo-3-chloropropane (DBCP)EPA 8011	114.535	001	Mercury	EPA 7471 A
114.745001FluorideEPA 9056Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste115.055001Waste Extraction Test (WET)CCR Chapter11, Article 5, Ap Interim115.085001Toxicity Characteristic Leaching Procedure (TCLP)EPA 1311115.095001Synthetic Precipitation Leaching Procedure (SPLP)EPA 1312115.135001Corrosivity - pH DeterminationEPA 9045 CField of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste116.2150011,2-Dibromoethane (EDB)EPA 8011116.2150021,2-Dibromo-3-chloropropane (DBCP)EPA 8011	114.725	001	Cyanide, Total	EPA 9014
Field of Accreditation:115 - Leaching/Extraction Tests and Physical Characteristics of Hazardous Waste 115.055 001 Waste Extraction Test (WET) CCR Chapter11, Article 5, Ap Interim 115.085 001 Toxicity Characteristic Leaching Procedure (TCLP) EPA 1311 115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	114.745	001	Fluoride	EPA 9056
115.055001Waste Extraction Test (WET)CCR Chapter11, Article 5, Ap Interim115.085001Toxicity Characteristic Leaching Procedure (TCLP)EPA 1311115.095001Synthetic Precipitation Leaching Procedure (SPLP)EPA 1312115.135001Corrosivity - pH DeterminationEPA 9045 CField of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste116.2150011,2-Dibromoethane (EDB)EPA 8011116.2150021,2-Dibromo-3-chloropropane (DBCP)EPA 8011	Field of <i>I</i>	Accred	itation:115 - Leaching/Extraction Tests and Physical Characterist	ics of Hazardous Waste
115.085001Toxicity Characteristic Leaching Procedure (TCLP)EPA 1311115.095001Synthetic Precipitation Leaching Procedure (SPLP)EPA 1312115.135001Corrosivity - pH DeterminationEPA 9045 CField of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste116.2150011,2-Dibromoethane (EDB)EPA 8011116.2150021,2-Dibromo-3-chloropropane (DBCP)EPA 8011	115.055	001	Waste Extraction Test (WET)	CCR Chapter11, Article 5, Ap Interim
115.095 001 Synthetic Precipitation Leaching Procedure (SPLP) EPA 1312 115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	115.085	001	Toxicity Characteristic Leaching Procedure (TCLP)	EPA 1311
115.135 001 Corrosivity - pH Determination EPA 9045 C Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste EPA 8011 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	115.095	001	Synthetic Precipitation Leaching Procedure (SPLP)	EPA 1312
Field of Accreditation:116 - Volatile Organic Compounds in Hazardous Waste 116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	115.135	001	Corrosivity - pH Determination	EPA 9045 C
116.215 001 1,2-Dibromoethane (EDB) EPA 8011 116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	Field of	Accred	itation:116 - Volatile Organic Compounds in Hazardous Waste	
116.215 002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8011	116.215	001	1.2-Dibromoethane (EDB)	EPA 8011
	116.215	002	1,2-Dibromo-3-chloropropane (DBCP)	EPA 8011
116.220 001 Gasoline Range Organics (GRO) EPA 8015 B	116.220	001	Gasoline Range Organics (GRO)	EPA 8015 B
116.265 001 Benzene EPA 8260 B	116.265	001	Benzene	EPA 8260 B
116.265 002 Bromobenzene EPA 8260 B	116.265	002	Bromobenzene	EPA 8260 B
116.265 003 Bromochloromethane EPA 8260 B	116.265	003	Bromochloromethane	EPA 8260 B
116.265 004 Bromodichloromethane EPA 8260 B	116.265	004	Bromodichloromethane	EPA 8260 B

Certificate Number: 2672 Expiration Date: 6/30/2025

116.265	005	Bromoform	EPA 8260 B
116.265	006	Bromomethane (Methyl Bromide)	EPA 8260 B
116.265	007	n-Butylbenzene	EPA 8260 B
116.265	008	sec-Butylbenzene	EPA 8260 B
116.265	009	tert-Butylbenzene	EPA 8260 B
116.265	010	Carbon Disulfide	EPA 8260 B
116.265	011	Carbon Tetrachloride	EPA 8260 B
116.265	012	Chlorobenzene	EPA 8260 B
116.265	013	Chlorodibromomethane (Dibromochloromethane)	EPA 8260 B
116.265	014	Chloroethane	EPA 8260 B
116.265	015	Chloroform	EPA 8260 B
116.265	016	Chloromethane (Methyl Chloride)	EPA 8260 B
116.265	017	Dibromomethane	EPA 8260 B
116.265	018	Dichlorodifluoromethane (Freon 12)	EPA 8260 B
116.265	019	cis-1,2-Dichloroethylene (cis 1,2 Dichloroethene)	EPA 8260 B
116.265	020	trans-1,2-Dichloroethylene (trans- 1,2 Dichloroethene	EPA 8260 B
116.265	021	cis-1,3-Dichloropropylene (cis 1,3 Dichloropropene)	EPA 8260 B
116.265	022	trans-1,3-Dichloropropylene (trans-1,3 Dichloroprope	EPA 8260 B
116.265	023	Ethylbenzene	EPA 8260 B
116.265	024	Hexachlorobutadiene	EPA 8260 B
116.265	025	Methyl tert-butyl Ether (MTBE)	EPA 8260 B
116.265	026	Methylene Chloride (Dichloromethane)	EPA 8260 B
116.265	027	Naphthalene	EPA 8260 B
116.265	029	N-propylbenzene	EPA 8260 B
116.265	030	Styrene	EPA 8260 B
116.265	031	Tetrachloroethylene (Tetrachloroethene)	EPA 8260 B
116.265	032	Toluene	EPA 8260 B
116.265	033	Trichloroethylene (Trichloroethene)	EPA 8260 B
116.265	034	Trichlorofluoromethane	EPA 8260 B
116.265	035	Vinyl Chloride	EPA 8260 B
116.265	036	m+p-Xylene	EPA 8260 B
116.265	037	o-Xylene	EPA 8260 B
116.265	040	1,1-Dichloroethane	EPA 8260 B
116.265	041	1,1-Dichloroethylene (1,1-Dichloroethene)	EPA 8260 B
116.265	042	1,1,1-Trichloroethane	EPA 8260 B
116.265	043	1,1,1,2-Tetrachloroethane	EPA 8260 B
116.265	044	1,1,2,2-Tetrachloroethane	EPA 8260 B
116.265	045	1,1,2-Trichloroethane	EPA 8260 B
116.265	046	1,2-Dichlorobenzene	EPA 8260 B
116.265	047	1,2-Dichloroethane (Ethylene Dichloride)	EPA 8260 B
116.265	048	1,2-Dibromoethane (EDB)	EPA 8260 B
116.265	049	1,2-Dibromo-3-chloropropane (DBCP)	EPA 8260 B

116.265	050	1,2-Dichloropropane	EPA 8260 B
116.265	051	1,2,3-Trichloropropane (TCP)	EPA 8260 B
116.265	052	1,2,4-Trichlorobenzene	EPA 8260 B
116.265	053	1,3-Dichlorobenzene	EPA 8260 B
116.265	054	1,4-Dichlorobenzene	EPA 8260 B
116.265	055	2-Chloroethyl vinyl Ether	EPA 8260 B
116.265	056	4-Chlorotoluene	EPA 8260 B
116.265	057	4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	EPA 8260 B
Field of /	Accred	itation:117 - Semi-volatile Organic Chemistry of Hazardous Wast	e
117.235	002	Diesel Range Organics (DRO)	EPA 8015 B
117.315	001	Aldrin	EPA 8081 A
117.315	002	alpha-BHC	EPA 8081 A
117.315	003	beta-BHC	EPA 8081 A
117.315	004	delta-BHC	EPA 8081 A
117.315	005	gamma-BHC (Lindane)	EPA 8081 A
117.315	006	Chlordane (total)	EPA 8081 A
117.315	800	4,4'-DDD	EPA 8081 A
117.315	009	4,4'-DDE	EPA 8081 A
117.315	010	4,4'-DDT	EPA 8081 A
117.315	011	Dieldrin	EPA 8081 A
117.315	012	Endosulfan I	EPA 8081 A
117.315	013	Endosulfan II	EPA 8081 A
117.315	014	Endosulfan Sulfate	EPA 8081 A
117.315	015	Endrin	EPA 8081 A
117.315	016	Endrin Aldehyde	EPA 8081 A
117.315	017	Endrin Ketone	EPA 8081 A
117.315	018	Heptachlor	EPA 8081 A
117.315	019	Heptachlor Epoxide	EPA 8081 A
117.315	020	Methoxychlor	EPA 8081 A
117.315	021	Toxaphene	EPA 8081 A
117.335	001	Aroclor 1016	EPA 8082
117.335	002	Aroclor 1221	EPA 8082
117.335	003	Aroclor 1232	EPA 8082
117.335	004	Aroclor 1242	EPA 8082
117.335	005	Aroclor 1248	EPA 8082
117.335	006	Aroclor 1254	EPA 8082
117.335	007	Aroclor 1260	EPA 8082
117.405	001	Azinphos Methyl	EPA 8141 A
117.405	002	Chlorpyrifos	EPA 8141 A
117.405	003	Demeton-O	EPA 8141 A
117.405	004	Demeton-S	EPA 8141 A
117.405	005	Diazinon	EPA 8141 A

117.405	006	Dichlorvos (DDVP)	EPA 8141 A
117.405	007	Disulfoton	EPA 8141 A
117.405	800	Malathion	EPA 8141 A
117.405	009	Parathion Ethyl	EPA 8141 A
117.405	010	Parathion Methyl	EPA 8141 A
117.405	011	Phorate	EPA 8141 A
117.405	012	Ronnel	EPA 8141 A
117.405	013	Stirophos (Tetrachlorovinphos)	EPA 8141 A
117.425	001	2,4-D	EPA 8151 A
117.425	002	2,4-DB	EPA 8151 A
117.425	003	2,4,5-TP (Silvex)	EPA 8151 A
117.425	004	2,4,5-T	EPA 8151 A
117.425	005	Dalapon	EPA 8151 A
117.425	006	Dicamba	EPA 8151 A
117.425	007	Dichloroprop	EPA 8151 A
117.425	800	Dinoseb	EPA 8151 A
117.425	009	MCPA	EPA 8151 A
117.425	010	МСРР	EPA 8151 A
117.425	011	4-Nitrophenol	EPA 8151 A
117.425	012	Pentachlorophenol	EPA 8151 A
117.435	001	Acenaphthene	EPA 8270 C
117.435	002	Acenaphthylene	EPA 8270 C
117.435	003	Aniline	EPA 8270 C
117.435	004	Anthracene	EPA 8270 C
117.435	005	Benzidine	EPA 8270 C
117.435	006	Benzoic Acid	EPA 8270 C
117.435	007	Benzo(a)anthracene	EPA 8270 C
117.435	800	Benzo(b)fluoranthene	EPA 8270 C
117.435	009	Benzo(k)fluoranthene	EPA 8270 C
117.435	010	Benzo(g,h,i)perylene	EPA 8270 C
117.435	011	Benzo(a)pyrene	EPA 8270 C
117.435	012	Benzyl Alcohol	EPA 8270 C
117.435	013	Bis(2-chloroethoxy) Methane	EPA 8270 C
117.435	014	Bis(2-chloroethyl) Ether	EPA 8270 C
117.435	015	Bis(2-ethylhexyl)phthalate (Di(2-ethylhexyl) phthalate)	EPA 8270 C
117.435	016	Butyl Benzyl Phthalate	EPA 8270 C
117.435	017	Chrysene	EPA 8270 C
117.435	018	Dibenz(a,h)anthracene	EPA 8270 C
117.435	019	Dibenzofuran	EPA 8270 C
117.435	020	Di-n-butyl Phthalate	EPA 8270 C
117.435	021	Diethyl Phthalate	EPA 8270 C
117.435	022	Dimethyl Phthalate	EPA 8270 C

117.435	023	Di-n-octyl Phthalate	EPA 8270 C
117.435	024	Fluoranthene	EPA 8270 C
117.435	025	Fluorene	EPA 8270 C
117.435	026	Naphthalene	EPA 8270 C
117.435	027	Nitrobenzene	EPA 8270 C
117.435	028	Pentachlorobenzene	EPA 8270 C
117.435	029	Pentachlorophenol	EPA 8270 C
117.435	030	1-Chloronaphthalene	EPA 8270 C
117.435	031	1,2-Dichlorobenzene	EPA 8270 C
117.435	032	1,3-Dichlorobenzene	EPA 8270 C
117.435	033	1,4-Dichlorobenzene	EPA 8270 C
117.435	034	2-Chloronaphthalene	EPA 8270 C
117.435	035	2-Chlorophenol	EPA 8270 C
117.435	036	2,4-Dichlorophenol	EPA 8270 C
117.435	037	2,4-Dimethylphenol	EPA 8270 C
117.435	038	2,4-Dinitrophenol	EPA 8270 C
117.435	039	2,4-Dinitrotoluene	EPA 8270 C
117.435	040	2,6-Dichlorophenol	EPA 8270 C
117.435	041	2,6-Dinitrotoluene	EPA 8270 C
117.435	042	2-Nitroaniline	EPA 8270 C
117.435	043	2-Nitrophenol	EPA 8270 C
117.435	044	3-Nitroaniline	EPA 8270 C
117.435	045	3,3'-Dichlorobenzidine	EPA 8270 C
117.435	046	4-Chloroaniline	EPA 8270 C
117.435	047	4-Chloro-3-methylphenol	EPA 8270 C
117.435	048	4-Bromophenyl Phenyl Ether	EPA 8270 C
117.435	049	4-Chlorophenyl Phenyl Ether	EPA 8270 C
117.435	050	4-Nitroaniline	EPA 8270 C
117.435	051	4-Nitrophenol	EPA 8270 C
117.435	087	N-nitrosodiethylamine	EPA 8270 C
117.435	088	N-nitrosodimethylamine	EPA 8270 C
117.435	089	N-nitrosodiphenylamine	EPA 8270 C
117.435	090	N-nitroso-di-n-propylamine	EPA 8270 C
117.435	091	Indeno(1,2,3-c,d)pyrene	EPA 8270 C
117.435	092	Isophorone	EPA 8270 C
117.435	093	2-Methylnaphthalene	EPA 8270 C
117.435	094	Phenanthrene	EPA 8270 C
117.475	001	Acenaphthene	EPA 8310
117.475	002	Acenaphthylene	EPA 8310
117.475	003	Anthracene	EPA 8310
117.475	004	Benzo(a)anthracene	EPA 8310
117.475	005	Benzo(a)pyrene	EPA 8310
117.475	006	Benzo(b)fluoranthene	EPA 8310
---	---	---	---
117.475	007	Benzo(g,h,i)perylene	EPA 8310
117.475	800	Benzo(k)fluoranthene	EPA 8310
117.475	009	Chrysene	EPA 8310
117.475	010	Dibenz(a,h)anthracene	EPA 8310
117.475	011	Fluoranthene	EPA 8310
117.475	012	Fluorene	EPA 8310
117.475	013	Indeno(1,2,3-c,d)pyrene	EPA 8310
117.475	014	Naphthalene	EPA 8310
117.475	015	Phenanthrene	EPA 8310
117.475	016	Pyrene	EPA 8310
117.545	001	1,3,5-Trinitrobenzene	EPA 8330 A
117.545	002	1,3-Dinitrobenzene	EPA 8330 A
117.545	003	Nitrobenzene	EPA 8330 A
117.545	004	2,4,6-Trinitrotoluene	EPA 8330 A
117.545	005	2,4-Dinitrotoluene	EPA 8330 A
117.545	006	2,6-Dinitrotoluene	EPA 8330 A
117.545	007	2-Nitrotoluene	EPA 8330 A
117.545	800	3-Nitrotoluene	EPA 8330 A
117.545	009	4-Nitrotoluene	EPA 8330 A
Field of	Accredi	itation:130 - Inorganic constituents in Hazardous waste (Matrix A	
1 1010 017	100104	itation. 150 - molganic constituents in nazardous waste (Mathx Ad	446646)
130.010	001	Aluminum	EPA 6010 B
<u>130.010</u> 130.010	001 002	Aluminum Antimony	EPA 6010 B EPA 6010 B
130.010 130.010 130.010	001 002 003	Aluminum Antimony Arsenic	EPA 6010 B EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010	001 002 003 004	Aluminum Antimony Arsenic Barium	EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010	001 002 003 004 005	Aluminum Antimony Arsenic Barium Beryllium	EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006	Aluminum Antimony Arsenic Barium Beryllium Boron	EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009 010	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009 010 011	Aluminum Antimony Arsenic Barium Beryllium Calcium Calcium Cobalt Copper	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	EPA 6010 B EPA 6010 B
130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	EPA 6010 B EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 014 015	Aluminum Antimony Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum	EPA 6010 B EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Magnese Molybdenum Nickel	EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Molybdenum Nickel Potassium	EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Magnesium Nickel Potassium Selenium	EPA 6010 B
130.010 130.010	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020	Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Malganese Molybdenum Nickel Potassium Selenium Silver	EPA 6010 B EPA 6010 B

130.010	022	Strontium	EPA 6010 B		
130.010	023	Thallium	EPA 6010 B		
130.010	024	Tin	EPA 6010 B		
130.010	025	Titanium	EPA 6010 B		
130.010	026	Vanadium	EPA 6010 B		
130.010	027	Zinc	EPA 6010 B		
130.030	001	Aluminum	EPA 6020		
130.030	002	Antimony	EPA 6020		
130.030	003	Arsenic	EPA 6020		
130.030	004	Barium	EPA 6020		
130.030	005	Beryllium	EPA 6020		
130.030	006	Cadmium	EPA 6020		
130.030	007	Chromium	EPA 6020		
130.030	800	Cobalt	EPA 6020		
130.030	009	Copper	EPA 6020		
130.030	010	Lead	EPA 6020		
130.030	011	Manganese	EPA 6020		
130.030	012	Nickel	EPA 6020		
130.030	013	Silver	EPA 6020		
130.030	014	Thallium	EPA 6020		
130.030	015	Zinc	EPA 6020		
130.140	001	Chromium VI (Hexavalent Chromium)	EPA 7196 A		
130.170	001	Chromium VI (Hexavalent Chromium)	EPA 7199		
130.250	001	Mercury	EPA 7470 A		
130.450	001	Cyanide, Total	EPA 9014		
130.470	001	Fluoride	EPA 9056		
Field of	Accred	itation:131 - Leaching/Extraction, Physical Chacterstics in Hazard	lous Waste (Matrix Aqueous)		
131.010	001	Waste Extraction Test (WET)	CCR Chapter11, Article 5, Ap Interim		
131.040	001	Toxicity Characteristic Leaching Procedure (TCLP)	EPA 1311		
131.050	001	Synthetic Precipitation Leaching Procedure (SPLP)	EPA 1312		
131.070	001	Ignitability	EPA 1010 A		
131.110	001	Corrosivity - pH Determination	EPA 9040 B		
131.120	001	Corrosivity - pH Determination	EPA 9040 C		
Field of	Accred	itation:132 - Volatile Organic Compounds in Hazardous Waste (M	latrix Aqueous)		
132.010	001	1,2-Dibromoethane (EDB)	EPA 8011		
132.010	002	1,2-Dibromo-3-chloropropane (DBCP)	EPA 8011		
132.015	001	Gasoline Range Organics (GRO)	EPA 8015 B		
132.060	001	Benzene	EPA 8260 B		
132.060	002	Bromobenzene	EPA 8260 B		
132.060	003	Bromochloromethane	EPA 8260 B		
132.060	004	Bromodichloromethane	EPA 8260 B		
132.060	005	Bromoform	EPA 8260 B		

132.060	006	Bromomethane (Methyl Bromide)	EPA 8260 B
132.060	007	n-Butylbenzene	EPA 8260 B
132.060	800	sec-Butylbenzene	EPA 8260 B
132.060	009	tert-Butylbenzene	EPA 8260 B
132.060	010	Carbon Disulfide	EPA 8260 B
132.060	011	Carbon Tetrachloride	EPA 8260 B
132.060	012	Chlorobenzene	EPA 8260 B
132.060	013	Chlorodibromomethane (Dibromochloromethane)	EPA 8260 B
132.060	014	Chloroethane	EPA 8260 B
132.060	015	Chloroform	EPA 8260 B
132.060	016	Chloromethane (Methyl Chloride)	EPA 8260 B
132.060	017	Dibromomethane	EPA 8260 B
132.060	018	Dichlorodifluoromethane (Freon 12)	EPA 8260 B
132.060	019	cis-1,2-Dichloroethylene (cis 1,2 Dichloroethene)	EPA 8260 B
132.060	020	trans-1,2-Dichloroethylene (trans- 1,2 Dichloroethene	EPA 8260 B
132.060	021	cis-1,3-Dichloropropylene (cis 1,3 Dichloropropene)	EPA 8260 B
132.060	022	trans-1,3-Dichloropropylene (trans-1,3 Dichloroprope	EPA 8260 B
132.060	023	Ethylbenzene	EPA 8260 B
132.060	024	Hexachlorobutadiene	EPA 8260 B
132.060	025	Methyl tert-butyl Ether (MTBE)	EPA 8260 B
132.060	026	Methylene Chloride (Dichloromethane)	EPA 8260 B
132.060	027	Naphthalene	EPA 8260 B
132.060	029	N-propylbenzene	EPA 8260 B
132.060	030	Styrene	EPA 8260 B
132.060	031	Tetrachloroethylene (Tetrachloroethene)	EPA 8260 B
132.060	032	Toluene	EPA 8260 B
132.060	033	Trichloroethylene (Trichloroethene)	EPA 8260 B
132.060	034	Trichlorofluoromethane	EPA 8260 B
132.060	035	Vinyl Chloride	EPA 8260 B
132.060	036	m+p-Xylene	EPA 8260 B
132.060	037	o-Xylene	EPA 8260 B
132.060	040	1,1-Dichloroethane	EPA 8260 B
132.060	041	1,1-Dichloroethylene (1,1-Dichloroethene)	EPA 8260 B
132.060	042	1,1,1-Trichloroethane	EPA 8260 B
132.060	043	1,1,1,2-Tetrachloroethane	EPA 8260 B
132.060	044	1,1,2,2-Tetrachloroethane	EPA 8260 B
132.060	045	1,1,2-Trichloroethane	EPA 8260 B
132.060	046	1,2-Dichlorobenzene	EPA 8260 B
132.060	047	1,2-Dichloroethane (Ethylene Dichloride)	EPA 8260 B
132.060	048	1,2-Dibromoethane (EDB)	EPA 8260 B
132.060	049	1,2-Dibromo-3-chloropropane (DBCP)	EPA 8260 B
132.060	050	1,2-Dichloropropane	EPA 8260 B

132.060	051	1,2,3-Trichloropropane (TCP)	EPA 8260 B
132.060	052	1,2,4-Trichlorobenzene	EPA 8260 B
132.060	053	1,3-Dichlorobenzene	EPA 8260 B
132.060	054	1,4-Dichlorobenzene	EPA 8260 B
132.060	055	2-Chloroethyl vinyl Ether	EPA 8260 B
132.060	056	4-Chlorotoluene	EPA 8260 B
132.060	057	4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	EPA 8260 B
Field of	Accred	itation:133 - Semi-Volatile Organic Chemistry in Hazardous Wast	e (Matrix Aqueous)
133.010	002	Diesel Range Organics (DRO)	EPA 8015 B
133.090	001	Aldrin	EPA 8081 A
133.090	002	alpha-BHC	EPA 8081 A
133.090	003	beta-BHC	EPA 8081 A
133.090	004	delta-BHC	EPA 8081 A
133.090	005	gamma-BHC (Lindane)	EPA 8081 A
133.090	006	Chlordane	EPA 8081 A
133.090	800	4,4'-DDD	EPA 8081 A
133.090	009	4,4'-DDE	EPA 8081 A
133.090	010	4,4'-DDT	EPA 8081 A
133.090	011	Dieldrin	EPA 8081 A
133.090	012	Endosulfan I	EPA 8081 A
133.090	013	Endosulfan II	EPA 8081 A
133.090	014	Endosulfan Sulfate	EPA 8081 A
133.090	015	Endrin	EPA 8081 A
133.090	016	Endrin Aldehyde	EPA 8081 A
133.090	017	Endrin Ketone	EPA 8081 A
133.090	018	Heptachlor	EPA 8081 A
133.090	019	Heptachlor Epoxide	EPA 8081 A
133.090	020	Methoxychlor	EPA 8081 A
133.090	021	Toxaphene	EPA 8081 A
133.120	001	Aroclor 1016	EPA 8082
133.120	002	Aroclor 1221	EPA 8082
133.120	003	Aroclor 1232	EPA 8082
133.120	004	Aroclor 1242	EPA 8082
133.120	005	Aroclor 1248	EPA 8082
133.120	006	Aroclor 1254	EPA 8082
133.120	007	Aroclor 1260	EPA 8082
133.190	001	Azinphos Methyl	EPA 8141 A
133.190	002	Chlorpyrifos	EPA 8141 A
133.190	003	Demeton-O	EPA 8141 A
133.190	004	Demeton-S	EPA 8141 A
133.190	005	Diazinon	EPA 8141 A
133.190	006	Dichlorvos (DDVP)	EPA 8141 A

133.190	007	Disulfoton	EPA 8141 A
133.190	800	Malathion	EPA 8141 A
133.190	009	Parathion Ethyl	EPA 8141 A
133.190	010	Parathion Methyl	EPA 8141 A
133.190	011	Phorate	EPA 8141 A
133.190	012	Ronnel	EPA 8141 A
133.190	013	Stirophos (Tetrachlorovinphos)	EPA 8141 A
133.220	001	2,4-D	EPA 8151 A
133.220	002	2,4-DB	EPA 8151 A
133.220	003	2,4,5-TP (Silvex)	EPA 8151 A
133.220	004	2,4,5-T	EPA 8151 A
133.220	005	Dalapon	EPA 8151 A
133.220	006	Dicamba	EPA 8151 A
133.220	800	Dinoseb	EPA 8151 A
133.220	009	MCPA	EPA 8151 A
133.220	010	МСРР	EPA 8151 A
133.220	011	4-Nitrophenol	EPA 8151 A
133.220	012	Pentachlorophenol	EPA 8151 A
133.230	001	Acenaphthene	EPA 8270 C
133.230	002	Acenaphthylene	EPA 8270 C
133.230	003	Aniline	EPA 8270 C
133.230	004	Anthracene	EPA 8270 C
133.230	005	Benzidine	EPA 8270 C
133.230	006	Benzoic Acid	EPA 8270 C
133.230	007	Benzo(a)anthracene	EPA 8270 C
133.230	800	Benzo(b)fluoranthene	EPA 8270 C
133.230	009	Benzo(k)fluoranthene	EPA 8270 C
133.230	010	Benzo(g,h,i)perylene	EPA 8270 C
133.230	011	Benzo(a)pyrene	EPA 8270 C
133.230	012	Benzyl Alcohol	EPA 8270 C
133.230	013	Bis(2-chloroethoxy) Methane	EPA 8270 C
133.230	014	Bis(2-chloroethyl) Ether	EPA 8270 C
133.230	015	Bis(2-ethylhexyl)phthalate (Di(2-ethylhexyl) phthalate)	EPA 8270 C
133.230	016	Butyl Benzyl Phthalate	EPA 8270 C
133.230	017	Chrysene	EPA 8270 C
133.230	018	Dibenz(a,h)anthracene	EPA 8270 C
133.230	019	Dibenzofuran	EPA 8270 C
133.230	020	Di-n-butyl Phthalate	EPA 8270 C
133.230	021	Diethyl Phthalate	EPA 8270 C
133.230	022	Dimethyl Phthalate	EPA 8270 C
133.230	023	Di-n-octyl Phthalate	EPA 8270 C
133.230	024	Fluoranthene	EPA 8270 C

133.230	025	Fluorene	EPA 8270 C
133.230	026	Naphthalene	EPA 8270 C
133.230	027	Nitrobenzene	EPA 8270 C
133.230	028	Pentachlorobenzene	EPA 8270 C
133.230	029	Pentachlorophenol	EPA 8270 C
133.230	030	1-Chloronaphthalene	EPA 8270 C
133.230	031	1,2-Dichlorobenzene	EPA 8270 C
133.230	032	1,3-Dichlorobenzene	EPA 8270 C
133.230	033	1,4-Dichlorobenzene	EPA 8270 C
133.230	034	2-Chloronaphthalene	EPA 8270 C
133.230	035	2-Chlorophenol	EPA 8270 C
133.230	036	2,4-Dichlorophenol	EPA 8270 C
133.230	037	2,4-Dimethylphenol	EPA 8270 C
133.230	038	2,4-Dinitrophenol	EPA 8270 C
133.230	039	2,4-Dinitrotoluene	EPA 8270 C
133.230	040	2,6-Dichlorophenol	EPA 8270 C
133.230	041	2,6-Dinitrotoluene	EPA 8270 C
133.230	042	2-Nitroaniline	EPA 8270 C
133.230	043	2-Nitrophenol	EPA 8270 C
133.230	044	3-Nitroaniline	EPA 8270 C
133.230	045	3,3'-Dichlorobenzidine	EPA 8270 C
133.230	046	4-Chloroaniline	EPA 8270 C
133.230	047	4-Chloro-3-methylphenol	EPA 8270 C
133.230	048	4-Bromophenyl Phenyl Ether	EPA 8270 C
133.230	049	4-Chlorophenyl Phenyl Ether	EPA 8270 C
133.230	050	4-Nitroaniline	EPA 8270 C
133.230	051	4-Nitrophenol	EPA 8270 C
133.230	087	N-nitrosodiethylamine	EPA 8270 C
133.230	088	N-nitrosodimethylamine	EPA 8270 C
133.230	089	N-nitrosodiphenylamine	EPA 8270 C
133.230	090	N-nitroso-di-n-propylamine	EPA 8270 C
133.230	091	Indeno(1,2,3-c,d)pyrene	EPA 8270 C
133.230	092	Isophorone	EPA 8270 C
133.230	093	2-Methylnaphthalene	EPA 8270 C
133.230	094	Phenanthrene	EPA 8270 C
133.270	001	Acenaphthene	EPA 8310
133.270	002	Acenaphthylene	EPA 8310
133.270	003	Anthracene	EPA 8310
133.270	004	Benzo(a)anthracene	EPA 8310
133.270	005	Benzo(a)pyrene	EPA 8310
133.270	006	Benzo(b)fluoranthene	EPA 8310
133.270	007	Benzo(g,h,i)perylene	EPA 8310

133.270	800	Benzo(k)fluoranthene	EPA 8310
133.270	009	Chrysene	EPA 8310
133.270	010	Dibenz(a,h)anthracene	EPA 8310
133.270	011	Fluoranthene	EPA 8310
133.270	012	Fluorene	EPA 8310
133.270	013	Indeno(1,2,3-c,d)pyrene	EPA 8310
133.270	014	Naphthalene	EPA 8310
133.270	015	Phenanthrene	EPA 8310
133.270	016	Pyrene	EPA 8310
133.350	001	1,3,5-Trinitrobenzene	EPA 8330 A
133.350	002	1,3-Dinitrobenzene	EPA 8330 A
133.350	003	Nitrobenzene	EPA 8330 A
133.350	004	2,4,6-Trinitrotoluene	EPA 8330 A
133.350	005	2,4-Dinitrotoluene	EPA 8330 A
133.350	006	2,6-Dinitrotoluene	EPA 8330 A
133.350	007	2-Nitrotoluene	EPA 8330 A
133.350	800	3-Nitrotoluene	EPA 8330 A
133.350	009	4-Nitrotoluene	EPA 8330 A

APPENDIX G – Laboratory SOPs

Confidential SOPs Retracted

ALKALINITY

SOP No.:	EMAX-2320B		Revision No.	8	Effective Da	ate:	06-Dec-22
Prepared By:	Tina Huang	In			Da	ate:	12/6/22
Approved By:	Farina Madamba	frade	andy		Da	ate:	12/0/22
	QA Manager						1 1
Approved By:	Caspar Pang	02	\geq		Da	ate: 🦊	2/6/21
	Laboratory Director		Control Nun	nber: 2	320B-08-		

1.0 SCOPE AND APPLICATION

- 1.1. This method is used to measure alkalinity of aqueous samples by titration. This is applicable to drinking, surface, and saline waters, domestic and industrial wastes. It is suitable for all concentration ranges of alkalinity; however, appropriate aliquots should be used to avoid a titration volume greater than 50 ml.
- 1.2. Alkalinity of soil may also be determined by leaching the matrix with reagent water and analyzing the leachate for alkalinity.
- 1.3. This SOP is an adaptation of Method 2320B-2011, Standard Methods for the Examination of Water and Wastewater, 22nd Edition.
- 1.4. This SOP is also an adaptation of Method 2320B-1997, Standard Methods for the Examination of Water and Wastewater, 20th and 21st Editions. There is no significant difference between Methods 2320B-2011 and 2320B-1997.

2.0 SUMMARY OF METHOD

- 2.1. An unaltered amount of sample is titrated with standard acid titrant to an endpoint of pH 4.5.
- 2.2. Solid matrices are leached with reagent water prior to titration.
- 2.3. Interferences
 - 2.3.1. Substances, such as salts of weak organic or inorganic acids present in large amounts, may cause interference in the electrometric measurements.
 - 2.3.2. Oil and grease coating the pH electrode may cause sluggish response. For samples having high concentration of mineral acids, such as mine wastes and associated receiving waters, ASTM Method D-1067 may be used.

3.0 DETECTION LIMITS

- 3.1. Detection Limit (DL) and Limit of Detection (LOD)
 - 3.1.1. DL and LOD are not applicable for this method.

3.2. Limit of Quantitation (LOQ)

- 3.2.1. Refer to EMAX-QA04 for generation, validation and verification of LOQ.
- 3.2.2. Established LOQ for this method is 5 mg/L.

ALKALINITY

SOP No.:	EMAX-2320B	Revision No.	8	Effective Date:	06-Dec-22

4.0 DYNAMIC RANGE

4.1. The maximum amount of titrant used in a pre-determined amount of sample shall not exceed 50 ml. All samples analyzed above these range shall be considered estimate (over-range) and shall require a smaller amount of sample or higher titrant concentration to properly quantitate.

5.0 SAMPLE HOLDING TIME & PRESERVATION

5.1. Preservation

- 5.1.1. Collected water samples are maintained at \leq 6°C with no chemical preservation.
- 5.1.2. Samples should not be filtered, diluted, concentrated or altered in any way.
- 5.1.3. Store all samples $\leq 6^{\circ}$ C without freezing.

5.2. Holding Time

- 5.2.1. Analyze aqueous samples as soon as possible, not to exceed 14 days from sampling date.
- 5.2.2. Analyze all leachates within 24 hours from extraction.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-DM01 Data Flow and Review
- 6.2. EMAX-QA04 Detection Limit
- 6.3. EMAX-QA05 Training
- 6.4. EMAX-QA08 Corrective Action
- 6.5. EMAX-QC02 Analytical Standard Preparation
- 6.6. EMAX-QC07 Labware Cleaning
- 6.7. EMAX-SM03 Waste Disposal
- 6.8. EMAX-SM04 Analytical and QC Sample Labeling

7.0 <u>SAFETY</u>

- 7.1. Read all SDS for chemicals listed in this SOP.
- 7.2. Treat reagents, standards and samples as potential hazards. Observe the standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, gloves, at all times when performing this procedure.
- 7.3. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amounts of water. If irritations persist, inform your supervisor immediately so that proper action can be taken.

ALKALINITY

SOP	No.:		EMAX-2320B	Revision No. <u>8</u>	Effective Date:	06-Dec-22
8.0	INSTR	UMENTS, (CHEMICALS AND REAGENTS			
	8.1.	Instrume	nts and Supplies			
		8.1.1.	pH meter: Hach One Laboratory pH/I	ISE Meter or equivalent		
		8.1.2.	Autotitrator: PC Titrate			
		8.1.3.	Combination electrode			
		8.1.4.	Burette: 50, 25 and 10 mL			

- 8.1.5. Beaker: 50 mL
- 8.1.6. Volumetric flasks: 1 L and 2 L
- 8.1.7. Analytical balance (capable of weighing 0.01 gm)

8.2. Chemicals and Reagents

8.2.1. Reagent water: Type II

9.0 STANDARDS

9.1. Purchase all standards as certified solutions as listed below (or equivalent):

STANDARD	SOURCE	CONCENTRATION		
рН 4.0	SCP Science	NA		
рН 7.0	SCP Science	NA		
pH 10.0	SCP Science	NA		
pH 8.0	Spex Certiprep	NA		
Alkalinity Std.	VWR/ERA	Certified concentration		
HCl (Titrant)	VWR	0.02 N		

- 9.2. Alternately, you may prepare alkalinity standard and HCl standard solutions as follows:
 - 9.2.1. Alkalinity Standard 0.05N Na₂CO₃
 - 9.2.1.1. Oven dry Na₂CO₃ at 250°C for at least 4 hours and cooled in dessicator.
 - 9.2.1.2. Accurately weigh 2.5 ± 0.2 g and dissolve it in 1 liter reagent water.
 - 9.2.1.3. Provide 7 days expiration date for this standard.

9.2.2. Titrant (Standard Acid)

- 9.2.2.1. HCl stock solution; 1N: dilute 8.33 mL conc. HCl to 100 mL reagent water.
- 9.2.2.2. HCl standard solution; 0.02 N: dilute 20 mL of 1 N HCl to 1000 mL reagent water.

				<u>A</u>	LKALI	NITY			
SOP	No.:	EMAX-2320B			Revision No.	8	Effective Date:	06-Dec-22	
10.0	PROC	EDURES							
	10.1.	Sample F	Preparation						
		10.1.1.	<u>Aqueous S</u>	amples					
			10.1.1.1.	Allow sample(s) to e	quilib	rate at room tem	peratur	e.	
			10.1.1.2.	Transfer an approp 10.4). Use reagent Prepare a sample d included in the prep	vriate water luplica varativ	amount of samp for method bla ate (SD) for every te batch dependir	ole into nk and v prepaing on th	a properly labeled a certified standar rative batch. MS/M e project requireme	l container (see d for LCS/LCSD. ISD may also be ents.
			10.1.1.3.	The samples are nov	w read	dy for analysis.			
		10.1.2.	Soil/Solid S	Samples					
			10.1.2.1.	Weigh 50 g of sam calibration has been	nple a i verifi	nd add 50 ml o ed on that day pr	f reagei ior to u	nt water. Check t se.	hat the balance
			10.1.2.2.	Place it in the shake	r and	agitate for 1 hour			
			10.1.2.3.	Centrifuge for 5 min	utes.				
			10.1.2.4.	Carefully, withdraw	the le	achate, and prep	are the	m as described in Se	ec. 10.4.
	10.2.	Instrume	ent Paramete	ers					
		10.2.1.	<u>pH Meter</u>						
			10.2.1.1.	Electrode Channel	-	Channel 1			
			10.2.1.2.	Resolution	-	0.01 pH			
		10.2.2.	<u>Autotitrato</u>	<u>or</u>					
			10.2.2.1.	Electrode port	-	Port 1			
	10.3.	Calibrati	on						
		10.3.1.	<u>Manual Ca</u>	<u>libration</u>					
			10.3.1.1.	Transfer about 10 m and drop a piece of	nL eac magn	h of pH 4, 7 and a etic bar into each	10 buffe vials.	er solution into sepa	arate 20 mL vials
			10.3.1.2.	Rinse the pH meter	electr	ode and shake of	f excess	water.	
			10.3.1.3.	Immerse electrode	o the	pH buffers and ca	alibrate	the pH meter, acco	rdingly.
			10.3.1.4.	Record calibration r to proceed to analy	eading sis.	gs in the analysis	run log.	Slope should be be	tween 92- 102%
		10.3.2.	<u>Autotitrati</u>	on					
			10.3.2.1.	Calibrations are per	forme	d by the autotitra	ator pric	or to sample analysi	S.

- 10.3.2.2. Transfer about 35 40 mL of pH 4, 7, 10 and 8 buffer solutions into separate 50 ml vials and load vials at locations 1, 2, 3 and 4 of sample tray, respectively.
- 10.3.2.3. After calibration is complete check if buffer solution 8 passes QC criteria of $pH = 8 \pm 0.05$. If calibration fails to meet QC parameter, re-sequence and recalibrate.

ALKALINITY

SOP No.:		EMAX-232	0B	Revision No. 8 Effective Date: 06-Dec-22								
10.4.	Analysis											
	10.4.1.	<u>Standard</u>	zation of Titra	ant .								
		10.4.1.1.	Prepare 7.5	mL 0.05 N Na ₂ CO ₃ in a beaker.								
		10.4.1.2.	Titrate with	HCl titrant potentiometrically to about pH 5.								
		10.4.1.3.	Lift out elec watch glass	ctrode, rinse into the same beaker and boil gently for 3 to 5 min under a cover.								
		10.4.1.4.	Cool to roor inflection po	m temperature, rinse cover glass into beaker and finish titrating to the pH oint.								
		10.4.1.5.	Calculate t standardizat concentratio	the HCl titrant concentration using Eq10.5.1. Perform triplicate ation. Use the average of triplicate measurements as the HCl titrant fon.								
		10.4.1.6.	If HCl titrant of the LCS. thereafter.	Cl titrant is purchased as certified solution, verify the concentration against result he LCS. Standardize the certified titrant 30 days after first use and every 30 days reafter.								
		10.4.1.7.	If titrant is p	trant is prepared in-house, standardize before use and every 30 days thereafter.								
	10.4.2.	<u>Manual T</u>	<u>itration</u>	ation								
		10.4.2.1.	Initial pH De	Initial pH Determination								
			10.4.2.1.1.	Place a clean magnetic stir bar in the sample. Position the sample container on the center of the magnetic stirrer. Switch the magnetic stirrer power on and gradually turn the speed knob until adequate mixing is obtained.								
			10.4.2.1.2.	Rinse the calibrated pH probe with reagent water. Shake-off the excess water into a Kim wipes paper towel. Immerse the pH meter probe into the sample. Allow the meter readout to stabilize.								
			10.4.2.1.3.	Record the pH reading on the initial pH column. Proceed to Sec. 10.4.2.2.								
		10.4.2.2.	Sample Titra	ration								
			10.4.2.2.1.	Fill the burette with titrant up to the mark. Position the burette to the center of the flask.								
			10.4.2.2.2.	Titrate an appropriate amount of sample to three pH points: pH = 8.3, pH = 4.5 and pH=4.2 (i.e., pH points at \pm 0.04) using 0.02N HCl. Record the titrant volume used for each pH point.								
			10.4.2.2.3.	Results for total, bicarbonate, carbonate and hydroxide alkalinity are automatically calculated by the template. Alkalinity relationships/calculations are shown in Section 10.5.								
		10.4.2.3.	Sample Titra	ration for Low Alkalinity								
			10.4.2.3.1.	For alkalinity of < 20 mg/L, titrate 100 mL of sample using 10 mL microburette an 0.02N acid solution.								

10.4.2.3.2. Stop titration at pH range 4.5 \pm 0.04. Record volume and exact pH.

ALKALINITY

SOP No.:		EMAX-232	OB		Revision No. 8	Effective Date:	06-Dec-22
			10.4.2.3.3.	Carefully, add the titrant vol	titrant to lower the pl ume.	H to exactly 0.3 pH	units and record
			10.4.2.3.4.	Record the ac	tual final pH at the fina	l pH column.	
	10.4.3.	<u>Automati</u>	<u>c Titraton</u>				
		10.4.3.1.	Program Se	tup			
			10.4.3.1.1.	Turn-on PC ar	nd activate PC Titrator p	program.	
			10.4.3.1.2.	Click on "Titra	tor" located at the me	nu bar and access "i	manual control"
				10.4.3.1.2.1.	Click on autosample template and home	er tab to load au sampler.	itosampler tray
				10.4.3.1.2.2.	Next, click on the c titration cell using pu	ligital tab to rinse umps 2, 3, and 4.	the syringe and
				Note:	Pump 2: Turns on/of	f syringe pump	
					Pump 3: Turns on/of	f drain	
					Pump 4: Turns on/of	f rinse pump	
				10.4.3.1.2.3.	Check for air bubble found, click on the so ml of titrant to push repeat if necessary.	s in the burette. If erial devices tab and the bubble out. R	air bubbles are d dispense a few efill burette and
				10.4.3.1.2.4.	Return to the menu s	creen when finishe	d.
			10.4.3.1.3.	From the mer	nu screen, click on "Titr	ator" and access "R	un titration"
				10.4.3.1.3.1.	Load template "Da analytical batch sequ	aily run no order Jence.	#" and input
				Note:	Remember to inclu preparative batch. included in the pre project requirement	de a sample dup ICV/CCV/MS/MSI parative batch de s.	licate for every O may also be pending on the
				10.4.3.1.3.2.	Check sequence for and retain a copy of	accuracy and comp the timetable for re	oleteness. Print ference.
		10.4.3.2.	Sample Titra	ation			
			10.4.3.2.1.	Aliquot 40 ml the sequence.	of sample into 50 ml	vials and load sam	ples as listed on
			10.4.3.2.2.	Click on the "	Start" button after loa	ding pH buffers and	samples. If the

0.4.3.2.2. Click on the "Start" button after loading pH buffers and samples. If the sequence needs to be updated during the analysis, click "priority" on the right to pause. DO NOT CLICK STOP! Afterwards, make the required changes and click on resume to continue onto the next sample.

Note: Load 40 mL of pH buffer 7/KCl probe solution at tray location 122 before the analytical batch is complete.

10.4.3.2.3. Print the report that appears on the screen when the run is completed. Close the screen and click OK to return to the main menu.

ALKALINITY

SOP No.:		EMAX-2320	DB	Revision	No	8 Effect	tive Date:	06-Dec-22			
			10.4.3.2.4. Cl re ba th	ick on "Titrator" an cord from the previo ar. Previous calibratic e bottom-left of the	id "Exar ous run ons can a screen.	nine calibrati by choosing also be check	ions". Print "port 1" on ed by clicki	the calibration the drop-dowr ng the arrows a			
10.5.	Calculat	tions									
	10.5.1.	<u>Calculate</u>	or Titrant Concentration (Standardization)								
		$N = \frac{1}{53}$	$\frac{4 x B}{.00 x C}$				Eq10	0.5.1			
		where:									
		N	= Normality of t	itrant							
		Α	= Na ₂ CO ₃ dissol	ved in 1 L solution, g							
		В	= Na ₂ CO ₃ solution	on titrated, mL							
		С	= titrant used to	inflection point, mL							
	10.5.2.	<u>Calculate</u>	for Alkalinity								
		10.5.2.1.									
			$P=\frac{AxCx50}{D}$	000			Eq10	0.5.2.1			
		10.5.2.2.	Total Alkalinity	(T)							
			$T = \frac{BxCx50}{D}$	000	Eq10	Eq10.5.3.1					
			where:								
			A = volur	ne of titrant added to	o reach p	0H 8.3, mL					
			B = volur	ne of titrant added to	reach p	H 4.5 (or 4.2	for low alka	linity), mL			
			C = conce	entration of titrant, n	ormality	,					
			D = volur	me of sample used, m	۱L						
				Alkalinity	Relation	ships/Calculat	tions				
			Result of Titration	Hydroxide (OH) Alkalinity as CaCO₃	Carbo Alk	onate (CO₃) alinity as CaCO₃	Bicarbor Alka Ca	nate (HCO₃) linity as aCO₃			
			P = 0	0		0		т			
			P < ½ T	0		2P	т	– 2P			
			P = ½ T	0		2P		0			

2P - T

Т

P > ½ T

P = T

2 (T-P)

0

0

0

ALKALINITY

SOP No.:	_	EMAX-2320B	Revision No.	8	Effective Date: _	06-Dec-22
		where:				
		P = phenolphthaleir	n alkalinity			
		T = total alkalinity				
	10.5.3.	Calculate for Accuracy (Percent Recov	<u>very)</u>			
		$R = \left(\frac{C_f - C_s}{C_o}\right) \times 100$			Eq10).5.4
		where:				
		R = percent recovery				
		C _f = found concentration				
		C_s = sample concentration (for	or LCS, C _s = 0)			
		Co = known spike concentrati	on			
	10.5.4.	Calculate for Precision (Relative Perce	ent Difference)			
		$\% RPD = \frac{ C_1 - C_2 }{\left(\frac{C_1 + C_2}{2}\right)} \times 100$			Eq10).5.5
		where:				
		RPD – Relative Percent Differe	nce			
		C_1 – Measured concentration	of the first samp	ole aliqu	ot	
		C_2 – Measured concentration	of the second sa	imple al	iquot	
10.6.	Data Rec	luction				
	10.6.1.	Make a copy of the analytical run log	and sample prep	paration	log (if applicable)	
	10.6.2.	Print a copy of the raw data and the (QC report.			
	10.6.3.	Highlight reportable results for data p	processing.			

10.7. Report Generation

- 10.7.1. Autotitration, after analysis, access "Reporting" from the main menu and click on "Print or prepare shazam reports". Open report format "Water Analysis Historical Data Report.srw". Double-click on the filters and input the run # found on the front of the report printout. Export the data in an ASCII delimited text format onto the desktop by clicking on "File" and then "Export" from the menu bar. Transfer the export data onto the network via a flash drive for reporting.
- 10.7.2. Copy exported file (YYe5M01.txt) to R:\[SDG]\[Method folder] (e.g., R:\YYMXXX\TALK)
- 10.7.3. For manual titration copy export file from X:\SAMPREP\SD\[ANALSYSIS BATCH] (e.g., YYALMXXX.TXT) to R:\[SDG]\[Method folder] (e.g., R:\YYMXXX\TALK)
- 10.7.4. Generate report forms F1 and F3 (LCS/LCSD, SD) using ALK00.exe.

ALKALINITY

SOP	No.:		EMAX-2320B	Revision No.	8	Effective Date:	06-Dec-22
		10.7.5.	Generate the case narrative using (CN00.exe.			
	10.8.	Data Re	view				
		10.8.1.	Arrange the analysis package in se generated, to include re-analysis.	quence as detailed	l below.	Attach all raw dat	a to every form
			Case Narrative				
			Sample Results				
			LCS/LCSD Summary				
			Sample Duplicate Summary				
			Analytical Run Log				
			Raw Data				
			Non-Conformance Report (If a	ny)			
		10.8.2.	Perform a 100% data review in acc	ordance to EMAX-I	DM01 ar	nd the PSR.	
		10.8.3.	Review the case narrative and cheor process. Edit as necessary to r generator program.	ck that it accurately eflect essential is:	v descrit sues no	es what transpired t captured by the	in the analytical case narrative
		10.8.4.	Submit the analytical folder for sec	ondary review.			
	10.9.	Prevent	ive Maintenance				
		10.9.1.	The pH electrodes should be maint every use.	ained clean and th	e probe	returned to the pro	obe handle after
		10.9.2.	Instruments should receive routin specific maintenance logs. Routine optimum condition, thus reducing affects sample results.	e preventive main maintenance ensu the possibility of	tenance ures that instrum	e, which is reported t all equipment are ent malfunction th	d in instrument- operating under at consequently
11.0	QUAL	ITY CONT	ROL				
	11.1.	Refer to correctiv	o Appendix 1 for all related Qualit ve action.	ty Control parame	eters, fr	equency, acceptar	ice criteria and
	11.2.	All labwa	ares used in the sample preparation s	hall be properly tre	ated as	specified in EMAX-0	QC07.
	11.3.	All analy follow t prepara	rtical standards are prepared fresh on he procedures described in EMAX- tion log.	the day of analysi QC02 and shall b	s. All ar e docur	alytical standard ponented in the ana	reparations shall lytical standard
	11.4.	Instrum day.	ent parameters are checked and reco	rded in the instrum	ient mai	ntenance log prior	to its use for the
	11.5.	A prepa unless o	rative batch shall include a MB, LCS, therwise specified by the project.	sample duplicate a	nd a ma	aximum of 20 field	original samples

- 11.6. A valid LOQ must exist prior to sample analysis. Refer to EMAX-QA04 for details.
- 11.7. All analysts conducting this analysis must have an established Demonstration of Capability (DOC) as

ALKALINITY

SOP No.:	EMAX-2320B	Revision No.	8	Effective Date:	06-Dec-22

described in EMAX-QA05.

12.0 CORRECTIVE ACTION

-

- 12.1. Corrective action for each Quality Control procedure is summarized in Appendix 1.
- 12.2. QC Samples
 - 12.2.1. Method Blank (MB). If MB is non-compliant, consider the following suggestions to analyze and possibly correct the problem:
 - Investigate the source of the problem and institute resolution to correct, minimize or eliminate the problem.
 - If the analyte found in the blank is not detected in any of the field samples, consult with the Supervisor and the PM if the result can be reported otherwise, re-extract and re-analyze the method blank with the associated samples.
 - 12.2.2. Lab Control Sample(s). If LCS is non-compliant, consider the following suggestions to analyze and possibly correct the problem:
 - > Check for errors in calculation and concentration of the analyte solution.
 - If recovery of LCS is bias-high and associated sample results are non-detect, then results can be reported. If associated samples show positive results or if recovery of LCS is bias-low, then acquire or prepare a new LCS standard and titrant and re-analyze with the associated samples.
 - If recovery of LCS is still non-compliant after re-analysis, check the PSR for corrective action otherwise; discuss the issue in the case narrative.
- 12.3. If pH electrode response is erratic and/or sluggish, record sample description on the analytical log and inform the Supervisor for further advice.
- 12.4. For insufficiency of sample(s), inform the Supervisor immediately for further advice.
- 12.5. Other anomalies encountered during the analytical process not listed in Appendix 1 shall require a nonconformance report (NCR). Refer to EMAX-QA08.

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of standards and reagents that may go to the wastewater drains.
- 13.2. Prepare all standards in fume hoods.

14.0 WASTE MANAGEMENT

- 14.1. No samples shall be dumped in the laboratory sink.
- 14.2. Separate and properly identify all unused expired analytical standards for proper disposal.
- 14.3. Place all waste generated during analytical process in properly labeled satellite waste containers for proper collection.

ALKALINITY

SOP No.:	EMAX-2320B	Revision No.	8	Effective Date:	06-Dec-22

14.4. Dispose all unused samples, expired analytical standards and other wastes generated during the analytical process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. Based on the Methods Update Rule and Title 40 Code of Federal Regulations, Part 136, EPA Method 310.1 is no longer an approved method. However, since EPA Method 310.1 is equivalent to SM 2320B-1997 and SM 2320B-2011, where necessary, this SOP is also applicable to EPA Method 310.1.

15.2. Definition of Terms

- 15.2.1. <u>Alkalinity of water</u> is its acid-neutralizing capacity. It is the sum of all titratable bases.
- 15.2.2. <u>Phenolphthalein Alkalinity</u> is the alkalinity measured by titration to pH 8.3
- 15.2.3. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.2.3.1. **Preparation Batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.2.3.2. **Analytical batch** is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices, preparation batches, and can exceed 20 samples.
- 15.2.4. <u>Limit of Quantitation (LOQ)</u> The minimum levels, concentrations or quantities of target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
- 15.2.5. <u>Material Safety Data Sheet (MSDS)</u> is where the physical data, toxicology and safety precaution of a certain substance is listed.
- 15.2.6. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.2.7. <u>Reagent Water</u> is purified water free from any target analyte or any other substance that may interfere with the analytical process.
- 15.2.8. <u>Method Blank</u> is a target-analyte-free sample subjected to the entire sample preparation and/or analytical to monitor contamination.
- 15.2.9. <u>Lab Control Sample (LCS)</u> is a target-analyte-free sample spiked with a verified known amount of target analyte(s) or a reference material with a certified known value subjected to the entire sample preparation and/or analytical process. LCS is analyzed to monitor the accuracy of the analytical system.
- 15.2.10. <u>Sample</u> is a specimen received in the laboratory bearing a sample label traceable to the accompanying COC. Samples collected in different containers having the same field sample ID are considered the same and therefore labeled with the same lab sample ID unless otherwise specified by the project.
- 15.2.11. <u>Sample Duplicate</u> is a replicate of a sub-sample taken from one sample, prepared and analyzed within the same preparation batch.

ALKALINITY

SOP No.:	EMAX-2320B	Revision No.	8	Effective Date:	06-Dec-22

- 15.2.12. Sub-sample - is an aliquot taken from a sample for analysis. Each sub-sample is uniquely identified by the sample preparation ID.
- 15.2.13. Matrix is a component or form of a sample.
- 15.2.14. <u>Re-analysis</u> is a repeated analysis from the same extract/leachate or sample, identified with the Lab Sample ID suffixed with "W".

15.3. Application of EMAX QC Procedures

15.3.1. The procedures and QC criteria summarized in this SOP applies to all projects when performing analysis for Alkalinity. In instances where there is a project or program QAPP, the requirements given in the project takes precedence over this SOP.

15.4. Department of Defense (DoD) and Department of Energy (DOE) Projects

15.4.1. Samples from DoD sponsored projects follows the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD Quality Systems Manual (QSM), latest update, shall be applied.

16.0 REFERENCES

- 16.1. "Alkalinity by Titration", Method 2320B-2011 and Method 2320B-1997, Standard Methods for the Examination of Water and Wastewater, 22nd edition.
- 16.2. Manual for the Certification of Laboratories Analyzing Drinking Water, 5th edition.
- 16.3. "Alkalinity by Titration", EPA Method 310.1, Editorial Rev. 1978.
- 16.4. Title 40 Code of Federal Regulations Part 136, Guidelines Establishing Test Performance for Analysis of Pollutants, Clean Water Act Methods Update Rule, May 19, 2021.
- 16.5. EMAX Quality Systems Manual, as updated.

17.0 APPENDICES

17.1. Figures

Appendices						
17.1.4.	Figure 4	Typical Case Narrative				
17.1.3.	Figure 3	Typical Sample Duplicate Summary				
17.1.2.	Figure 2	Typical LCS/LCSD Summary				
17.1.1.	Figure 1	Typical Sample Result Summary				

17.2.

- 17.2.1. Appendix 1 Summary of Quality Control Procedures
- 17.2.2. Appendix 2 Demonstration of Capability
- 17.3. Forms

17.3.1.	2320BFA	Analytical Run Log
17.3.2.	2320BFM	Instrument Maintenance Log

Page 13 of 22 EMAX-2320B Rev. 8 Figures

Figure 1:

TYPICAL SAMPLE RESULT SUMMARY

METHOD SM2320B

TOTAL ALKALINITY

Client : Project : Batch No. :	XYZ, INC. CLEAN PROJEC YYM001	Т										Matrix InstrumentID	: WATER : E5
CLIENT	EMAX	RESULTS	PREP. M	IOIST	LOD	LOQ	ANALYSIS	PREPARATION	data	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/L)	FACTOR	(응)	(mg/L)	(mg/L)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1W	ALM001WB	ND	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0103	 YYE5M01	ALM001W	NA	NA
LCS1W	ALM001WL	56.3	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0104	YYE5M01	ALM001W	NA	NA
LCD1W	ALM001WC	60.3	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0105	YYE5M01	ALM001W	NA	NA
ABCDEF-01	M001-01	34.4	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0106	YYE5M01	ALM001W	MM/DD/YYHH:MM	MM/DD/YY
ABCDEF-02	M001-02	34.7	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0107	YYE5M01	ALM001W	MM/DD/YYHH:MM	MM/DD/YY
ABCDEF-02DUP	M001-02D	34.6	1	NA	5	5	MM/DD/YYHH:MM	NA	YYE5M0108	YYE5M01	ALM001W	MM/DD/YYHH:MM	MM/DD/YY

NOTES:

Alkalinity concentration is reported as: Alkalinity to pH 4.5 for results ≥ 20 mg/L Alkalinity to pH 4.2 for results < 20 mg/L Figure 2:

TYPICAL LCS/LCSD SUMMARY

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT PROJECT BATCH NO. METHOD ====================================	: XYZ, INC. : CLEAN PROJECT : YYM001 : SM2320B					;				
MATRIX DILUTION FACTOR SAMPLE ID LAB SAMPLE ID DATE FILE ID DATE EXTRACTED DATE ANALYZED PREP BATCH CALIBRATION REF	: WATER : 1 : MBLK1W : ALM001WB : YYE5M0103 : NA : MM/DD/YYHH:MM : ALM001W : YYE5M01	1 LCS1W ALM001WL YYE5M0104 NA MM/DD/YYHH:M ALM001W YYE5M01	1 LCD1W ALM001W YYE5M01 NA M MM/DD/3 ALM001W YYE5M01	% 105 YYHH:MM W 1	MOISTURE:	NA				
ACCESSION:										
PARAMETER	MB RE (mg/)	SULT SPIKE AMT L) (mg/L)	BS RESULT (mg/L)	BS REC (%)	SPIKE AMT (mg/L)	BSD RESULT (mg/L)	BSD REC (%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
TOTAL ALKALINITY		ND 63.4	56.3	89	63.4	60.3	95	7	80-120	20

TYPICAL SAMPLE DUPLICATE SUMMARY

EMAX QUALITY CONTROL DATA SAMPLE DUPLICATE ANALYSIS

TOTAL ALKALI	NITY	34.7	34.6	0.3	20	
PARAMETER		PARENT RESULT (mg/L)	DUP RESULT (mg/L)	RPD (%)	MAX RPD (%)	
ACCESSION:						
MATRIX DILUTION FAC SAMPLE ID LAB SAMPLE I LAB FILE ID DATE PREPARE DATE ANALYZE PREP BATCH CALIBRATION	: WATER TOR: 1 : ABCDEF D : M001-0 : YYE5M0 D : NA D : MM/DD/ : ALM001 REF: YYE5M0	7-02 2 107 ҮҮНН:ММ W 10	1 ABCDEF-02DUP M001-02D YYE5M0108 NA MM/DD/YYHH:MM ALM001W YYE5M010			
PROJECT BATCH NO. METHOD	: CLEAN : YYM001 : SM2320	PROJECT B				
CLIENT	: XYZ, I	NC.				

Figure 5:

TYPICAL CASE NARRATIVE

CASE NARRATIVE

Client : XYZ, INC.

Project: CLEAN PROJECT

SDG : YYM001

METHOD SM2320B ALKALINITY

A total of two (2) water samples were received on MM/DD/YY to be analyzed for Total Alkalinity in accordance with Method SM2320B and project specific requirements.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Calibration was performed as prescribed by the method and was verified using a secondary source (ICV). All calibration requirements were within acceptance criteria.

Method Blank Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. Total Alkalinity was not detected in ALM001WB. Refer to sample result summary form for details.

Lab Control Sample Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) set of LCS/LCD was analyzed. ALMO01WL/ALMO01WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample Sample duplicate was analyzed and RPD was within expected value.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

SUMMARY OF QUALITY CONTROL PROCEDURES

QC PROCEDURE	FREQUENCY	ACCEPTANCE CRITERIA	CORRECTI	VE ACTION	1 st Rvw	2 nd Rvw
Instrument Calibration	Daily prior to sample analysis	± 0.05 pH units	Correct the proble prior to sample an			
Method Blank	One method blank per preparation batch	Result ≤ LOQ	If sample results a corrective action is otherwise correct re-analyze all asso			
Method Reporting Limit (MRL) <i>only for drinking water</i>	One MRL every analysis day	% Recovery: 80 - 120%	Correct the proble all associated sam			
LCS	One LCS per preparation batch	% Recovery: 80 – 120%	Correct the proble all associated same	m and re-analyze ples.		
Sample Duplicate	One sample duplicate per preparation batch	RPD ≤ 20%	Discuss in the case	narrative		
Comments: Refer to PSR for	flagging criteria.			Reviewed By:		
22 nd / 21 st Edition				Date:		

Appendix 2:

DEMONSTRATION OF CAPABILITY

DEMONSTRATION OF CAPABILITY

METHOD 2320B

Unit: mg/L Sample Amount(ml): 25

DADAMETED	ALM001WL	ALM001WC	ALM001WX	ALM001WY	Τ.	Ave	Ave	50	RSD	Accuracy	RSD (%)	Commonts
PARAIVIETER	YYE5M0104	YYE5M0105	YYE5M0106	YYEMC0107	IV	Conc.	%Rec	20	(%)	Limits (% Rec)	Criteria	Comments
Alkalinity	86.9	88.1	87.0	87.5	86.4	87.4	101	0.529	0.6	80 - 120	≤ 20	Passed

REFERENCE:

AAL-046 Page 41

Page 19 of 22 EMAX-2320B Rev. 8 Forms

2320BFA (Page 1):

ANALYTICAL RUN LOG

						-																	
Data File Name	Lab Sample ID	Sample Amount (mL)	Sample pH	Analysis Date mm:dd:yy	Analysis Time hh:mm:ss	Volume of Acid Titrant (A) mL pH = 8.3	Analysis Date mm:dd:yy	Analysis Time hh:mm:ss	Volume of Acid Titrant (B) mL pH = 4.5	Analysis Date mm:dd:yy	Analysis Time hh:mm:ss	Volume of Acid Titrant (C) mL pH = 4.2	Analysis Date mm:dd:yy	Analysis Time hh:mm:ss	Final pH	Analysis Date mm:dd:yy	Analysis Time hh:mm:ss	Phenolphtalein Alkalinity (P) mg/L	Total Alkalinity (T) mg/L	Bicarbonate Alkalinity (HCO ₃) mg/l	Carbonate Alkalinity (CO₃) mg/L	Hydroxide Alkalinity (OH) mg/L	Notes
Comments:																							
																HCL Standard	ization					Concentratio	n of HCl Titrant (N) = A x B / C x 53.00
Standard /			Exp.]			pH Meter	Calibration]	SOP				Na ₂ CO ₃	Na ₂ CO ₃		HCl used		Conctration		A = Na ₂ CO ₃ (g)
Reagent ID	Description	Conc.	Date			Instrument ID:			53		1					(g)	Soln vol used (mL)	TO pH 5	TO pH 4.5	Total (mL)	of HCl Titrant (N)	Date	B = Na ₂ CO ₂ Soln vol used (mL)
	ICV				Buffer 4						1	EMAX-2320B F	Rev.										C = Total (ml)
	LCS (mg/L)				Buffer 7						1												e - rotar (me)
	MS (mg/L)			1	Buffer 10						1	LOQ											
	Acid Titrant,			1	pH Check						1	(mg/L) LOD		-			1	Av	erage of Triplica	te Standrization:			
	PH Strip			1	Butter (8)	1		I			Ţ	(mg/L)		-		L			7.5	60. aalutiau	1	1	1
	pH 4			1	Snapseal						1	MS EV					andardization:	ai uizeu against	7.5 ML 0.05N Na ₂	CO3 SOLUTION			
	рН 7			1	Lot:	L		I	<u> </u>		1	Aliquot (mL) MS EV		-		Reagent	Re	agent ID	Expiration]			
	pH 10			Mic	ropipette ID:						-	Final Vol (mL)		-		NasCOs							
	pH 8 (Check)			4	Titviation	and points pH 4 5 1 4	0.04									нсі						Analyzed By:	
	pri o (crieck)			-		enu point: pm 4.5 ± 0	3.04									Roagont II O						Reviewed By:	
	1				Low aikal	milly: pH 4.2 ± 0.04										Reagent H ₂ O	1					Date:	

Page 20 of 22 EMAX-2320B Rev. 8 Forms

2320BFA (Page 2):

ANALYTICAL RUN LOG

			Expected	
DataFileID	LabSampleID	Result	Value	QC Result
S CHECK				
	LabSampleID	Posult	Expected	
Datarneid	Labsampreib	Result	Value	QC Result
UP CHECK			·	
			Expected	
DataFileID	LabsampleiD	Result	value	QC Result

ANALYTICAL RUN LOG

ANALYSIS RUN LOG Page 1 for ALKALINITY LABORATORIES, INC. Note: For samples and relevent QCs/Standards Book#: AAL-XXX analyzed, refer to attached analytical sequence. Instrument No.: 53 E5 □ Titration end point: pH 4.5 ± 0.04 Analytical Batch: Low alkalinity: pH 4.2 ± 0.04 Analytical Sequence: Micropipette ID: SOP # Rev. # EMAX-2320B MS/MSD amount of spike: EMAX-STANDARDS ID Conc. (mg/L) Reagent Water: Comments: 0.02N HCL LCS MS/MSD ICV pH Buffer ID pH 4 pH 7 pH 10 pH 8.0 (Check) pH Strip Analyzed By:

Date:

INSTRUMENT MAINTENANCE LOG FOR ALKALINITY

Page 1

Instrument No	: E5		Month:		 Year: YYYY	Boo	k # ME5-XXX
	Date						
Titrant Bottle L	evel						
DI Bottle Level							
Waste Bottle L	evel						
Titration Modu	ıle						
Buret Module							
pH Probe							
Printer Paper							
Autosampler							
Analyst Initials							
Trouble Shooti	ing						
Problem(s) End	countered						
Corrective Acti	on						
Return To Specs (Analyst Initials)							
Return To Spec	cs (Analyst Initials)						
Return To Spec	cs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Return To Spec	cs (Analyst Initials) Problems En	countered	ļ	Code	Correctiv	ve Action	
Return To Spec	cs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Return To Spec	cs (Analyst Initials) Problems En	ncountered		Code	Correctiv	ve Action	
Code	cs (Analyst Initials) Problems En	countered	<u></u>	Code	Correctiv	ve Action	
Code	cs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Code	cs (Analyst Initials) Problems En	ocountered		Code	Correctiv	ve Action	
Code	cs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Code	cs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Return To Spec	cs (Analyst Initials) Problems En	acountered		Code	Correctiv	ve Action	
Return To Spec	roblems En	acountered		Code	Correctiv	ve Action	
Return To Spec	rs (Analyst Initials) Problems En	countered		Code	Correctiv	ve Action	
Return To Spec	cs (Analyst Initials) Problems En	acountered		Code	Correctiv	ve Action	

SOP REVIEW FORM

ALKALINITY

SOP#: EMAX-2320B Rev 8	Effective Date:	06-Dec-22
COMMENTS	Reviewed By	Review Date
No update needed per DRF by T. Kosaka dated 1/8/2024	66d-	1/8/2024
	, , , , , , , , , , , , , , , , , , ,	
		I

Page 1 of 19

STANDARD OPERATING PROCEDURES

HARDNESS, TOTAL

SOP No.:	EMAX-2340C	Revision No. 6	Effective Date:	12-Sep-22
Prepared By:	Tina Huang	the	Date:	01/12/22
Approved By:	Farina Madamba OA Manager	Jadash	Date:	9/12/22
Approved By:	Caspar Pang		Date:	2/12/27
	Laboratory Director	Control Number:	2340C-06	

1.0 SCOPE AND APPLICATION

- 1.1. This method is applicable to drinking, surface, and saline waters, domestic and industrial wastes. It is suitable for all concentration ranges of hardness.
- 1.2. This SOP is an adaptation of Methods 2340C-1997 and 2340C-2011, Standard Methods for the Examination of Water and Wastewater, 21st and 22nd Editions.

2.0 SUMMARY OF METHOD

2.1. Calcium and magnesium ions in the sample are sequestered upon the addition of disodium ethylenediamine tetraacetate (Na₂EDTA). The endpoint of the reaction is detected by means of Eriochrome Black T indicator, which has a red color in the presence of calcium and magnesium and a blue color when the cations are sequestered.

2.2. Interferences

- 2.2.1. Excessive amounts of heavy metals can interfere. This is usually overcome by complexing metal ions with cyanide.
 - 2.2.1.1. Routine addition of sodium cyanide solution to prevent potential metallic interference is recommended.

3.0 DETECTION LIMITS

- 3.1. Detection Limit (DL), Limit of Detection (LOD)
 - 3.1.1. DL and LOD are not applicable for this method.

3.2. Limit of Quantitation (LOQ)

- 3.2.1. Refer to EMAX-QA04 for generation, validation and verification of LOQ.
- 3.2.2. Established LOQ for this method is 10 mg/L.

4.0 DYNAMIC RANGE

- 4.1. Dynamic range of this method is 10 mg/L 600 mg/L.
- 4.2. The highest quantifiable range requiring no dilution is equal to the concentration of the sample titrated with < 15 mL of titrant within 5 minute of titration. All samples analyzed above this range are considered "over-range" and requires a larger volume of sample for proper quantitation.

Page 2 of 19

STANDARD OPERATING PROCEDURES

				HARDN	<u>ESS, TOTAL</u>			
SOP N	lo.:	E	MAX-2	340C	Revision No.	6	Effective Date:	12-Sep-22
	4.3.	The lowe samples consider	est qua analyz ed as "	ntifiable range on a given ed lower than the standard under-range" and requires	sample amount is I sample amount s a higher sample	s equal t (25 mL) amount	to a concentration a whose concentratio for proper quantita	above LOQ. All on is ≤ LOQ are ation.
5.0	SAMP			IE AND PRESERVATION				
	5.1.	Holding ⁻	Time					
		5.1.1.	Anal	yze samples within six mor	nths.			
	5.2.	Preserva	tion					
		5.2.1.	Pres	erve the samples received	with HNO₃ to pH	< 2 to pi	event degradation.	
		5.2.2.	Store	e samples at ≤ 6°C without	freezing.			
6.0	ASSO	CIATED SO) <u>Ps</u>					
	6.1.	EMAX-DI	M01	Data Flow and Review				
	6.2.	EMAX-Q	A04	Detection Limit (DL)				
	6.3.	EMAX-Q	A05	Training				
	6.4.	EMAX-Q	A08	Corrective Action				
	6.5.	EMAX-Q	C01	Quality Control for Chem	icals			
	6.6.	EMAX-Q	C02	Analytical Standard Prepa	aration			
	6.7.	EMAX-Q	C06	Volumetric Labware & M	icropipette Verifi	cation		
	6.8.	EMAX-Q	C07	Labware Cleaning				
	6.9.	EMAX-SN	V03	Waste Disposal				
	6.10.	EMAX-SN	/ 04	Analytical and QC Labelin	Ig			
7.0	<u>SAFET</u>	<u>'Y</u>						
	7.1.	Read all S	SDS fo	r chemicals listed in this SO	P.			
		Caution:	Sodiu	m Cyanide (NaCN) is extre	mely poisonous.			
	7.2.	Perform	all rea	gent preparations under a	properly operatin	g fume	hood.	
	7.3.	Treat all safety pr performi	reage ocedu ng this	nts, standards, and sample res. Wear protective gear, procedure.	es as potential ha , i.e., lab coat, sat	azards. fety glas	Observe the stand ses, and gloves, at	ard laboratory all times when

7.4. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with tap water. If irritations persist inform your supervisor immediately so that proper action can be taken.

SOP I	SOP No.: EMAX-2340C			Revision No.	6	Effective Date:	12-Sep-22
8.0	INSTI	RUMENTS	, CHEMICALS AND REAG	ENTS			
	8.1.	Instrum	ents and Supplies				
		8.1.1.	Class "A" buret – 25 n	nL			
		8.1.2.	Magnetic stirrer				
		8.1.3.	Micropipettes				
		8.1.4.	Volumetric flasks				
		8.1.5.	Erlenmeyer flasks				
	8.2.	Chemica	als and Reagents				
		8.2.1.	Purchase reagent-gra	de or better, whenever po	ssible.		
		8.2.2.	Buffer Solution				
			8.2.2.1. Purchase c as describe	ommercially available "od ed below:	orless b	uffers" or prepare b	ouffer solutions
			Magnesium EDTA	Dissolve 16.9 g NH ₄ Cl volumetric flask, add 1 the mark with reagent	in 143 25 g of water.	mL concentrated N magnesium salt in	H₄OH in a 250 mL EDTA and dilute to
			Disodium EDTA	Dissolve 1.179 g disod mg MgSO4•7 H ₂ O in 50 mL volumetric flask concentrated NH ₄ OH reagent water.	lium ED) mL rea contai with n	TA (analytical reagengent water. Add th Ining 16.9 g NH Inixing and dilute t	ent grade) and 780 is solution to a 250 4Cl and 143 mL to the mark with
			8.2.2.2. Store in a t Discard wh endpoint o	ightly stoppered plastic bo ien 1 or 2 mL added to sai f titration.	ottle. Th mple fai	is solution is stable ls to produce a pH	for one month. of 10.0 ± 0.1 at

8.2.3. Inhibitors

8.2.3.1. For most waters, inhibitors are not necessary. If interfering ions are present use one of the following:

Inhibitor I	NaCN powder. Basify solutions or sample containing this and place in CN waste container. Make sure no acids are present which might liberate HCN gas.
Inhibitor II	Dissolve 5.0 g Na ₂ S•9H ₂ O or 3.7 g Na ₂ S•5H ₂ O in 100 mL reagent water. Exclude air with tightly fitted rubber stopper. This gives sulfide precipitates, which may obscure the endpoint if large quantities of heavy metals are present. This deteriorates rapidly through air oxidation.
Inhibitor III	Dissolve 4.5 g hydroxylamine hydrochloride in 100 mL of 95% ethanol or isopropanol.

Page 4 of 19

STANDARD OPERATING PROCEDURES

HARDNESS, TOTAL

SOP No.:		MAX-2340C	Revision No.	6	Effective Date:	12-Sep-22
	8.2.4.	Indicator 8.2.4.1. Use a comm below:	ercially available indicat	or or oi	ne of the formulat	tions described
		Eriochrome Black T	Mix 0.5 g Eriochrome B hydrochloride. Dissolve	lack T w e in 100	ith 4.5 g hydroxyla mL of 95% ethanol	mine or isopropanol.
			Or			
			Dissolve 0.5 to 1.0(g) E such as triethanolamin stable for approximatel	riochroi ne or 2 y one w	me Black T in an a 2-methoxyethanol. reek.	ppropriate solvent This solution is
			Or			
			Mix together 0.5 g Eriod	chrome	Black T and 100 g N	laCl.
		Calmagite, 1-(1-hydroxy-4- methyl-2-phenylazo)- 2-naphthol-4- sulfonic-acid	Dissolve 0.10 g calmag flask and dilute to mark	gite in r I. Use 1	eagent water in 1 mL per 50 mL solut	.00 mL volumetric tion to be titrated.
		Methyl red indicator	Dissolve 0.10 g methyl flask and dilute to mark	red in	reagent water in 1	100 mL volumetric

- 8.2.5. Ammonium hydroxide solution, 3 N: Dilute 210 mL of concentrated NH₄OH to 1 L with reagent water.
- 8.2.6. Ammonium hydroxide solution, 1 N: Dilute 70 mL of concentrated NH₄OH to 1 L with reagent water.
- 8.2.7. HCl acid 1+1: Using a clean 500 ml flask, measure and transfer 100 ml of reagent water. Slowly add 100 ml of concentrated HCL while swirling the flask to obtain adequate mixing

9.0 STANDARDS

- 9.1. Refer to EMAX-QC02 for proper preparation of analytical standards.
- 9.2. Store standards at room temperature.
- 9.3. Purchase all standards/titrants as certified solutions as listed below:

STANDARD	SOURCE	CONCENTRATION		
EDTA Solution	Ricca or equivalent	0.02N (equals to 0.01M)		
LCS	ERA or equivalent	Based on Certified Concentration		

- 9.4. Alternately, you may prepare the above solution as follows:
 - 9.4.1. Standard EDTA titrant at 0.02N
 - 9.4.1.1. Place 3.723 g analytical reagent grade disodium EDTA dehydrate $(Na_2H_2C_{10}H_{12}O_8N_2\bullet 2H_2O)$ in a 1000 mL volumetric flask and dilute to the mark with reagent water.

HARDNESS, TOTAL

SOP No.:	-	EMAX-2340C		Revision No.	6	Effective Date:	12-Sep-22		
	9.4.2.	Standard	Standard Calcium Carbonate Solution at 0.02 N						
		9.4.2.1.	9.4.2.1. Place 1.000 g anhydrous calcium carbonate (primary standard low in meta a 500 mL flask. Add droplets of 1+1 HCl until all of the CaCO ₃ has dissolved.						
		9.4.2.2.	Add 200 mL reagent to cool down.	10 mL reagent water. Boil for a few minutes to expel CO_2 . Allow solution down.					
		9.4.2.3.	Add a few drops of color by adding 3N N	methyl red indicator and adjust to intermediate orange H_4OH or 1+1 HCl as required.					
		9.4.2.4.	Quantitatively transf reagent water.	er to a 1000 mL	volumet	tric flask and dilut	e to mark with		

10.0 PROCEDURES

10.1. Sample Preparation

- 10.1.1. Allow the samples to equilibrate with room temperature.
- 10.1.2. Prepare the analytical batch not to exceed 20 field samples with a sample duplicate, Method Blank (MB) and Lab Control Sample (LCS). Neutralize the sample with 1N NH₄OH and dilute to 50 mL reagent water.
- 10.1.3. Measure 25 mL of sample in titration vessels. Use reagent water for MB and use LCS standard for LCS. Samples are now ready for titration.
- 10.1.4. For wastewater and highly polluted waters, the sample(s) must be digested. Refer to EMAX-3010 SOP for details.

10.2. Instrument Parameters

10.2.1. Burette used for titration should read a 0.10mL graduation.

10.3. Standardization of EDTA Titrant

- 10.3.1. If EDTA titrant is purchased as a standard solution, standardize it 30 days after purchase and every 30 days thereafter.
- 10.3.2. If EDTA titrant is prepared in-house, standardize before use and every 30 days thereafter.
- 10.3.3. Standardize the EDTA titrant in triplicate against 0.02N CaCO₃ Solution. Calculate the EDTA concentration in molarity as shown in Eq.-10.5.1 and 10.5.1a.
- 10.3.4. Record the standardization in the Total Hardness template (TH.xls) and update the Standardization Date.

10.4. Analysis

- 10.4.1. <u>Titration</u>
 - 10.4.1.1. Conduct titrations at or near normal room temperature. Note that the color change becomes impractically slow as the sample approaches freezing temperature. Indicator decomposition becomes a problem in hot water.
 - 10.4.1.2. Set the timer to alarm after 5 minutes.
HARDNESS, TOTAL

SOP No.:	-	EMAX-2340C	Revision No. 6 Effective Date: 12-Sep-22
		10.4.1.3.	Add 1 to 2 mL of buffer solution to sample (prepared in Sec. 10.1.3). This amount is usually sufficient to give a pH of 10.0 to 10.1.
		10.4.1.4.	Turn on the timer.
		10.4.1.5.	Add 1 to 2 drops indicator solution or one scoop of dry indicator. Expect the solution to turn to reddish pink.
		10.4.1.6.	Using EDTA titrant, titrate slowly with continuous stirring until the color changes to distinct blue. If color is not distinct blue, e.g. purple or reddish violet, add inhibitor. If titration endpoint is reached, the solution will turn to distinct blue. This color transition determines the endpoint.
		10.4.1.7.	If any of the conditions below occur the sample is considered to be "over- range". Reduce the sample amount and repeat the process. [Note that sample result is expected to be > LOQ, otherwise sample amount is insufficient.]
			• The color does not turn to distinct blue after addition of inhibitor.
			 If titrant amount is more than the volume of EDTA used in the standardization.
			 If titration took more than 5 minutes after addition of buffer.
	10.4.2.	Sample Re	sult Evaluation
		10.4.2.1.	Check the QC data as soon as available. Refer to Appendix 1 for acceptance criteria.
			✓ Check the method blank and make sure that it meets the project requirement.
			 Check the LCS and make sure it meets the recovery limit.
			 Check the sample duplicate(s) that it meets the acceptance criteria. If not, matrix interference is possible. Note this in the run log.
			 Check that all samples are analyzed within the dynamic range.
10.5.	Calcula	itions	
	10.5.1.	<u>Calculate f</u>	or Titrant Molarity by Standardization
		$E_c = \frac{(C_c)}{E}$	$\frac{(C_v)}{v}$ Eq10.5.1
		where:	
		Ec	 molarity of EDTA titrant
		Ev	 volume of EDTA titrant in mL
		Cc	 molarity of calcium carbonate
		<u> </u>	

 C_{ν} – volume of calcium carbonate in mL

HARDNESS, TOTAL

10.6. Data Reduction

10.6.1. Print a copy of the run log.

Page 8 of 19

STANDARD OPERATING PROCEDURES

HARDNESS, TOTAL

SOP N	o.: EMAX-2340C			Revision No.	6	Effective Date:	12-Sep-22					
		10.6.2.	Highlight reportable results for da	ta processing.								
		10.6.3.	Keep all other data generated wit	h the analytical f	older m	arked with "For reco	rd only".					
	10.7.	Report G	Generation									
		10.7.1.	Generate the method .txt file, san	nple results and (QC sumi	maries using TITRI.ex	e.					
		10.7.2.	Generate the case narrative using	CN00.exe.								
		10.7.3.	Arrange the analysis package in se	equence as detail	led belo	w:						
			10.7.3.1. Case Narrative									
			10.7.3.2. Sample Results									
			10.7.3.3. LCS/LCSD Summary									
			10.7.3.4. Sample Duplicate Resu	lt Summary								
			10.7.3.5. Run Log									
			10.7.3.6. Non-Conformance Rep	oort (if any)								
	10.8.	Data Rev	iew									
		10.8.1.	Perform a 100% data review in ac	form a 100% data review in accordance to EMAX-DM01 and the PSR.								
			> Check that MB is compliant to	Check that MB is compliant to PSR.								
			 Check LCS/LCSD recoveries a PSR, default to in-house QC li 	Check LCS/LCSD recoveries against project specific criteria (PSR). In the absence of the PSR, default to in-house QC limits.								
			Check concentration of samp	le results that all	are wit	hin dynamic range.						
			If any of the above check point	nt is non-complia	nt, re-a	nalysis is required.						
		10.8.2.	Check the generated reports aga indicating positive results are qua	inst the run log. litatively and qua	Check Intitativ	that the analytical on the second s	data generated					
		10.8.3.	Review the case narrative and a analytical process. Edit as nece narrative generator program.	check that it ac ssary to reflect	curately essentia	describes what tra al issues not capture	nspired in the ed by the case					
		10.8.4.	Submit the analytical folder for se	condary review.								
11.0	QUAL	ΙΤΥ CONTI	ROL									
	11.1.	Acceptan	nce criteria for each quality control p	rocedure are sur	nmarize	ed in Appendix 1.						
	11.2.	Analytica	al Batch QC									
		11.2.1.	calibration must be verified daily	prior to its use. F	Refer to	EMAX-QC06 for deta	ils.					
		11.2.2.	Reagents are subjected to QC che	ck prior to its use	e. Refer	to EMAX-QC01 for d	etails.					
	11.3.	Preparat	ion Batch QC									

11.3.1. The maximum number of original field samples in a prep batch is twenty (20) unless otherwise specified by the project.

HARDNESS, TOTAL

SOP No.:	EMAX-2340C	Revision No.	6	Effective Date:	12-Sep-22

- 11.3.2. Prepare method blank and LCS in every prep batch, unless otherwise specified by the project.
- 11.3.3. Prepare a sample duplicate per preparation batch.
- 11.3.4. Properly treat all lab wares used in the sample preparation as specified in EMAX-QC07.

11.4. Method QC

- 11.4.1. A valid LOQ must exist prior to sample analysis. LOQ must be verified quarterly. Refer to EMAX-QA04 for details.
- 11.4.2. All analysts conducting this analysis must have an established Demonstration of Capability (DOC) as described in EMAX-QA05.

12.0 CORRECTIVE ACTION

12.1. Corrective action for each Quality Control Procedure is summarized in Appendix 1.

12.2. Preparation Batch QC

- 12.2.1. When method blank is non-compliant, investigate the source of the problem and institute resolution to correct, minimize or eliminate the problem.
- 12.2.2. If LCS is non-compliant, investigate the source of the problem to institute resolution to correct the problem.

12.3. Sample Analysis QC

- 12.3.1. For insufficient amount of sample(s), inform the supervisor immediately for further action.
- 12.3.2. If sample duplicate is non-compliant, discuss in case narrative.
- 12.4. A Non-Conformance Report (NCR) is required when the following circumstances occur.
 - Anomaly other than specified in Appendix 1 is observed.
 - Sample is out of technical holding time.
 - 12.4.1. Refer to EMAX-QA08 for NCR details.

13.0 POLLUTION PREVENTION

- 13.1. NaCN is extremely poisonous. Observe all necessary precautions to avoid spillage of reagents that may go to the wastewater drains.
- 13.2. Prepare all standards in the fume hood.

14.0 WASTE MANAGEMENT

- 14.1. No samples shall be dumped on the laboratory sink.
- 14.2. Separate and properly identify all unused and expired analytical standards for proper disposal.
- 14.3. Place all waste generated during analytical process in properly labeled satellite waste containers for proper collection.

Page 10 of 19

STANDARD OPERATING PROCEDURES

HARDNESS, TOTAL

SOP No.:	EMAX-2340C	Revision No.	6	Effective Date:	12-Sep-22
	-				

14.4. Dispose all unused samples, expired analytical standards and other waste generated during the analytical process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. According to the Method Update Rule (MUR) and Title 40 Code of Federal Regulation, Part 136, EPA Method 130.2 is not an approved method. If a client requires Method 130.2, EMAX shall perform analysis using Method 2340C-1997/2011 to comply with the MUR and client shall be duly informed.

15.2. Definition of Terms

- 15.2.1. <u>Total Hardness</u> is the sum of the calcium and magnesium concentrations, both expressed as calcium carbonate, in milligrams per liter.
- 15.2.2. <u>Titration</u> A procedure for carrying out a chemical reaction between two solutions by the controlled addition of a solution of known concentration called titrant into an unknown. Reaching a certain pH either measured by pH meter or a color change completes the reaction.
- 15.2.3. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.2.3.1. **Preparation Batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.2.3.2. **Analytical batch** is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices, preparation batches, and can exceed 20 samples.
- 15.2.4. <u>Limit of Quantitation (LOQ)</u> is at the lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- 15.2.5. <u>Safety Data Sheet (SDS)</u> is where the physical data, toxicology and safety precaution of a certain substance is listed.
- 15.2.6. <u>Buffered solutions or buffers</u> Are solutions which resist a change in pH when small amounts of acid or base are added.
- 15.2.7. <u>Indicators</u> A certain chemical has a special property that changes its color at different pH levels. When a few drops of indicator are added to a solution, the color of the solution serves as an indication of its pH.
- 15.2.8. <u>Method Blank (MB)</u> A target-analyte-free sample subjected to the entire sample preparation and/or analytical to monitor contamination.
- 15.2.9. <u>Lab Control Sample (LCS)</u> is a target-analyte-free sample spiked with a verified known amount of target analyte(s) or a reference material with a certified known value subjected to the entire sample preparation and/or analytical process. LCS is analyzed to monitor the accuracy of the analytical system.

HARDNESS, TOTAL

SOP N	lo.:	E	MAX-2340C		Revision No.	6	Effective Date:	12-Sep-22		
		15.2.10.	Lab Contr in the abs	ol Sample Duplicate (ence of MS/MSD sam	(<u>LCSD)</u> – is a replic iple.	ate of	LCS analyzed to mo	nitor precision		
		15.2.11.	<u>Sample</u> – accompan sample ID unless oth	A specimen received ying COC. Samples are considered the perwise specified by t	l in the laboratory collected in diff same and therefo he project.	bearin erent o pre labe	g a sample label tr containers having t eled with the same	aceable to the he same field lab sample ID		
		15.2.12.	<u>Sub-samp</u> identified	<u>le</u> – An aliquot taker by the sample prepa	n from a sample for analysis. Each sub-sample is uniquely aration ID.					
		15.2.13.	Sample D analyzed v	uplicate – A replicat within the same prepa	e of a sub-sample aration batch.	e taken	from one sample,	prepared and		
		15.2.14.	<u>Matrix</u> – A	component or form	of a sample.					
		15.2.15.	<u>Reagent N</u> that may i	<u>Vater</u> – is purified w nterfere with the ana	ater free from an lytical process.	y targe	t analyte or any ot	her substance		
	15.3.	Applicatio	on of EMAX	QC Procedures						
		15.3.1.	The proce performin requireme	edures and QC criters g Total Hardness. In ents given in the project	ria summarized ir instances where ct takes precedence	this S there i e over t	SOP applies to all s a project or prog his SOP.	projects when ram QAPP, the		
	15.4.	Departmo	ent of Defe	nse (DoD) and Depart	ment of Energy (D	oE) Pro	jects			
	15.4.1. Samples from DoD and DoE spons (QAPP), Statement of Work (SOW) QAPP, the DoD and DoE Consoli applied.					onsored projects follows the Quality Assurance Project Plan W) and/or client's quality control directive. In the absence of solidated Quality Systems Manual (QSM), latest update, is				
	15.5.	Note that There is r	t this SOP w no significar	vas revised on the me It analytical changes r	erit of updating ac made from that of	cording the pre	g to 40 CFR Method evious version.	s Update Rule.		
16.0	REFER	ENCES								
	16.1.	"Hardnes the Exam	s – EDTA Ti ination Of W	trimetric Method", M /ater and Wastewater	ethods 2340C-199 7, 21 st and 22 nd Editi	7 and 2 ions.	340C-2011, Standar	d Methods For		
	16.2.	Title 40 C of Polluta	Code of Fedents, Clean N	eral Regulations Part Nater Act Methods U	136, Guidelines E pdate Rule, May 1	stablish 9, 2021	ing Test Performan	ce for Analysis		
	16.3.	EMAX Qu	ality System	s Manual, as updated						
17.0	<u>APPEI</u>	NDICES								
	17.1.	Figures								
		17.1.1.	Figure 1	Typical Sample Res	ult Summary					
		17.1.2.	Figure 2	Typical LCS/LCSD Su	ummary					

17.1.3. Figure 3 Typical Sample Duplicate Result Summary

HARDNESS, TOTAL

SOP No.:	E	MAX-2340C		Revision No.	6	Effective Date:	12-Sep-22
	17.1.4.	Figure 4	Typical Case Narrati	ve			
17.2.	17.2. Appendices						
	17.2.1.	Appendix 1	L Summary of Quality	Control Procedu	ires		
	17.2.2.	Appendix 2	2 Demonstration of C	apability			
17.3.	Forms						
	17.3.1.	2340CFA	Analytical Run Log				

Page 13 of 19 EMAX-2340C Rev. 6 Figures

TYPICAL SAMPLE RESULT SUMMARY

							MI	ETHOD SM2340C HARDNESS						
======================================	: XYZ, INC : CLEAN PF : YYMXXX	 C. ROJECT										Mat Ins	rix : trumentID :	======================================
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	PREP. FACTOR	MOIST (%)	LOQ (mg/L)	DL (mg/L)	LOD (mg/L)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1W	THM001WB	ND	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00101	YYTHM001	THM001W	NA	NA
LCS1W	THM001WL	186	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00102	YYTHM001	THM001W	NA	NA
LCD1W	THM001WC	188	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00103	YYTHM001	THM001W	NA	NA
ABCDEF-1	MXXX-01	392	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00104	YYTHM001	THM001W	MM/DD/YYHH:MM	I MM/DD/YY
ABCDEF-1DUP	MXXX-01D	394	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00105	YYTHM001	THM001W	MM/DD/YYHH:MM	I MM/DD/YY
ABCDEF-2	MXXX-02	342	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00106	YYTHM001	THM001W	MM/DD/YYHH:MM	I MM/DD/YY
ABCDEF-3	MXXX-03	ND	1	NA	10	10	10	MM/DD/YYHH:MM	NA	YYTHM00107	YYTHM001	THM001W	MM/DD/YYHH:MM	I MM/DD/YY

TYPICAL LCS/LCSD SUMMARY

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT PROJECT BATCH NO. METHOD	: XYZ, IN : CLEAN F : YYMXXX : METHOD	IC. PROJECT SM2340C										
MATRIX DILUTION FACTOF SAMPLE ID LAB SAMPLE ID LAB FILE ID DATE EXTRACTED DATE ANALYZED PREP BATCH CALIBRATION REF	: WATER : 1 : MBLK1W : THM001w : YYTHM00 : NA : MM/DD/Y : THM001w :	ИВ 0101 СҮНН:ММ Л	1 LCS1W THM001WL YYTHM00102 NA MM/DD/YYHH:1 THM001W	ИM	1 LCD1W THM001WC YYTHM00103 NA MM/DD/YYHH THM001W	° MM	MOISTURE:	NA				
ACCESSION:												
PARAMETER		MB RESU (mg/L)	LT SPIKE AM (mg/L)	5 BS RE (mg/	SULT BS	REC)	SPIKE AMT (mg/L)	BSD RESULT (mg/L)	BSD REC (%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
HARDNESS		 N	ID 177		186 1	05	177	188	106	1	80-120	20

Figure 3:

TYPICAL SAMPLE DUPLICATE RESULT SUMMARY

EMAX QUALITY CONTROL DATA SAMPLE DUPLICATE ANALYSIS

CLIENT PROJECT BATCH NO.	: XYZ, INC. : CLEAN PROJECT : YYMXXX
METHOD	: METHOD SM2340C

MATRIX :	:	WATER	
DILUTION FACTOR:	:	1	1
SAMPLE ID :	:	ABCDEF-1	ABCDEF-1DUP
LAB SAMPLE ID :	:	MXXX-01	MXXX-01D
LAB FILE ID :	:	YYTHM00104	YYTHM00105
DATE PREPARED :	:	NA	NA
DATE ANALYZED :	:	MM/DD/YYHH:MM	MM/DD/YYHH:MM
PREP BATCH :	:	THM001W	THM001W
CALIBRATION REF:	:	YYTHM001	YYTHM001

ACCESSION:

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/L)	(mg/L)	(응)	(%)
HARDNESS	392	394	1	20

CASE NARRATIVE

Client : XYZ, INC.

Project: CLEAN PROJECT

SDG : YYMXXX

METHOD SM2340C HARDNESS

A total of three (3) water samples were received on MM/DD/YY to be analyzed for Hardness in accordance with Method SM2340C and project specific requirements.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Calibration was performed as prescribed by the method and was verified using a secondary source (ICV). All calibration requirements were within acceptance criteria.

Method Blank Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. Hardness was not detected in THM001WB. Refer to sample result summary form for details.

Lab Control Sample Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) set of LCS/LCD was analyzed. THM001WL/THM001WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample Sample duplicate was analyzed and RPD was within expected value.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

SUMMARY OF QUALITY CONTROL PROCEDURES

QC PROCEDURE	FREQUENCY	ACCEPTANCE CRITERIA	CORRECTIV	/E ACTION	1 st Rvw	2 nd Rvw
Method Blank	One blank per preparation batch	No analytes detected ≥ ½ LOQ	Re-prepare and re-analyze method blank and all samples processed with the contaminated blank.			
LCS	One LCS per preparation batch	Recovery : 80-120%	Correct the problem LCS prior to sample			
Duplicate Sample	One Dup per preparation batch	RPD ≤ 20%	Check PSR and discu			
Comments: Refer to PSF		Reviewed By:				
21 st and/or 22 nd Editions	5			Date:		

DEMONSTRATION OF CAPABILITY

DEMONSTRATION OF CAPABILITY

METHOD 2340C

Conc Unit: mg/L Sample Amount(ml): 25

DADAMACTED	THM002W	THM002WC	THM002WX	THM002WY	τ.	Ave.	Ave.	CD.	RSD	Accuracy	RSD (%)	COMMENTS
PANAIVIETEN	THM00202	THM00203	THM00204	THM00205	IV	Conc.	%Rec	30	(%)	Acceptance	Criteria	CONNINENTS
HARDNESS	235	239	231	243	232	237	102	5.16	2	80 - 120	≤ 20	Passed

REFERENCE: 22THC002W

Page 19 of 19 EMAX-2340C Rev. 6 Forms

2340CFA:

ANALYSIS RUN LOG

PrepBatchID	LabSampleID	Aliquot (ml)	pHAdj	Buffer Added	EDTA (ml)	AnalysisDateTime	Found Conc.	Hardness	Unit	Notes	Calibration of pH Meter		InstrumentID:	53
											BufferID	Value	Reading	DateTime
												4		
												7		
												12.45		
												CalVer 8		
												STANDARDIZ	ATION	
											Vol. 0.02N CaCO3(ml)	Vol. EDTA(ml)	Molarity EDTA Titrant	DATE
												Av	erage EDTA (M)=	
											Standard/Reagent ID	Description	Concentration	Exp.Date
												EDTA (M)		
												LCS (mg/L)		
												NH₄OH(N)		
												Eriochrome Black		
												Inhibitor III		
												pH strip		
												Buffer Solution		
											Micropipette ID	•		
											QC Check	Result	ExpectedVal	QC Check
													0	
		•											Analyzed By:	
Snapseal Lot 1.5oz	:	Snapseal Lot	1.5oz:								EMAX-2340C Rev.		Checked By:	
											Hardness=EDTA (M)xEDTA (ml)	(100000/Aliquot (ml)	Date:	
											Titrant is certified standa	rd		
											Standardization Date:			

SOP REVIEW FORM

HARDNESS, TOTAL

SOP#:	EMAX-2340C	Rev	6	I	Effective Date:	12-Sep-22
		COMME	NTS		Reviewed By	Review Date
No updat	e needed per D	RF by TKosa	aka dated (09/15/23	mesh	09/15/23
					0	0 1/ 10/ 20

Page 1 of 12

STANDARD OPERATING PROCEDURES

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP No.:	EMAX-3010		Revision No. 8	Effective Date:	09-Jun-22
Prepared By:	Tina Huang	M		Date	61912022
Approved By:	Farina Madamba	Judante		Date	6/9/22
	QA Manager	V			
Approved By:	Caspar Pang	an		Date	4/4/2025
	Laboratory Director				
			Control Number:	3010-08-	

1.0 SCOPE AND APPLICATION

- 1.1. This method describes the acid digestion for total metals from surface and ground water, leachates and other related substances that are aqueous in nature, in preparation for metals analysis by ICP analytical technique.
- 1.2. This SOP is an adaptation of SW846 Methods 3010A.

2.0 SUMMARY OF METHOD

2.1. Metal analytes are acid digested from a pre-measured sample. Nitric acid and hydrochloric acid are added to the sample and heated without boiling until the volume is substantially reduced. The digestate is diluted back to its original sample volume using reagent water.

2.2. Interference

- 2.2.1. The analyst should be cautioned that this digestion procedure may not be vigorous to destroy some metal complexes.
- 2.2.2. Precipitation will cause lowering of the silver concentration.
- 2.2.3. Cross-contamination and contamination of the sample can be a major source of error. The sample preparation work area should be kept scrupulously clean. All glassware should be cleaned as directed in EMAX-QC07.

3.0 DETECTION LIMITS

3.1. Detection Limit (DL), Limit of Detection (LOD) & Limit of Quantitation (LOQ)

3.1.1. Refer to applicable analytical procedure.

4.0 DYNAMIC RANGE

4.1. Refer to applicable analytical procedure.

5.0 SAMPLE HOLDING TIME AND PRESERVATION

- 5.1. Holding Time
 - 5.1.1. All samples shall be digested within 180 days from sampling date.
- 5.2. Preservation

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP No.:	EMAX-3010	Revision No.	8	Effective Date:	09-Jun-22
		_			

- 5.2.1. All samples received shall have a pH value of < 2 and container should indicate that they are preserved with HNO₃.
- 5.2.2. Store all samples at the condition as received in the lab, unless otherwise specified by the project. If samples are received cooled at ≤ 6 °C without freezing, they shall be stored at that condition.

6.0 ASSOCIATED SOPS

- 6.1. EMAX-QA04 Detection Limit (DL)
- 6.2. EMAX-QA08 Corrective Action
- 6.3. EMAX-QC04 Balance Calibration
- 6.4. EMAX-QC05 Calibration of Thermometers
- 6.5. EMAX-QC06 Volumetric Labware and Micropipette Verification
- 6.6. EMAX-QC07 Glassware Cleaning
- 6.7. EMAX-SM03 Waste Disposal
- 6.8. EMAX-SM04 Analytical and QC Sample Labeling
- 6.9. EMAX-6010 Inductive Coupled Plasma Emission Spectrometric Method for Trace Metal Analyses
- 6.10. EMAX-6010C Inductive Coupled Plasma Emission Spectrometric Method for Trace Metal Analyses

7.0 <u>SAFETY</u>

- 7.1. Read the SDS of all chemicals listed in this SOP.
- 7.2. All reagents, standards and samples shall be treated as potential hazard. Observe the standard laboratory safety procedures. Protective gear, i.e., lab coat, safety glasses, gloves, shall be worn at all times when performing this procedure. Perform all sample and standard handling in the fume hood.
- 7.3. If for any reason, acid and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amount of tap water. If irritations or any other discomfort related to the incident persist, inform your supervisor immediately, so that proper action can be taken.

8.0 INSTRUMENTS, CHEMICALS & REAGENTS

8.1. Instruments & Supplies

8.1.1.	Digestion vessel	50 ml graduated round bottles corning or equivalent
8.1.2.	Micropipette	Eppendorf or equivalent
8.1.3.	Digestor	Environmental Express Hot Block or equivalent
8.1.4.	Thermometer	Range 0 – 110°C or equivalent
8.1.5.	Watch Glass	Disposable Conical Watch glass or equivalent
8.1.6.	Filter	Whatman #41 or equivalent

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP No.:	EMAX-3010	Revision No.	8	Effective Date:	09-Jun-22

8.2. **Chemicals & Reagents**

- 8.2.1. All reagents are reagent-grade or better.
- 8.2.2. Reagent water: ASTM Type II or equivalent
- 8.2.3. Nitric Acid
- 8.2.4. Hydrochloric Acid

9.0 **STANDARD**

-

ICP Matrix Spike Solutions 9.1.

EMAX MIX 4

		CONCENTRATION (mg/L)			
Arsenic	Barium	Beryllium	Cadmium	Chromium	100
Cobalt	Copper	Lead	Manganese	Nickel	
Selenium	Silver	Thallium	Vanadium	Zinc	
Aluminum	Iron				1000

EMAX MIX 5A

	CONCENTRATION (mg/L)				
Antimony					500
Boron	Molybdenum	Tin	Strontium	Titanium	100

EMAX MIX 5B

	ANA	CONCENTRATION (mg/L)		
Calcium	Magnesium	Potassium	Sodium	5000

SINGLE STANDARD (as needed by project)

ANALYTE	CONCENTRATION (mg/L)
Lithium	1000

10.0 PROCEDURES

10.1. Sample Preparation

- 10.1.1. Based on the work order, determine samples for a preparative batch (not to exceed 20 samples per preparative batch). Withdraw the sample(s) from the sample control room and bring them to the preparation area. Allow the samples to equilibrate at room temperature.
- 10.1.2. Shake the sample container. Pour a small amount of sample into the sample cap and trickle just enough to wet the pH indicator strip. Compare the color of the wet strip to the indicator chart displayed in the pH indicator box. Record the pH in the digestion log.
 - If the pH value is <2, proceed to Sec. 10.1.3.

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP No.:		EMAX-3010)	Revision No.	8	Effective Date:	09-Jun-22
		• If the p COC. C DIGEST	H value is ≥2, check if special Otherwise, inform the supe ION. WAIT FOR FURTHER INS	instruction is w rvisor immedia TRUCTION.	ritten o tely. D	on the analysis fol O NOT PROCEED	der or in the WITH THE
	10.1.3.	Line up the	samples chronologically.				
	10.1.4.	Check the l precision.	ot number of the digestion ve Record the lot # of the digest	essels to confirm ion vessels.	n that it	has been verified	for bias and
	10.1.5.	Take digest them in fro label them	ion vessels and label each on nt of each sample making sur as preparation blank, LCS, ma	e corresponding e that their labe trix spike and m	to the els agre atrix sp	samples withdrav e. Take four more ike duplicate.	wn and place e vessels and
		Note: EPA 6010B and is prepared	3010A requires MS and sam 6010C require MS/MSD. To s because it can be regarded a	ple duplicate. H satisfy both prep s duplicate samp	Howeve aratior ple as w	r, the analytical r and analytical m rell.	nethods EPA ethods, MSD
	10.1.6.	Mix the san mark.	nple thoroughly to achieve ho	omogeneity. Fill	each d	igestion vessel up	to the 50 ml
	10.1.7.	Record the	sample volume in the digesti	on log. Use reag	gent wa	ter for blank and	LCS.
	10.1.8.	Take anoth block. Plac deliver hea	er digestion vessel, fill it with e a thermometer in the wate t at 90°C – 95°C.	h tap water to 50-ml mark and let it sit in the digestion er. Turn the thermostat to a pre-determined mark to			
	10.1.9.	Standard A	ddition				
		10.1.9.1.	Call for a witness for standa the micropippette and the e	rd addition. Ha	ve the v of the s	vitness verify the spike standards.	setting of
		10.1.9.2.	Add 0.25 ml of each from E ml Lithium (see Sec. 9.1) spi	MAX Mix 4 and ke solutions to r	5A, 0.5 natrix s	ml of EMAX Mix spike samples and	5B and 0.025 LCS.
	10.1.10.	Acid Digest	ion				
		10.1.10.1.	Add 1.5 ml of concentrate vessels with conical watch g	ed HNO₃ to ead glass.	ch of t	ne digestion vess	els. Cap the
		10.1.10.2.	Check that the temperature if necessary. Wait until temperature is reached, rec	e of the digestion temperature re cord the tempera	n block eaches ature re	is 90°C, adjust the 90-95°C. Once ading in the diges	e thermostat the desired stion log.
		10.1.10.3.	Place the digestion vessels of	on the digestion	block f	or two hours with	out boiling.
		10.1.10.4.	Remove the digestion vesso cool down.	els from the dig	estion	block and allow t	he vessels to
		10.1.10.5.	Lift the conical watch glass glass back before working digestion block and continu	and add anoth g on the next e heating witho	er 1.5 vessel. ut boili	ml of HNO3. Plac Return the ves ng for another two	the watch ssels on the phours.
		10.1.10.6.	Observe the color of the di clear or light, proceed to Se ml portions of HNO ₃ until r observed. Record each addi	gestate. If, at th c. 10.1.10.7. Oth no evidence of c tion of 1.5 ml po	nis poir nerwise hange ortions	t, the color of the , continue refluxir in the digestate c of HNO3 in the dig	e digestate is ig adding 1.5 onsistency is gestion log.

10.1.10.7. Add 2.5 ml of HCl and reflux for additional 15 minutes.

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP N	0.:		EMAX-3010	1	Revision No.	8	Effective Date:	09-Jun-22		
			10.1.10.8.	Remove the digestion vesse cool down.	els from the dig	estion	block and allow t	he vessels to		
			10.1.10.9.	Using a reagent water wash the same digestion vessel matrix matching.	bottle, rinse the that it covered	e watch . Add	glass collecting t 2.5 ml concentr	he rinsate on ated HCI for		
			10.1.10.10.	Dilute the digestate with a vessel. Seal the vessel and through Whatman #41 filter	reagent water t shake. If the d and collect it in	o the igestat a new	50 ml mark of t e appears to be t polyethylene con	he digestion urbid, pass it tainer.		
	10.2.	Instrume	nt Parametei	rs						
		10.2.1.	The digestic with tap wa temperature (+ 5°C).	on block shall be monitored ter, placed on the digestion e shall be checked from time	by putting a thermometer inside a digestion vessel block together with the samples being digested. The e to time to ensure that it delivers heat at about 90°C					
	10.3.	Calibratio	on							
		10.3.1.	Micropipett	e verification shall be carried	out as describe	d in EN	IAX-QC06.			
		10.3.2.	Digestion ve	essels shall be verified for acc	uracy as describ	ed in E	MAX-QC06.			
		10.3.3.	Thermomet	er calibration shall be carried	l out as describe	d in EN	1AX-QC05.			
	10.4.	Analysis								
		10.4.1.	Refer to EM	AX-6010 or EMAX-6010C.						
	10.5.	Data Red	uction							
		10.5.1.	Refer to EM	AX-6010 or EMAX-6010C.						
	10.6.	Calculatio	ons							
		10.6.1.	Refer to EM	AX-6010 or EMAX-6010C.						
	10.7.	Report G	eneration							
		10.7.1.	Refer to EM	AX-6010 or EMAX-6010C						
	10.8.	Data Rev	iew							
		10.8.1.	Refer to EM	AX-6010 or EMAX-6010C.						
	10.9.	Preventiv	ve Maintenan	ice						
		10.9.1.	The digestic	on area shall be maintained cl	ean at all times	to prev	ent contaminatio	n.		
11.0	QUAL	ITY CONTR	OL							
	11.1.	The maxi specified	mum numbe by the projec	er of original field samples i t.	in an analytical	batch	shall be 20 unle	ss otherwise		
	11.2.	Matrix spi matrix spi the prepa	ike samples sh ike field samp ration batch.	nall be taken from a specified r le, the analyst performing the	matrix spike field extraction shall c	sample hoose	e. In the absence from any of the sa	of a specified mples within		

11.3. A method blank, LCS, and MS/MSD shall be prepared in every preparation batch, unless otherwise

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP N	lo.:		EMAX-3010	Revi	sion No.	8	Effective Date:	09-Jun-22			
		specified described	by the project. They shall be sub I in Section 10.	jected to the sa	me proce	ss that	the field samples	undergo as			
	11.4.	In the event of sample insufficiency for MS/MSD, a LCS duplicate shall be prepared to demonstrate precision.									
	11.5.	All reage	All reagents and standards shall undergo quality control acceptance prior to its use.								
	11.6.	Micropip	ettes used for spiking must be ve	rified daily prior	to use.						
	11.7.	To ensur digestor, thermom	To ensure that the desired heat (indicated by the required temperature) is delivered throughout the digestor, move the monitoring thermometer from one sample well to another daily. Record the thermometer location (i.e., sample well ID) during digestion batch.								
	11.8.	All labwa	res to be used in the sample prep	paration shall be	properly	treate	d as specified in E	MAX-QC07.			
	11.9.	Whenever non-volumetric labware is used to measure extract or digestate volume, the non-volumetr labware must be verified by lot before use according to EMAX-QC06 Non-Volumetric Labware Verification.									
	11.10.	1.10. Every lot of volumetric digestion vessels shall be checked for bias and precision prior to its use. Refer EMAX-QC06.									
	11.11. Demonstration of proficiency is required prior to performing this procedure.										
12.0	CORR	ECTIVE AC	TION								
	12.1.	Correctiv method.	e action for each Quality Contr	ol procedure is	summari	zed in	Appendix 1 of t	he analytical			
	12.2.	Wheneve	er any of the following circumstanc	es occur, undert	ake correc	tive ac	tion as advised be	low:			
		12.2.1.	Breakage of sample container. found, replace the broken sampl	Identify the sar le. If not, inform	nple and the super	check visor ir	for sample spare. nmediately for fur	If a spare is ther action.			
		12.2.2.	Sample insufficiency. Inform the	e supervisor imm	ediately fo	or furth	er advice.				
		12.2.3.	Insufficient preservation of samp the analysis folder, inform your s	ole. If sample pH supervisor imme	I is ≥ 2, an diately for	d no s furthe	pecial instruction i r action.	s provided by			
		12.2.4.	Sample overflow due to excess spare. If a spare is found, re- supervisor immediately for furth	sive effervescend digest the samp er action.	ce. Identi ble. If th	fy the ere is	sample and cheor no spare sample,	ck for sample , inform your			
		12.2.5.	Breakage of digestate containe	r or when sam	ple is spil	led pri	or to dilution to	final volume.			

- Identify the digestate. If it is a method blank or LCS, re-digest the entire preparation batch. If it is a sample, re-digest the sample with a method blank and LCS. If re-extraction is not possible, inform your supervisor for further action.
- 12.3. A Non-Conformance Report (NCR) is required when any of the following circumstances occur:
 - Anomalies, other than those mentioned above and specified in the analytical QCP, are observed.
 - Sample is out of holding time.
 - 12.3.1. Refer to EMAX-QA08 for details.

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP No.:	EMAX-3010	Revision No.	8	Effective Date:	09-Jun-22	
						_

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of solvent that may go to wastewater drains.
- 13.2. Handle solvents and extracts and preparation of standards under the fume hoods.
- 13.3. Keep digestion area clean to prevent contamination of sample.

14.0 WASTE MANAGEMENT

- 14.1. No sample shall be dumped in the laboratory sink.
- 14.2. Separate and properly identify all unused expired standards for proper disposal.
- 14.3. Place all wastes generated during the digestion process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired standards and other wastes generated during the process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. Definition of Terms

- 15.1.1. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.1.1.1. **Preparation batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.1.1.2. **Analytical batch** is compose of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices; preparation batches, and can exceed 20 samples.
- 15.1.2. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.1.3. <u>Method Blank</u> is a target-analyte-free sample subjected to the entire sample preparation and/or analytical to monitor contamination.
- 15.1.4. <u>Lab Control Sample (LCS)</u> is a target-analyte-free sample spiked with a verified known amount of target analyte(s) or a reference material with a certified known value subjected to the entire sample preparation and/or analytical process. LCS is analyzed to monitor the accuracy of the analytical system.
- 15.1.5. <u>Sample</u> is a specimen received in the laboratory bearing a sample label traceable to the accompanying chain of custody (COC). Samples collected in different containers having the same field sample ID are considered the same and therefore labeled with the same lab sample ID unless otherwise specified by the project.
- 15.1.6. <u>Sample Duplicate</u> is a replicate of a sub-sample taken from one sample, prepared and analyzed within the same preparation batch.
- 15.1.7. <u>Sub-sample</u> is an aliquot taken from a sample for analysis. Each sub-sample is uniquely

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

			<u>AC</u>	ID DIGESTION, TOTAL MET	ALS FOR AQUEOU	<u>s</u>				
SOP N	lo.:		EMAX-3010		Revision No.	8	Effective Date:	09-Jun-22		
			identified by	the sample preparation ID						
		15.1.8.	<u>Matrix</u> – is a	component or form of a sa	mple.					
		15.1.9.	Matrix Spike subjected to monitor mate	<u>Matrix Spike (MS)</u> – is a sample spiked with a verified known amount of target and subjected to the entire sample preparation and/or analytical process. MS is analyz monitor matrix effect on a method's recovery efficiency.						
		15.1.10.	Matrix Spike Duplicate (MSD) – is a replicate of MS analyzed to monitor precision or r							
		15.1.11.	<u>Reagent Wat</u> may interfere	<u>ter</u> – is purified water free e with the analytical proces	e from any target a ss.	inalyt	e or any other su	ubstance that		
	15.2.	Applicati	on of EMAX QC	n of EMAX QC Procedures						
		15.2.1.	The procedures and QC criteria summarized in this SOP applies to all projects when perfo this acid digestion of aqueous samples for total metals analysis. In instances where the project or program QAPP, the requirements given in the project takes precedence over this							
	15.3.	Departm	ent of Defense (DoD) and Department of Energy (DOE) Projects							
		15.3.1.	Samples fron (QAPP), State QAPP, the Do	n DoD and/or DOE sponsor ement of Work (SOW) and, D and DOE Consolidated Qu	red projects follows /or client's quality uality Systems Manu	s the contro ual (Q	Quality Assurance ol directive. In the SM), latest update	 Project Plan absence of is applied. 		
16.0	REFER	RENCES								
	16.1.	Acid Dig Spectrose Method 3	estion of Aqu copy, Test Met 3010A, Rev. 1, .	ueous Samples and Extra hods for Evaluating Solid V July 1992.	acts for Total Me Vaste, Physical and	tals f Chem	for Analysis by nical Methods, US	FLAA or ICP EPA SW-846,		
	16.2.	Inductive Physical a 2007.	ly Coupled Pla and Chemical N	asma-Atomic Emission Spe Aethods, US EPA SW-846, N	ctrometry, Test M Aethods 6010B Rev	ethoc .2, De	ds for Evaluating ec. 1996 and 6010	Solid Waste, C Rev. 3, Feb.		
	16.3.	EMAX Qu	uality Systems I	Manual, as updated.						
17.0	ΔΡΡΕΙ	NDICES								
17.0	<u>17 1</u>	Figures								
	17.1.	1711	Figure 1	Process Flowchart						
	17 2	Annendi		r locess r lowenare						
	17.2.	17.2.1	Annendiv 1	Demonstration of Canad	sility					
	17 2	Forms	Арреник 1		, incy					
	17.3.	1721	201055	Sample Proparation Lag						
		17.3.1.	201022	Sample Preparation Log						

Page 9 of 12 EMAX-3010 Rev. 8 Figures

PROCESS FLOWCHART

Figure 1:

Appendix 1:

DEMONSTRATION OF CAPABILITY

Conc Unit: mg/L Sample Amt(ml): 50

PARAMETER	ID8M017028	ID8M017029	ID8M017030	ID8M017031		Ave	Ave.	SD	RSD	Accuracy	Precision		
	IPM026WI	IPM026WC	IPM026WX	IPM026WV	TV	Conc.	%Rec		(96)	Criteria (%	Crit	eria	COMMENTS
Aluminum	E 62	E 59	E 69	E 76	-	5.67	112	0.0759	4	Rec)	(%R	SD)	BASSED
Aruminum	3.65	0.50	5.65	5.70		5.67	115	0.0755	1	au - 120	2	20	PASSED
Antimony	2.58	2.58	2.64	2.64	2.5	2.61	104	0.0339	1	80 - 120	2	20	PASSED
Arsenic	0.509	0.506	0.527	0.517	0.5	0.515	103	0.00958	2	80 - 120	5	20	PASSED
Barium	0.512	0.505	0.511	0.517	0.5	0.511	102	0.00500	1	80 - 120	≤	20	PASSED
Beryllium	0.488	0.483	0.491	0.498	0.5	0.490	98	0.00594	1	80 - 120	≤	20	PASSED
Boron	0.470	0.465	0.474	0.479	0.5	0.472	94	0.00602	1	80 - 120	≤	20	PASSED
Cadmium	0.488	0.484	0.505	0.496	0.5	0.493	99	0.00945	2	80 - 120	≤	20	PASSED
Calcium	52.4	51.9	53.8	54.5	50	53.1	106	1.22	2	80 - 120	≤	20	PASSED
Chromium	0.489	0.486	0.503	0.500	0.5	0.495	99	0.00809	2	80 - 120	≤	20	PASSED
Cobalt	0.493	0.489	0.491	0.501	0.5	0.494	99	0.00498	1	80 - 120	≤	20	PASSED
Copper	0.513	0.510	0.513	0.525	0.5	0.515	103	0.00634	1	80 - 120	≤	20	PASSED
Iron	4.95	4.90	5.12	5.03	5	5.00	100	0.0973	2	80 - 120	≤	20	PASSED
Lead	0.489	0.487	0.493	0.499	0.5	0.492	98	0.00498	1	80 - 120	≤	20	PASSED
Lithium	0.522	0.513	0.508	0.514	0.5	0.514	103	0.00582	1	80 - 120	≤	20	PASSED
Magnesium	47.4	46.9	48.6	49.6	50	48.1	96	1.19	2	80 - 120	≤	20	PASSED
Manganese	0.468	0.462	0.472	0.479	0.5	0.470	94	0.00688	1	80 - 120	≤	20	PASSED
Molybdenum	0.492	0.487	0.484	0.500	0.5	0.491	98	0.00703	1	80 - 120	≤	20	PASSED
Nickel	0.508	0.503	0.505	0.515	0.5	0.508	102	0.00559	1	80 - 120	≤	20	PASSED
Potassium	52.1	51.6	52.7	53.5	50	52.5	105	0.826	2	80 - 120	≤	20	PASSED
Selenium	0.494	0.489	0.504	0.498	0.5	0.496	99	0.00636	1	80 - 120	≤	20	PASSED
Silver	0.518	0.515	0.527	0.528	0.5	0.522	104	0.00662	1	80 - 120	≤	20	PASSED
Sodium	50.9	50.2	50.8	51.9	50	50.9	102	0.701	1	80 - 120	≤	20	PASSED
Strontium	0.467	0.458	0.458	0.472	0.5	0.464	93	0.00682	1	80 - 120	≤	20	PASSED
Thallium	0.473	0.469	0.486	0.480	0.5	0.477	95	0.00764	2	80 - 120	≤	20	PASSED
Tin	0.503	0.495	0.500	0.513	0.5	0.503	101	0.00762	2	80 - 120	≤	20	PASSED
Titanium	0.505	0.497	0.508	0.514	0.5	0.506	101	0.00700	1	80 - 120	≤	20	PASSED
Vanadium	0.512	0.506	0.523	0.518	0.5	0.515	103	0.00734	1	80 - 120	≤	20	PASSED
Zinc	0.509	0.502	0.516	0.521	0.5	0.512	102	0.00816	2	80 - 120	≤	20	PASSED

Page 11 of 12
EMAX-3010
Rev. 8
Forms

3010FS:	SAMPLE PREPARATIO	N LOG (Page	1)		
EABORATORIES, INC.	DIGESTION L <i>for</i> ICP METAL	OG S			Page 1
Note: For samples, relevant	OCs/Standards digested		Book #:	FI	P-139
refer to attached diges	tion sequence.		Batch:	2.	100
Comments:			Matrix:		
)igestion Vessel Lot #			Digestor ID:		
ilter Lot #			-		
		SO	P #	R	ev. #
		EMAX-30	10		
		EMAX-30	50		
		EMAX-20	0.7		
		EMAX-			
		Start	Temp	End	Temp
		Start	°C	Enu	°C
		Standards	=	D	Amount Added (ml/g)
		LCS-1			
		LCS-2			
		LCS-3			
		мѕ			
		Blank Soil (Bead)			
		Reagent	Lot#	/ ID	Amount Added (ml)
		HNO ₃			
		нсі			
		H ₂ O ₂			
		HNO ₃ (1:1)			
		pH Strip (0-14)			
		Digestate Location			
		Extract Location			
		Reagent Water	ID:		
		Thermometer I	D:		
		Pipette ID:			
		Pipette ID:			
		Pipette ID:			
		HNO ₃ dispense	r checked @ 5.0 m	l with Class A vo	lumetric flask
		HCl dispenser c	hecked @ 5.0 ml w	vith Class A volur	metric flask
		Prepared By:			
		Standard Added By	<i>(</i> :	Witnessed B	y:
		Extract Revel By:		Checked B	y:

Page 12 of 12 EMAX-3010 Rev. 8 Forms

3010FS:

SAMPLE PREPARATION LOG (Page 2)

PrepBatchID	LabSampleID	Aliquot	Unit	DateTime	Vd(ml)	ExpAmt	ExpVd(ml)	PrepFctr	Comments
		-							
						1			
	1		I	1		Vd=diges	l tate volume	l	PrenEctr=)ExnAmt/Aliquet*(\/d/Exx\/d)
						Ju-diges	ale volume	Prenared By	
	Direction Ended @								
Commonter								Dat-	
comments:								Date	

SOP REVIEW FORM

ACID DIGESTION, TOTAL METALS FOR AQUEOUS

SOP#: EMAX-3010

R

Rev 8

Effective Date: 09-Jun-22

COMMENTS	Reviewed By	Review Date
No update needed per DRF by THuang dated 09/20/23	syesty	09/20/23
	• •	

Page 1 of 14

STANDARD OPERATING PROCEDURES

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:	EMAX-3050		Revision No. 9	Effective I	Date: 04-Jan-23
Prepared By:	Tina Huang	1hi			Date: <u>1/4/20</u> 23
Approved By:	Farina Madamba	madaler			Date: 1/4/2023
	QA Manager	J			. (
Approved By:	Caspar Pang	Cm			Date: 1 4 2023
	Laboratory Director				
			Control Number:	3050-09-	

1.0 SCOPE AND APPLICATION

- 1.1. This method describes the acid digestion for soils, sludge, sediments and other related substances that are solid in nature, in preparation for metals analysis by ICP analytical technique.
- 1.2. This SOP adopts the same acid strength as SW846 Method 3050B.
- 1.3. A comparative study of this modified procedure vis-à-vis the reference method shows better recoveries for some elements particularly antimony.

2.0 SUMMARY OF METHOD

2.1. Metal analytes are acid digested from a pre-measured sample. Hydrochloric acid is added to the sample and heated to initialize digestion. Nitric acid is added to the digestate and is further oxidized with 30% peroxide. Hydrochloric acid is again added to complete acid digestion.

2.2. Interferences

- 2.2.1. Sludge samples can contain diverse matrix types, which may present analytical challenge.
- 2.2.2. Samples having high concentrations may cause memory effect on the digestion vessels. Treating the vessels with 1:1 v/v of HCL and HNO3 will decontaminate the digestion vessels.

3.0 DETECTION LIMITS

3.1. Detection Limit (DL), Limit of Detection (LOD) & Limit of Quantitation

3.1.1. Refer to EMAX-QA04 for generation, validation and verification of DL, LOD & LOQ.

3.2. Reporting Limit

3.2.1. Refer to applicable analytical procedure.

4.0 DYNAMIC RANGE

4.1. Refer to applicable analytical procedure.

5.0 SAMPLE HOLDING TIME AND PRESERVATION

- 5.1. Holding Time
 - 5.1.1. All samples shall be digested within 180 days from sampling date.

3051 Fujita Street, Torrance, CA 90505 Tel: (310) 618-8889

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP N	0.:	EMA	X-3050	Revision No.	9	Effective Date:	04-Jan-23		
	5.2.	Preservation							
		5.2.1. All sa	mples shall be stored at the condition	n specified by th	e proje	ect.			
6.0	ASSOC	CIATED SOPS							
	6.1.	EMAX-QA04	Detection Limit (DL)						
	6.2.	EMAX-QA08	Corrective Action						
	6.3.	EMAX-QC04	Balance Calibration						
	6.4.	EMAX-QC05	Calibration of Thermometers						
	6.5.	EMAX-QC06	Volumetric Labware and Micropipet	nd Micropipette Verification					
	6.6.	EMAX-QC07	Glassware Cleaning	ning					
	6.7.	EMAX-SM03	Waste Disposal						
	6.8.	EMAX-SM04	Analytical and QC Sample Labeling						
	6.9.	EMAX-6010	Inductive Coupled Plasma Emission	Spectrometric N	1ethod	for Trace Metal	Analyses		
	6.10.	EMAX-6010C	Inductive Coupled Plasma Emission	Spectrometric N	1ethod	for Trace Metal	Analyses		

7.0 <u>SAFETY</u>

- 7.1. Read the SDS of all chemicals listed in this SOP.
- 7.2. All reagents, standards and samples shall be treated as potential hazard. Observe the standard laboratory safety procedures. Protective gear, i.e., lab coat, safety glasses, gloves, shall be worn at all times when performing this procedure. Perform all sample and standard handling in the fume hood.
- 7.3. If for any reason, acid and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amount of tap water. If irritations or any other discomfort related to the incident persist, inform your supervisor immediately, so that proper action can be taken.

8.0 INSTRUMENTS, CHEMICALS & REAGENTS

8.1. Instruments & Supplies

8.1.1.	Balance	Sartorius LC 620 S or equivalent
8.1.2.	Spatula	Disposable or equivalent
8.1.3.	Digestion vessel	125 mL digestion vessel or equivalent
8.1.4.	Micropipette	Eppendorf or equivalent
8.1.5.	Digestion block	CPI Block Digestor or equivalent
8.1.6.	Thermometer	Range 0 – 110°C
8.1.7.	Watch Glass	Disposable Conical Watch glass or equivalent
8.1.8.	Filter	Whatman #41 or equivalent

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:	EMAX-3050	Revision No.	9	Effective Date:	04-Jan-23

8.2. **Chemicals & Reagents**

- 8.2.1. All reagents are reagent-grade or better.
- 8.2.2. Solid Matrix (Blank): Resin Pellet Solid Matrix or equivalent
- 8.2.3. Reagent Water: BDH Water ASTM Type II or equivalent
- 8.2.4. Nitric Acid
- 8.2.5. Hydrochloric Acid
- 8.2.6. Hydrogen Peroxide

9.0 **STANDARD**

-

9.1. **ICP Matrix Spike Solutions**

EMAX MIX 4

	CONCENTRATION (mg/L)				
Arsenic	Barium	Beryllium	Cadmium	Chromium	100
Cobalt	Copper	Lead	Manganese	Nickel	
Selenium	Silver	Thallium	Vanadium	Zinc	
Aluminum	Iron				1000

EMAX MIX 5A

	CONCENTRATION (mg/L)				
Antimony	500				
Boron	Molybdenum	Tin	Strontium	Titanium	100

EMAX MIX 5B

	CONCENTRATION (mg/L)			
Calcium	Magnesium	Potassium	Sodium	5000

SINGLE STANDARD (as needed by project)

ANALYTE	CONCENTRATION (mg/L)
Lithium	1000

10.0 PROCEDURES

10.1. Sample Preparation

- 10.1.1. Sample Handling
 - 10.1.1.1. Based from the work order, determine the samples to form a preparative batch (not to exceed 20 field samples). Withdraw the sample(s) from the sample control room designated for metals analysis (passing # 10 sieve) and bring them to the weighing area. Allow the samples to equilibrate at room temperature.

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:		EMAX-30	50	Revision No.	9	Effective Date: _	04-Jan-23
		Note:	Sample homogeneity is crucio for metals analysis, and it is inform the Supervisor for furth	al in metals and apparent that s her instruction.	ılysis. ample	If no sample was particles contain	s designated > #10 sieve,
		10.1.1.2.	Take digestion vessels and withdrawn. Take four more matrix spike and matrix spike of	label each or vessels and lab duplicate.	ne cor pel the	responding to t m as preparatior	he samples blank, LCS,
		10.1.1.3.	Follow sub-sampling procedu project sub-sampling require required, refer to EMAX-SM01	ire described in ment. If multi for details.	EMA) -increr	K-SM01 Section 5 nental sub-samp	5.14. Check ling (MIS) is
		10.1.1.4.	Scoop 1-1.5 g sub-sample an Record the weight to the near	d transfer into est 0.01 g.	a prop	erly labeled dige	stion vessel.
	10.1.2.	Pre-heati	ng the Digestion Block				
		10.1.2.1.	Place a digestion vessel wit thermometer on the digestion	th reagent wat block.	er and	d a temperature	monitoring
		10.1.2.2.	Turn the digestion block on an temperature to obtain appro with a watch glass.	d set the thermo ximately 95°C o	ostat to nce th	o ~95°C or to a pro e digestion vesse	edetermined el is covered
		10.1.2.3.	When the temperature readi ready for digestion.	ng is about 95°	C ± 5°	C, the digestion I	olock is now
	10.1.3.	<u>Standard</u>	Addition				
		10.1.3.1.	Call for a witness for standard micropipette and the expiration	addition. Have on dates of the sp	the wi bike sta	itness verify the s andards.	etting of the
		10.1.3.2.	Add 0.5 mL of each from EMA of Lithium spike standard.	X Mix 4 and 5A,	1.0 mL	of EMAX Mix 5B	and 0.05 mL
	10.1.4.	Acid Dige	<u>stion</u>				
		10.1.4.1.	Add 10 mL of regent water and the vessel to mix the acid and and empty vessel and design block(s). Cap the vessels with	nd 5 mL of conce I the sample. Ac ate it as blank. conical watch gla	entrate dd sam Inser ass.	ed HCL ¹ into each e amount of acid t the vessels in t	vessel, swirl into a clean he digestion
		10.1.4.2.	Check the temperature of the temperature happens to be temperature is within 95°C ± 5 log.	e digestion block ≥ 100°C, adju i°C. Record the	: (95°C ist the tempei	± 5°C), adjust if r thermostat and rature reading in t	necessary. If d wait until the digestion
		10.1.4.3.	Place the digestion vessels of without boiling.	on the digestion	n bloc	k and reflux for	15 minutes
		10.1.4.4.	Transfer the vessels into unh down for at least 5 minutes. HNO ₃ . Place the watch glass b	eated digestion Lift the watch g ack before work	block lass an ing on	and allow the ve id add 10 mL of c the next vessel.	ssels to cool concentrated
		10.1.4.5.	Return the vessels to the diges	stion block and r	eflux fo	or another 15 min	utes.

¹ Addition of 5 mL HCl is a modification from Method 3050B to enhance recovery of antimony. Refer to Appendix 2 for the comparative study done on ICP.

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:		EMAX-30	50	Revision No.	9	Effective Date: _	04-Jan-23
		10.1.4.6.	Transfer the vessels into un down for at least 5 minutes. the water glass back before v	heated digestion . Lift the water gl working on the ne	blocks lass and xt vess	and allow the ve d add 10 mL 1:1 H el.	ssels to cool HNO3. Place
		10.1.4.7.	Return the vessels to the dig	estion block and r	eflux fo	or another 15 min	utes.
		10.1.4.8.	Transfer the vessels into un down for at least 5 minutes.	heated digestion	blocks	and allow the ve	ssels to cool
	10.1.4.9. Add 2 mL of reagent water. Then add 3 mL of 30% hydrogen peroxide (I each vessel, swirling each one of them after every addition to initiate preaction. Continue to add H ₂ O ₂ until the amount added reaches 10 mL.						
	10.1.4.10. Return the vessels to the heated digestion block. Care must be taken to e that losses do not occur due to excessive effervescence.						
	10.1.4.11. Continue to reflux the mixture at 95°C ± 5°C for 15 minutes. Remove the diges vessels from the digestion block.						
		10.1.4.12.	Lift the watch glass, add 5 reagents are properly mixe working on the next vessel. Reflux for additional 15 minu the digestion block and allow volume with reagent water.	mL of concentrate ad with the solut Return the vess utes. Subsequent w the vessels to c	ed HCl. tion. F sels inte ly, reme cool do	Swirl the vessel Place the watch the heated dig ove the digestion wn and dilute to	l until added glass before estion block. vessels from 100 mL final
		10.1.4.13.	Let the digestate settle over the same day.	night or centrifug	e if an	alysis has to be p	erformed on
		10.1.4.14.	Take an aliquot of the liquid	portion of digesta	te for a	nalysis.	
10.2.	Instrume	nt Paramet	ers				
	10.2.1.	Take a dig temperati block toge time to er	estion vessel filled halfway v are monitoring vessel. Place other with the samples being asure that it delivers heat at a	vith tap water and the temperature digested. Check t bout 95°C ± 5°C.	d insert e monit he tem	a thermometer oring vessel on t perature reading	to serve as a he digestion from time to
10.3.	Calibratio	on					
	10.3.1.	Balance ca	alibration shall be carried out	as described by E	MAX-Q	C04.	
	10.3.2.	Thermom	eter calibration shall be carrie	ed out as describe	d by EN	1AX-QC05.	
	10.3.3.	Micropipe	tte verification shall be carrie	ed out as described	d by EN	IAX-QC06.	
	10.3.4.	Digestion	vessels shall be verified for ac	curacy as describe	ed in El	MAX-QC06.	
10.4.	Analysis						
	10.4.1.	For ICP an	alytical method, refer to EMA	X-6010 or EMAX-	6010 C .		
10.5.	Data Red	uction					
	10.5.1.	For ICP an	alytical method, refer to EMA	X-6010 or EMAX-	6010 C .		
10.6.	Calculatio	ons					

10.6.1. For ICP analytical method, refer to EMAX-6010 or EMAX-6010C.

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:	EMAX-3050	Revision No.	9	Effective Date:	04-Jan-23

10.7. Report Generation

10.7.1. For ICP analytical method, refer to EMAX-6010 or EMAX-6010C.

10.8. Data Review

10.8.1. For ICP analytical method, refer to EMAX-6010 or EMAX-6010C.

10.9. Preventive Maintenance

10.9.1. The digestion area shall be maintained clean at all times to prevent contamination

11.0 QUALITY CONTROL

- 11.1. The maximum number of original field samples in an analytical batch shall be 20 unless otherwise specified by the project.
- 11.2. Matrix spike samples shall be taken from a specified matrix spike field sample. In the absence of a specified matrix spike field sample, the analyst performing the extraction shall choose from any of the samples within the preparation batch.
- 11.3. A method blank, LCS, and MS/MSD shall be prepared in every preparation batch, unless otherwise specified by the project. They shall be subjected to the same process that the field samples undergo as described in Section 10.
- 11.4. In the event of sample insufficiency for MS/MSD, a LCS duplicate shall be prepared to demonstrate precision.
- 11.5. Balance calibration check must be performed daily prior to use.
- 11.6. All reagents and standards shall undergo quality control acceptance prior to its use.
- 11.7. To ensure that the desired heat (indicated by the required temperature) is delivered throughout the digestor, move the monitoring thermometer from one sample well to another daily. Record the thermometer location (i.e., sample well ID) during digestion batch.
- 11.8. All labwares to be used in the sample preparation shall be properly treated as specified in EMAX-QC07.
- 11.9. Micropipettes used for spiking must be verified daily prior to use.
- 11.10. Whenever non-volumetric labware is used to measure extract or digestate volume, the non-volumetric labware must be verified by lot before use according to EMAX-QC06 Non-Volumetric Labware Verification.
- 11.11. Every lot of volumetric digestion vessels shall be checked for bias and precision prior to its use. Refer to EMAX-QC06.
- 11.12. Demonstration of proficiency is required prior to performing this procedure.

12.0 CORRECTIVE ACTION

- 12.1. Corrective action for each Quality Control procedure is summarized in Appendix 1 of the analytical method.
- 12.2. Whenever any of the following circumstances occur, undertake corrective action as advised below:
 - 12.2.1. Breakage of sample container. Identify the sample and check for sample spare. If a spare is found, replace the broken sample. If not, inform the supervisor immediately for further action.

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP N	lo.:		EMAX-3050	Revision No.	9	Effective Date:	04-Jan-23
		12.2.2.	Sample insufficiency. Inform the supervis	or immediately fo	or furth	er advice.	
		12.2.3.	Insufficient preservation of sample. If san the analysis folder, inform your supervisor	mple pH is \geq 2, ar rimmediately for	id no sj furthei	pecial instruction in action.	is provided by
		12.2.4.	Sample overflow due to excessive effer spare. If a spare is found, re-digest the supervisor immediately for further action.	vescence. Ident le sample. If th	ify the ere is	sample and cheon no spare sample	ck for sample , inform your
		12.2.5.	Breakage of digestate container or whe Identify the digestate. If it is a method bla a sample, re-digest the sample with a m inform your supervisor for further action.	en sample is spil ank or LCS, re-dig nethod blank and	led pridest the LCS.	or to dilution to entire preparatior If re-extraction is	final volume. batch. If it is not possible,
	12.3.	A Non-Co	onformance Report (NCR) is required when a	any of the followi	ng circu	umstances occur:	
		• An	omalies, other than those mentioned above	and specified in t	the ana	lytical QCP, are ob	oserved.
		• Sar	nple is out of holding time.				
		12.3.1.	Refer to EMAX-QA08 for details.				
13.0	<u>POLLI</u>	JTION PRE	EVENTION_				
	13.1.	Observe	all necessary precautions to avoid spillage	of solvent that n	nay go	to wastewater dr	ains.
	13.2.	Handle s	olvents and extracts and preparation of sta	andards under th	e fume	e hoods.	
	13.3.	Keep dig	estion area clean to prevent contamination	n of sample.			
14.0	<u>WAST</u>	E MANAG	<u>EMENT</u>				
	14.1.	No samp	le shall be dumped in the laboratory sink.				
	14.2.	Separate	and properly identify all unused expired s	tandards for pro	per dis	posal.	
	14.3.	Place all proper c	wastes generated during the digestion pro ollection.	cess in properly	labelec	l satellite waste c	ontainers for
	14.4.	Dispose a accordar	all unused samples, expired standards and nee to EMAX-SM03.	other wastes ge	nerate	d during the proc	ess in
15.0	SUPP	LEMENTAI	RY NOTES				
	15.1.	Method	Modification				
		15.1.1.	This SOP is a modification of Method modification includes the addition of 5 n	3050B to enhar nL HCl.	nce the	e recovery of an	timony. The
		15.1.2.	In addition, a modification has been method, a 30 minute acid reflux and per	made decreasing oxide reflux is pe	g the i	reflux time. In ed instead of two	the modified hours.
		15.1.3.	Appendix 2 provides the comparative stress study shall be retained as reference.	udy done on ICP	analys	is. The technical	report of this

15.1.4. The modification of Method 3050B was first documented in EMAX-3050 Rev. 4.

ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:	EMAX-3050	Revision No.	9	Effective Date:	04-Jan-23

15.2. Definition of Terms

- 15.2.1. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.2.1.1. **Preparation batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.2.1.2. Analytical batch is compose of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices; preparation batches, and can exceed 20 samples.
- 15.2.2. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.2.3. <u>Method Blank</u> is a target-analyte-free sample subjected to the entire sample preparation and/or analytical to monitor contamination.
- 15.2.4. <u>Lab Control Sample (LCS)</u> is a target-analyte-free sample spiked with a verified known amount of target analyte(s) or a reference material with a certified known value subjected to the entire sample preparation and/or analytical process. LCS is analyzed to monitor the accuracy of the analytical system.
- 15.2.5. <u>Sample</u> is a specimen received in the laboratory bearing a sample label traceable to the accompanying chain of custody (COC). Samples collected in different containers having the same field sample ID are considered the same and therefore labeled with the same lab sample ID unless otherwise specified by the project.
- 15.2.6. <u>Sample Duplicate</u> is a replicate of a sub-sample taken from one sample, prepared and analyzed within the same preparation batch.
- 15.2.7. <u>Sub-sample</u> is an aliquot taken from a sample for analysis. Each sub-sample is uniquely identified by the sample preparation ID.
- 15.2.8. <u>Matrix</u> is a component or form of a sample.
- 15.2.9. <u>Matrix Spike (MS)</u> is a sample spiked with a verified known amount of target analyte(s) subjected to the entire sample preparation and/or analytical process. MS is analyzed to monitor matrix effect on a method's recovery efficiency.
- 15.2.10. <u>Matrix Spike Duplicate (MSD)</u> is a replicate of MS analyzed to monitor precision or recovery.
- 15.2.11. <u>Reagent Water</u> is purified water free from any target analyte or any other substance that may interfere with the analytical process.

15.3. Application of EMAX QC Procedures

15.3.1. The procedures and QC criteria summarized in this SOP applies to all projects when performing acid digestion of soil, sludge, and sediment samples for metals analysis. In instances where there is a project or program QAPP, the requirements given in the project takes precedence over this SOP.

15.4. Department of Defense (DoD) and Department of Energy (DOE) Projects

15.4.1. Samples from DoD and/or DOE sponsored projects follows the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of
ACID DIGESTION, TOTAL METALS FOR SOLIDS

SOP No.:	EMAX-3050	Revision No.	9	Effective Date:	04-Jan-23
		_			

QAPP, the DoD and DOE Consolidated Quality Systems Manual (QSM), latest update, is applied.

16.0 <u>REFERENCES</u>

- 16.1. Acid Digestion of Sediments, Sludges and Soils, Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, US EPA SW-846, Method 3050B, Rev. 2, December 1996.
- 16.2. Inductively Coupled Plasma-Atomic Emission Spectrometry, Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, US EPA SW-846, Methods 6010B Rev.2, Dec. 1996 and 6010C Rev. 3, Feb. 2007.
- 16.3. EMAX Quality Systems Manual, as updated.

17.0 APPENDICES

17.1. Figures

17.1.1. F	igure 1	Process	Flowchart
-----------	---------	---------	-----------

17.2. Appendices

17.2.1.	Appendix 1	Demonstration of Capability
17.2.2.	Appendix 2	Comparative Study of Modified 3050B

17.3. Forms

17.3.1. 3050FS Sample Preparation Log

Page 10 of 14 EMAX-3050 Rev. 9 Figures

DOCUMENTATION /

PROCESS FLOWCHART PARATION DOCUMENTATION QC CHECK ACID DIGESTION

Figure 1:

Appendix 1:

DEMONSTRATION OF CAPABILITY

Conc Unit: mg/Kg Sample Amt(g): 1

PARAMETER	ID8M017023	ID8M017024	ID8M017025	ID8M017026	TV	Ave.	Ave.	SD.	RSD	Accuracy	RSI	D (%)	COMMENTS
PARAMETER	IPM023SL	IPM023SC	IPM023SX	IPM023SY		Conc.	%Rec	30	(%)	Limits (%	Cri	teria	CONTRIENTS
Aluminum	515	499	506	511	500	508	102	6.66	1	80 - 120	\leq	20	Passed
Antimony	243	237	239	243	250	240	96	3.10	1	80 - 120	≤	20	Passed
Arsenic	48.1	47.0	47.3	47.8	50	47.5	95	0.490	1	80 - 120	≤	20	Passed
Barium	50.0	47.7	48.3	49.5	50	48.9	98	1.07	2	80 - 120	≤	20	Passed
Beryllium	47.2	45.4	46.1	46.7	50	46.3	93	0.772	2	80 - 120	≤	20	Passed
Boron	42.2	41.0	41.5	42.0	50	41.7	83	0.545	1	80 - 120	\leq	20	Passed
Cadmium	47.2	46.8	46.4	47.1	50	46.9	94	0.366	1	80 - 120	\leq	20	Passed
Calcium	5138	5038	5029	5121	5000	5082	102	56.3	1	80 - 120	\leq	20	Passed
Chromium	47.9	47.0	47.4	47.9	50	47.5	95	0.426	1	80 - 120	\leq	20	Passed
Cobalt	49.2	46.9	48.4	49.0	50	48.4	97	1.07	2	80 - 120	<pre></pre>	20	Passed
Copper	48.8	46.8	48.1	48.6	50	48.1	96	0.893	2	80 - 120	≤	20	Passed
Iron	480	473	468	477	500	475	95	5.08	1	80 - 120	≤	20	Passed
Lead	47.9	45.9	47.2	47.7	50	47.2	94	0.892	2	80 - 120	≤	20	Passed
Lithium	48.9	46.7	47.4	48.3	50	47.8	96	0.983	2	80 - 120	≤	20	Passed
Magnesium	4734	4644	4606	4675	5000	4665	93	54.2	1	80 - 120	≤	20	Passed
Manganese	46.2	44.6	44.9	45.6	50	45.3	91	0.731	2	80 - 120	≤	20	Passed
Molybdenum	50.2	47.5	49.2	49.9	50	49.2	98	1.20	2	80 - 120	≤	20	Passed
Nickel	50.8	48.4	50.0	50.6	50	50.0	100	1.08	2	80 - 120	\leq	20	Passed
Potassium	5056	4898	4964	5038	5000	4989	100	72.7	1	80 - 120	<pre>S</pre>	20	Passed
Selenium	45.9	44.8	45.1	45.8	50	45.4	91	0.553	1	80 - 120	\leq	20	Passed
Silver	48.5	47.2	47.4	48.3	50	47.9	96	0.642	1	80 - 120	\leq	20	Passed
Sodium	4951	4765	4846	4896	5000	4865	97	78.9	2	80 - 120	S	20	Passed
Strontium	46.2	43.8	44.6	45.2	50	44.9	90	1.03	2	80 - 120	≤	20	Passed
Thallium	44.1	43.6	43.4	44.2	50	43.8	88	0.388	1	80 - 120	≤	20	Passed
Tin	54.0	51.9	53.4	53.9	50	53.3	107	0.948	2	80 - 120	≤	20	Passed
Titanium	49.8	47.7	48.0	49.2	50	48.7	97	0.997	2	80 - 120	≤	20	Passed
Vanadium	50.2	49.0	48.9	49.9	50	49.5	99	0.653	1	80 - 120	≤	20	Passed
Zinc	51.2	49.8	50.6	51.0	50	50.7	101	0.601	1	80 - 120	≤	20	Passed

Page 12 of 14 EMAX-3050 Rev. 9 Appendices

Appendix 2:

COMPARATIVE STUDY OF MODIFIED 3050B

ANALYTICAL METHOD: SW 6010C PREPARATION BATCH: IPG052S - Modified Method 3050B IPG053S - Reference Method 3050B ANALYTICAL BATCH: D8G025 QC STANDARD: 09G281-02

Preparation Date: 7/27/2010 Extracted by: M. Mendoza Analytical Run Date: 7/28/2010 Analyzed by: T. Hoang

TRUE			REFERENCE METHOD 3050B					MODIFIED METHOD 3050B			
	VALUES	ACCEPTANCE	RECOVERY LIMITS	Concentrat	ion (mg/Kg)	Reco	very	Concentrat	ion (mg/Kg)	Reco	overy
	(mg/Kg)	LIMITS (mg/Kg)	(%)	D8G025063	D8G025064	D8G025063	D8G025064	D8G025054	D8G025055	D8G025054	D8G025055
COMPOUND	(1118/ KB)			G281-02	G281-02D	G281-02	G281-02D	G281-02	G281-02D	G281-02	G281-02D
Aluminum	7320	4940 - 16400	67.5 - 224	13900	13800	190%	189%	12600	12600	172%	172%
Antimony	110	11.0 - 121	10.0 - 110	22.4	20.4	20%	19%	71.5	76.7	65%	70%
Arsenic	84.2	42.8 - 92.7	50.8 - 110	67.5	68.1	80%	81%	70.1	71.7	83%	85%
Barium	247	186 - 318	75.3 - 129	246	248	100%	100%	266	261	108%	106%
Beryllium	49.0	29.0 - 53.9	59.2 - 110	39.7	39.4	81%	80%	43.8	42.5	89%	87%
Boron	130	61.8 - 149	47.5 - 115	99.8	99.8	77%	77%	108	105	83%	81%
Cadmium	76.5	48.7 - 84.4	63.7 - 110	70.6	71.6	92%	94%	77.5	76.8	101%	100%
Calcium	10200	7860 - 12900	77.1 - 126	10400	11500	102%	113%	11200	11200	110%	110%
Chromium	116	74.8 - 140	64.5 - 121	108	108	93%	93%	117	119	101%	103%
Cobalt	64.6	47.2 - 79.7	73.1 - 123	64.5	64.2	100%	99%	70	69	108%	107%
Copper	143	99.7 - 166	69.7 - 116	134	135	94%	94%	143	144	100%	101%
Iron	23300	11500 - 36200	49.4 - 155	25400	24700	109%	106%	25500	25700	109%	110%
Lead	82.0	41.9 - 90.2	51.1 - 110	62.5	63.6	76%	78%	66.4	66.2	81%	81%
Magnesium	7400	5300 - 9060	71.6 - 122	7080	7140	96%	96%	7330	7330	99%	99%
Manganese	475	428 - 724	90.1 - 152	566	581	119%	122%	618	597	130%	126%
Molybdenum	66.1	36.0 - 72.7	54.5 - 110	55.4	53.9	84%	82%	63.5	62.8	96%	95%
Nickel	144	88.8 - 158	61.7 - 110	129	131	90%	91%	142	141	99%	98%
Potassium	3740	2360 - 4990	63.1 - 133	4080	3970	109%	106%	4110	3920	110%	105%
Selenium	189	97.2 - 208	51.4 - 110	151	155	80%	82%	157	162	83%	86%
Silver	40.6	21.2 - 44.6	52.2 - 110	33.3	34.7	82%	85%	35.3	35.9	87%	88%
Sodium	200	31.4 - 324	15.7 - 162	223	214	112%	107%	199	202	100%	101%
Strontium	135	88.1 - 162	65.3 - 120	121	118	90%	87%	128	125	95%	93%
Thallium	127	73.2 - 144	57.6 - 113	108	114	85%	90%	116	110	91%	87%
Tin	250	39.5 - 275	15.8 - 110	72.1	73.5	29%	29%	85.3	86	34%	34%
Titanium	609	426 - 792	70.0 - 130	725	731	119%	120%	765	746	126%	122%
Vanadium	61.8	55.6 - 123	90.0 - 199	97.4	95.8	158%	155%	99.6	99.3	161%	161%
Zinc	208	145 - 270	69.7 - 130	227	228	109%	110%	258	244	124%	117%

* Note: Modified 3050B procedure is specified in EMAX-3050 Rev. 4

3010FS:	SAMPLE PREPARATIO	N LOG (Page	1)		
EMAX	DIGESTION L	OG	-	I	Page 1
LABORATORIES, INC.	ICP-MS MET	ALS			
Note: For samples, relev	ant QCs/Standards digested,		Book #:	EIM	-073
refer to attached dig	gestion sequence.		Batch:		
Comments:			Matrix:		
Digestion Vessel Lot #			Digestor ID:		
		SOF	°#	Re	v. #
		EMAX-20	0.8		
		EMAX-60	20		
		EMAX-			
		F		•	
			Temp		Temp
		Start	°C	End	°C
				•	+
		Standards		ID	Amount Added (ml/g)
		LCS-1			
		LCS-2			
		MS			
		Blank Soil (Bead)			
		Reagent	Lota	#/ID	Amount Added (ml)
		HNO ₃			
		нсі			
		H ₂ O ₂			
		HNO ₃ (1:1)			
		pH Strip (0-14)			
		Digestate Location			+
		Extract Location			
		Reagent Water	ID:		
		Thermometer I	D:		
		Pipette ID:			
		Pipette ID:			
		D Pipette ID:			
		HNO ₃ dispenser	checked @ 5.0 m	nl with Class A volu	metric flask
		HCl dispenser ch	necked @ 5.0 ml v	with Class A volum	etric flask
		Prepared By:			
		Standard Added By	:	Witnessed Bv:	
		Extract Rcvd By:		Checked By:	
		-			

Page 14 of 14 EMAX-3050 Rev. 9 Forms

3010FS:

Comments:

SAMPLE PREPARATION LOG (Page 2)

PrepBatchID	LabSampleID	Aliquot	Unit	DateTime	Vd(ml)	ExpAmt	ExpVd(ml)	PrepFctr	Comments
			1			1	1		
			1			1	1		
			ł			1	1	1	
			1			1	1		
			1						
<u> </u>	1	I	I	1	1	Vd=diges	ı tate volume		ı PrepFctr=(ExpAmt/Aliquot)*(Vd/ExpVd)
Digestion Started @						-		Prepared By:	· · · · · ·
Digestion Ended @ Checked By:									

Date

SOP REVIEW FORM

ACID DIGESTION, TOTAL METALS SOLIDS

SOP#: EMAX-3050

Rev

Rev <u>9</u>

Effective Date: 04-Jan-23

COMMENTS	Reviewed By	Review Date

PURGE AND TRAP

SOP No.:	EMAX-5030	Revision No. 5	Date: 19-Jul-22
Prepared By:	Oanh Dinh Mar	e	Date: 07/19/22
Approved By:	Farina Madamba Jualaste		Date: 7/19/22
Approved By:	Caspar Pang		Date: 7,9/24
, , , , , , , , , , , , , , , , , , ,	Laboratory Director	Control Number: 50	30-05-

1.0 SCOPE AND APPLICATION

- 1.1. This method describes a purge-and-trap procedure for the analysis of volatile organic compounds (VOCs) in aqueous samples and water miscible liquid samples. It also describes the analysis of high concentration sample. This method is applicable for all determinative methods requiring purge and trap for above mentioned matrices.
- 1.2. This method can be used for volatile organic compounds listed in the volatile determinative SOPs. Other compounds maybe determined upon successful demonstration of capability.
- 1.3. This SOP is an adaptation of SW846 Methods 5030B and 5030C.

2.0 SUMMARY OF METHOD

- 2.1. Aqueous Samples. Helium gas is bubbled through an aqueous solution or suspension at a predetermined flow rate, and volatile components are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where volatiles are absorbed. After purging is completed, the sorbent column is heated and back flushed with helium to desorb the components onto a GC column.
- 2.2. High Concentration samples are extracted with methanol. An aliquot of the methanol extract is combined with organic free reagent water in the purging chamber. It is then analyzed by purge and trap GC or GC/MS following the normal aqueous method.

2.3. Interferences

- 2.3.1. Impurities in the purge gas and from organic compounds out-gassing from the plumbing ahead of the trap account for the majority of contamination problems. The analytical system must be demonstrated to be free from contamination by running method blanks. The use of non-polytetrafluoroethylene (non-PTFE) plastic coating, non-PTFE thread sealant, or flow controllers with rubber components in the purging device must be avoided. These compounds will result in interferences or false positives in the determinative step.
- 2.3.2. Samples can be contaminated by diffusion of volatile organics (particularly methylene chloride and fluorocarbons) during shipment or storage. A trip blank prepared from organic-free reagent water and carried through sampling and handling serves as a check on such contamination.
- 2.3.3. Contamination by carryover can occur whenever high-concentration and low-concentration samples are analyzed in sequence. Where practical, samples with unusually high concentrations of analytes should be followed by an analysis of organic-free reagent water to check for cross-contamination.
- 2.3.4. Special pre-cautions must be taken to determine methylene chloride. The volatile area should be isolated from all atmospheric sources of methylene chloride; otherwise random background levels will result.

PURGE AND TRAP

SOP No.:	EMAX-5030	Revision No.	5	Date:	19-Jul-22

3.0 DETECTION LIMITS

3.1. Refer to applicable analytical SOP.

4.0 DYNAMIC RANGE

4.1. Refer to applicable analytical SOP.

5.0 SAMPLE HOLDING TIME AND PRESERVATION

5.1. Holding Time

- 5.1.1. Analyze preserved samples within 14 days from sampling date.
- 5.1.2. Analyze samples with pH > 2 within 7 days from sampling date.

5.2. Preservation

- 5.2.1. Keep both soil and aqueous samples cool at $\leq 6^{\circ}$ C without freezing.
- 5.2.2. Preserve aqueous samples with hydrochloric acid to pH < 2. The acid preservation of the aqueous samples must be done in the field; the laboratory will only confirm the acid preservation at the time of analysis.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-8015G Gasoline Range Organics
- 6.2. EMAX-8260 Volatile Organics by GC/MS
- 6.3. EMAX-8260C Volatile Organics by GC/MS
- 6.4. EMAX-8260SIM Volatile Organics by GC/MS SIM
- 6.5. EMAX-M8260SIM 1-4, Dioxane by GC/MS SIM
- 6.6. EMAX-TCPSIM 1,2,3-Trichloropropane by GC/MS SIM
- 6.7. EMAX-QA05 Training
- 6.8. EMAX-QA08 Corrective Action
- 6.9. EMAX-QC01 Quality Control for Chemicals
- 6.10. EMAX-QC07 Glassware Cleaning
- 6.11. EMAX-SM03 Waste Disposal
- 6.12. EMAX-SM04 Analytical and QC Sample Labeling

PURGE AND TRAP

SOP No.:	EMAX-5030	Revision No.	5	Date:	19-Jul-22

7.0 <u>SAFETY</u>

- 7.1. Read all SDS for chemicals listed in this SOP.
- 7.2. Treat reagents, standards, and samples as potential hazards. Observe the standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, and gloves at all times when performing this procedure. Perform all sample and standard handling in the fume hood.
- 7.3. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amounts of tap water. If irritations or any other discomfort related to the incident persist, inform your supervisor immediately so that proper action can be taken.

8.0 INSTRUMENTS, CHEMICALS AND REAGENTS

8.1. Instruments and Supplies

- 8.1.1. Automatic Sample Purger: Tekmar ALS 2016 or OI MPM-.6; Archon; DynaSoil
- 8.1.2. Trap: VOCARB 4000 (Supelco) or equivalent
- 8.1.3. Concentrator: O.I. 4560, 4460 or Tekmar LCS 2000; DynaSoil or equivalent
- 8.1.4. Syringe: 5 mL, 25 mL, gas-tight with Luerlok tip
- 8.1.5. Microsyringe: 2, 10, 25, 50, 100 μl (Hamilton 702N or equivalent)
- 8.1.6. Sparging Vessel: 40 mL , 20 mL test tubes
- 8.1.7. Balance: Sartorius, Model LC620, top loading, capable of weighing $100 \text{ g} \pm 0.01 \text{ g}$

8.2. Chemicals and Reagents

- 8.2.1. Reagents: Organic free reagent water, generated from active charcoal column
- 8.2.2. Ultra-high purity methanol

9.0 STANDARDS

9.1. Preparation of standard is outlined in Section 9.0 of applicable analytical SOP.

9.2. Spiking Standard Solution

9.2.1. Refer to applicable analytical SOP.

10.0 PROCEDURES

10.1. Sample Preparation

10.1.1. Water Samples

10.1.1.1. Label sample vials to include the following:

- Method Blank (MB)
- Lab Control Sample/Lab Control Sample Duplicate (LCS/LCD)

PURGE AND TRAP

SOP No.:		EMAX-5030	Revision No.	5	Date:	19-Jul-22						
		Matrix Spike/Matrix Spike Duplica	ate (MS/MSD) ¹									
		• Field Samples according to lab sample ID.										
		10.1.1.2. Pull out samples from the sample control room and record samples withdrawn in th internal chain of custody (ICOC).										
		10.1.1.3. Line up field samples correspondi	ing to the labeled	sample vi	als.							
		10.1.1.4. Using a 10 mL or 25 mL syringe, remove the plunger, close the syringe hub and fi syringe barrel. Insert the syringe plunger back and measure the appropriate sa amount needed for analysis. Use organic free water for MB, LCS and LCD.										
		10.1.1.5. Add the surrogate and internal standard to all samples. Add LCS standard to LCS and MSD (if required). Inject spiking solution through the syringe hub.										
		As a precaution, consider separating LCS, LCD, MS and MSD samples from the rest of samples to prevent spiking the sample that is not intended for positive QC sample.										
		10.1.1.6. Transfer the measured sample into the corresponding labeled vial. Careful deliver be considered to prevent air leak. Invert the sample source vial to indicate subsampling is completed for that sample.										
		10.1.1.7. Samples are now ready to be placed on the purge and trap autosampler.										
		10.1.1.8. When only one vial of sample is available, samples must be analyzed following a DCC and associated QC. A 5X and 25X dilutions (or per priori knowledge) s prepared simultaneously, in case dilution is needed. These extra steps, is experiminimize occurrences of un-reportable results.										
		10.1.1.9. Check sample pH if it is ≤ 2 (when mg/L. Record sample pH and resi	n preserved) and idual chlorine obs	presence ervations	of residual ch on the analys	lorine if it is ≤ 5 is log.						
		In the event that sample pH is > residual chlorine is > 5mg/L, inform	2 and it is beyon m the supervisor i	nd the san immediate	nple holding t ely.	ime (7 days) or						
	10.1.2.	High Level										
		10.1.2.1. Weigh 5 ± 0.1 g of sample into a and mix thoroughly for 5 minute settle.	20 mL vial. Using s. Allow the mixt	g a 5 mL sy ture to sta	yringe, add 5 r and so that th	mL of methanol e sediment can						
		10.1.2.2. Prepare 5 mL of organic free w Withdraw up to 100 μl of methan	water solution w ol extract using a	vith interr n appropr	nal standard riate microsyri	and surrogate. inge.						
		10.1.2.3. Add the methanol extract to the plunger slowly to make room for introduce into the syringe.	ne 5 mL syringe for the extract, ta	through t Iking into	the Luerlok ti consideratior	p and pull the n that no air is						
		10.1.2.4. Samples are now ready to be place	ed on the purge	and trap a	utosampler.							
10.2.	Instrum	ent Parameters										
	10.2.1.	Refer to applicable analytical method.										
10.3.	Calibrat	tion										

10.3.1. Refer to applicable analytical method.

¹ Adhere to PSR, some projects requires MS/MSD only on designated matrix QC field sample(s).

PURGE AND TRAP

SOP No.:	EMAX-5030 Revisio	on No. <u>5</u> Date: <u>19-Jul-22</u>
10.4.	Analysis	
	10.4.1. Refer to applicable analytical method	
10.5.	Calculations	
	10.5.1. Dilution factor (DF)	
	10.5.1.1. Low Level	
	$DF = \frac{V}{S}$	Eq10.5.1.1
	where:	
	V – Purge volume	
	S – Sample amount	
	10.5.1.2. High Level	
	$DF = \frac{V}{E} \times \frac{EV}{S}$	Eq10.5.1.2
	where:	
	V – Purge volume	
	E – Extract amount	
	EV – Extract volume	
	S – Sample amount	
	10.5.2. Refer to applicable analytical SOP.	
10.6.	Data Reduction	
	10.6.1. Refer to applicable analytical SOP.	
10.7.	Report Generation	
	10.7.1. Refer to applicable analytical SOP.	
10.8.	Data Review	
	10.8.1. Refer to applicable analytical SOP.	
10.9.	Preventive Maintenance	
	10.9.1. Refer to applicable analytical SOP.	

11.0 QUALITY CONTROL

- 11.1. The sequence of runs and quality control acceptance criteria are specified in the individual analytical SOP. They include method blank, calibrations, lab control samples, and matrix spike/matrix spike duplicate.
- 11.2. Reagents and standards must undergo quality control check prior to use. Refer to EMAX-QC01 for details.
- 11.3. Properly treat all lab wares used in the sample preparation as specified in EMAX-QC07.

PURGE AND TRAP

SOP No.:	EMAX-5030	Revision No.	5	Date:	19-Jul-22
11.4.	Syringes must be purchased with a certificate is observed.	of bias and precision.	Discard the	syringe whe	n deterioration

11.5. All analysts conducting this method must demonstrate capability (IDOC/DOC) as described in EMAX-QA05.

12.0 CORRECTIVE ACTION

12.1. Refer to applicable analytical SOP.

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of solvent that may go to wastewater drains.
- 13.2. Handle solvents and extracts and preparations of standards under the fume hood.
- 13.3. Keep extraction area clean to prevent contamination of sample.

14.0 WASTE MANAGEMENT

- 14.1. No samples may be dumped on the laboratory sink.
- 14.2. Separate and properly identify all unused expired standards for proper disposal.
- 14.3. Place all wastes generated during the process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired standards and other waste generated during the process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. Definition of Terms

- 15.1.1. <u>Analyte</u> the specific chemicals or components for which a sample is analyzed; may be a group of chemicals that belong to the same chemical family, and which are analyzed together.
- 15.1.2. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.1.2.1. **Preparation batch** is composed of one to 20 field samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate (if required).
 - 15.1.2.2. **Analytical batch** is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices; preparation batches, and may exceed 20 samples.
- 15.1.3. <u>Safety Data Sheet (SDS)</u> is a written information concerning a chemical physical properties, toxicity, health hazards, fire hazard and reactivity data including storage, spill and handling precautions.
- 15.1.4. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.

PURGE AND TRAP

SOP No.:		EMAX-5030	Revision No.	5	Date:	19-Jul-22						
	15.1.5.	<u>Calibration Blank</u> – is a target-analyte establish zero baseline or background	e-free solvent subject value.	ed to the	entire analy	tical process to						
	15.1.6.	Calibration Check Compounds (CCC) - compounds may indicate system leak of	evaluate the integri or reactive sites in the	ty of the s column.	ystem. Vari	ability of these						
	15.1.7.	Instrument Method - is a file genera parameter settings for a particular ana	erated to contain the instrument calibration and instrumer analysis.									
	15.1.8.	Method Blank – is a target-analyte-free analytical to monitor contamination.	free sample subjected to the entire sample preparation and/c									
	15.1.9.	Lab Control Sample (LCS) – is a target- target analyte(s) or a reference mate sample preparation and/or analytical analytical system.	analyte-free sample s erial with a certified process. LCS is anal	piked with known val yzed to m	a verified kn ue subjected onitor the a	own amount of d to the entire accuracy of the						
	15.1.10.	Lab Control Sample Duplicate (LCSD) absence of MS/MSD sample.	- is a replicate of LCS	analyzed	to monitor _l	precision in the						
	15.1.11.	<u>Sample</u> – is a specimen received in accompanying COC. Samples collected considered the same and therefore specified by the project.	the laboratory bean in different containe labeled with the sa	ring a sam rs having t ame lab sa	ple label tr he same fiele ample ID ur	aceable to the d sample ID are lless otherwise						
	15.1.12.	Sample Duplicate – is a replicate of a within the same preparation batch.	of a sub-sample taken from one sample, prepared and analyzed									
	15.1.13.	<u>Sub-sample</u> – is an aliquot taken fr identified by the sample preparation IE	n from a sample for analysis. Each sub-sample is uniquely on ID.									
	15.1.14.	Matrix – is a component or form of a sa	ample.									
	15.1.15.	Matrix Spike (MS) – is a sample spiked to the entire sample preparation and effect on a method's recovery efficience	with a verified known d/or analytical procesty.	amount o ss. MS is a	f target analy inalyzed to	/te(s) subjected monitor matrix						
	15.1.16.	Matrix Spike Duplicate (MSD) – is a rep	licate of MS analyzed	to monito	r precision o	recovery.						
	15.1.17.	<u>Response Factor</u> - is the ratio of the p extract.	eak area of the targe	et compou	nd in the sar	nple or sample						
	15.1.18.	Surrogate – are compounds added to e standard; used to evaluate analytical e to be detected in environmental media	every blank, sample, n fficiency by measurin a.	natrix spike g recovery	, matrix spik . Compound	e duplicate and Is not expected						
	15.1.19.	System Performance Check Compound stability and to check for degradation of	<u>ls (SPCC)</u> - are compo caused by contaminat	unds that a ed lines or	re used to ch active sites i	neck compound In the system.						
	15.1.20.	<u>Reagent Water</u> – is purified water free interfere with the analytical process.	e from any target ana	lyte or any	other subst	ances that may						
15.2.	Applicat	tion of EMAX QC Procedures										
	15.2.1.	The procedures and QC criteria summ purgeable volatile analyses. In instar requirements given in the project takes	narized in this SOP ag inces where there is precedence over this	oplies to al s a proje s SOP.	l projects wl ct or progra	nen performing am QAPP, the						

PURGE AND TRAP

SOP No.:	EMAX-5030	Revision No.	5	Date:	19-Jul-22

15.3. Department of Defense (DoD) and Department of Energy (DoE) Projects

15.3.1. Samples from DoD and DoE sponsored projects follow the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD Quality System Manual (QSM), latest update, is applied.

16.0 <u>REFERENCES</u>

- 16.1. "Purge-and-Trap for Aqueous Samples", USEPA SW 846 Method 5030B, Rev. 2, Dec. 1996 and Method 5030C, Rev. 3, May 2003
- 16.2. EMAX Quality Systems Manual, as updated

17.0 APPENDICES

17.1. Appendices

- 17.1.1. Appendix 1 Demonstration of Capability for 8260
- 17.1.2. Appendix 2 Demonstration of Capability for 8015

17.2. Forms

- 17.2.1. 5030FAA Analytical Log for 8260
- 17.2.2. 5030FAB Analytical Run Log for 8015

Appendix 1:

DEMONSTRATION OF CAPABILITY FOR 8260

DEMONSTRATION OF CAPABILTY

METHOD 5030/8260

Unit: <u>µg/L</u> Sample Amount(ml): <u>25</u> Sample Purge(ml): <u>25</u>

	RMY229	RMY230	RMY231	RMY232						Accuracy	Precisio	۱
					True	Ave.	Ave.		RSD	Acceptance	Criteria	
PARAMETER	VOF5M14L	VOF5M14C	VUFSM15L	VOPSM15C	value	conc.	% Rec.	SD	(76)	LIMITS (% Rec)	(RSD%)	comments
Acetone	48.0	40.0	4/.0	49.1	50	47.8	90	1.05	2	60 - 140	5 50	Passed
Acrolein	44.4	42.5	45.5	44.6	50	45.8	88	0.961	2	50 - 130	5 50	Passed
Acryionitrite	49.2	48.0	48.7	0.00	50	49.0	98	0.842	2	80 - 150	5 50	Passed
Benzene	9.39	9.48	9.59	9.55	10	9.50	95	0.0846	1	70 - 130	\$ 30	Passed
Bromobenzene	9./1	9.74	9.71	9.88	10	9.76	98	0.0812	1	70 - 130	5 50	Passed
Bromocniorometnane	9.83	9.59	9.87	9.87	10	9.79	98	0.135	1	70 - 130	\$ 30	Passed
Bromodichioromethane	9.51	9.59	9.60	9.66	10	9.59	96	0.0616	1	/0 - 130	\$ 30	Passed
Bromotorm	9.63	9.62	9.72	9.98	10	9.74	9/	0.168	2	/0 - 140	\$ 30	Passed
bromomethane	9.18	9.41	9.72	9.75	10	9.51	95	0.265	2	60 - 130	5 50	Passed
tert-Butyl alconol	252	245	251	254	250	251	100	3.87	2	60 - 140	\$ 30	Passed
2-But (herease	50.7	49.5	50.8	55.0	50	51.0	102	1.40	-	70 - 130	5 50	Passed
n-Butylbenzene	9.86	10.3	10.1	10.2	10	10.1	101	0.189	2	70 - 130	\$ 30	Passed
sec-Butylbenzene	9.69	10.1	10.0	10.0	10	9.95	100	0.1/8	2	70 - 130	5 50	Passed
tert-Butyibenzene	9.60	10.1	9.77	10.0	10	9.87	99	0.226	2	70 - 130	\$ 30	Passed
carbon disumde	8.22	7.97	8.99	8.66	10	8.46	85	0.454	5	60 - 130	\$ 30	Passed
Carbon tetrachionoe	9.43	9.47	9.51	9.60	10	9.50	95	0.0727	1	70 - 130	\$ 30	Passed
Chlorobenzene	9.47	9.48	9.65	9.57	10	9.54	95	0.0646	1	/0 - 130	\$ 30	Passed
2-Chloroethyl vinyl ether	9.32	9.18	8.95	9.40	10	9.21	92	0.197	2	60 - 140	\$ 30	Passed
chioroethane	9.23	9.55	9.65	9.77	10	9.55	96	0.232	2	60 - 140	5 30	Passed
chloroform	9.33	9.46	9.57	9.56	10	9.48	95	0.112	1	70 - 130	\$ 30	Passed
1-Chloronexane	9.75	10.0	10.0	9.76	10	9.88	99	0.142	1	70 - 130	5 50	Passed
Chloromethane	9.23	9.48	9.70	9.72	10	9.53	95	0.229	2	60 - 140	\$ 30	Passed
2-Chlorotoluene	9.55	9.50	9.29	9.50	10	9.44	94	0.145	2	70 - 130	5 50	Passed
4-Chlorotoluene	9.45	9./1	10.1	9.75	10	9.75	98	0.26/	3	70 - 130	\$ 30	Passed
Dibromochioromethane	9.61	9.00	10.0	9.8	10	9.76	98	0.166	2	70 - 130	5 50	Passed
1,2-Dibromo-3-chioropropane	9.71	9.84	9.39	9.56	10	9.63	96	0.194	2	70 - 130	\$ 30	Passed
1,2-Dibromoethane	9.79	9.84	9.92	10.0	10	9.88	33	0.0804	1	70 - 130	5 50	Passed
Dibromomethane	9.62	9.30	9.57	10.7	10	9.80	98	0.618	0	70 - 130	\$ 30	Passed
1,1-Dichloroethane	9.18	9.09	9.24	9.20	10	9.18	92	0.0054	1	70 - 130	5 50	Passed
1,2-Dichloroethane	9.68	9.61	9.86	9.95	10	9.77	98	0.150	2	70 - 130	5 50	Passed
1,2-Dichlorobenzene	9.34	9.38	9.42	9.49	10	9.41	94	0.0640	1	70 - 130	\$ 30	Passed
1,5-Dichlorobenzene	9.54	9.68	9.58	9.74	10	9.64	90	0.0915	1	70 - 130	5 50	Passed
trans-1,4-Dichloro-2-Butene	9.42	9.69	9.55	9.75	10	9.60	90	0.141	1	70 - 140	5 30	Passed
1,4-Dichlorobenzene	9.50	9.00	9.05	9.66	10	9.09	9/	0.155	1	70 - 130	5 50	Passed
1.1. Disbloreethane	8.85	9.25	9.52	9.34	10	9.24	92	0.285		40 - 140	5 50	Passed
i,1-Dichloroethene	0.72	0.92	0.97	0.00	10	0.0/	09	0.105	1	70 - 130	5 50	Passed
trans 1.2 Dichloroethene	9.60	9.65	9.91	9.81	10	9.74	9/	0.148	4	70 - 130	5 30	Passed
trans-1,2-bichloroethene	9.15	9.15	9.55	9.27	10	9.25	92	0.104	1	70 - 150	5 50	Passed
1.1. Disbloromethane	9.25	9.59	9.45	9.41	10	9.58	94	0.0870	1	30 - 160	5 50	Passed
1.2 Dishlerenseene	9.50	9.27	9.50	9.27	10	9.59	94	0.135	1	70 - 130	5 50	Passed
1,2-Dichloropropane	9.16	9.09	9.28	9.29	10	9.21	92	0.0968	1	70 - 130	5 30	Passed
1,5-Dichloropropane	9.00	9.65	9.88	9.65	10	9.71	9/	0.11/	1	70 - 150	5 30	Passed
2,2-Dichloropropane	9.18	9.49	9.56	9.31	10	9.59	100	0.1/3	4	70 - 130	\$ 30	Passed
cis-1,5-Dichloropropene	9.95	10.0	10.1	10.1	10	10.0	100	0.0850	1	70 - 130	5 30	Passed
trans-1,3-Dichloropropene	10.3	10.1	10.3	10.2	10	10.2	102	0.0957	1	/0 - 130	S 30	Passed

Appendix 1 (Cont.):

DEMONSTRATION OF CAPABILITY FOR 8260

DEMONSTRATION OF CAPABILTY

METHOD 5030/8260

	RMY229	RMY230	RMY231	RMY232	_					Accuracy	Prec	ision	
DADAMETED	VOESALA	VOESNALAC	VOESNILL	VOESNIEC	· True	Ave.	Ave.	cn.	RSD (94)	Acceptance	Crit (DC	eria D84	Commonte
tert_Butul ethyl ethor (ETB	0.61	0.50	0.93	0.94	10	0.72	07 NEC.	0.136	(70)	20 - 130	(KS	30	Doccod
Ethyl Methacodate	10.4	10.3	10.4	10.2	10	10.3	103	0.0957	1	70 - 140	~	30	Passed
Ethylmetholyate	9.38	9.55	9.67	9.37	10	9.49	95	0.0357	,	70 - 140	<	30	Passed
2-Hevanone (MBK)	53.7	51.8	52.7	53.6	50	53.0	106	0.890	2	70 - 130	-	30	Passed
Heyachlorobutadiene	9.60	10.2	10.0	10.1	10	10.0	100	0.263	3	70 - 130	~	30	Passed
Indomethane	9.10	9.25	9.43	0 30	10	0.32	03	0.114	1	70 - 140	-	30	Passed
Isopropyl ether (DIPE)	9.56	9.58	9.72	9.81	10	9.67	97	0.119	1	70 - 140	<	30	Passed
Isopropybenzene	10.3	10.4	10.5	10.1	10	10.3	103	0.171	,	70 - 130	<	30	Passed
p-isopropyloluene	9.70	10.4	10.5	9.97	10	9.97	100	0.189	2	70 - 130	<	30	Passed
Methyl acetate	8.45	8.08	8.66	8.83	10	8.51	85	0.323	4	60 - 130	<	30	Passed
Methylene Chloride	8.61	8.70	8.84	8.82	10	8.74	87	0.108	1	70 - 130	<	30	Passed
4-Methyl-2-pentanone (MIBK)	52.6	51.4	51.7	53.3	50	52.3	105	0.866	2	70 - 130	<	30	Passed
tert-Butyl methyl ether	9.79	9.76	9.95	10.1	10	9.90	99	0.157	2	70 - 130	5	30	Passed
Naphthalene	9.80	10.0	9.94	10.2	10	9.99	100	0.166	2	70 - 130	<	30	Passed
n-Propylbenzene	9.48	9.80	9.81	9.79	10	9.72	97	0.160	2	70 - 130	5	30	Passed
Styrene	10.2	10.4	10.5	10.2	10	10 30	103	0.150	1	70 - 130	<	30	Passed
tert-Amyl methyl ether (TAME)	9.99	10.0	10.1	10.2	10	10.1	101	0.0984	1	70 - 130	5	30	Passed
1.1.1.2-Tetrachloroethane	9.66	9.69	9.77	9.69	10	9.70	97	0.0472	0.5	70 - 130	5	30	Passed
1.1.2.2-Tetrachloroethane	9.17	9.30	9.20	9.27	10	9.24	92	0.0603	1	70 - 130	5	30	Passed
Tetrachloroethene	9.36	9.57	9.63	9.45	10	9.50	95	0.121	1	70 - 130	5	30	Passed
Toluene	9.59	9.58	9.77	9.62	10	9.64	96	0.0883	1	70 - 130	5	30	Passed
1.1.1-Trichloroethane	9.37	9.53	9.72	9.46	10	9.52	95	0.149	2	70 - 130	5	30	Passed
1,1,2-Trichloroethane	9.75	9.85	10.0	10.2	10	10.0	100	0.196	2	70 - 130	5	30	Passed
1,2,3-Trichlorobenzene	9.77	10.2	9.86	10.2	10	10.0	100	0.225	2	70 - 130	5	30	Passed
1,2,4-Trichlorobenzene	9.54	10.0	9.84	10.1	10	9.87	99	0.245	2	70 - 130	5	30	Passed
Trichloroethene	9.19	9.56	9.63	9.55	10	9.48	95	0.198	2	70 - 130	5	30	Passed
Trichlorofluoromethane	9.38	9.87	10.2	10.0	10	9.85	99	0.344	3	70 - 140	5	30	Passed
1,2,3-Trichloropropane	9.76	9.82	10.1	10.6	10	10.1	101	0.383	4	70 - 130	5	30	Passed
1,1,2-Trichloro1,2,2-trifluoroethane	9.36	9.62	9.57	9.47	10	9.51	95	0.115	1	60 - 130	5	30	Passed
1,2,4-Trimethylbenzene	9.73	10.1	9.97	9.93	10	9.93	99	0.153	2	70 - 130	5	30	Passed
1,3,5-Trimethylbenzene	9.62	9.82	9.77	9.88	10	9.77	98	0.111	1	70 - 130	≤	30	Passed
Vinyl Acetate	9.41	9.92	9.8	10.1	10	9.81	98	0.292	3	70 - 140	5	30	Passed
Vinyl Chloride	9.25	9.67	10.0	9.81	10	9.68	97	0.318	3	60 - 140	5	30	Passed
m-Xylene & p-xylene	19.2	19.5	19.6	19.4	20	19.4	97	0.171	1	70 - 130	4	30	Passed
o-Xylene	10.2	10.2	10.3	10.2	10	10.2	102	0.0500	0.5	70 - 130	4	30	Passed
1,4-Dioxane	201	184	195	185	200	191	96	8.18	4	70 - 130	٤	30	Passed
Cyclohexane	9.33	9.79	9.99	9.67	10	9.70	97	0.277	3	60 - 140	5	30	Passed
Methylcyclohexane	9.18	9.54	9.90	9.50	10	9.53	95	0.295	3	60 - 140	5	30	Passed
Tetrahydrofuran	10.4	9.90	9.94	10.4	10	10.2	102	0.278	3	70 - 130	5	30	Passed
1,2,3-Trimethylbenzene	0.00	0.00	0.00	0.00	10	0	0	0.000	###	30 - 160	5	31	#DIV/0!
2,2,4-Trimethylpentane	10.3	9.6	10.0	9.8	10	9.93	99	0.293	3	30 - 160	5	33	Passed
1,2-Dichloroethane-d4	10.0	9.95	10.1	9.97	10	10.0	100	0.0666	1	70 - 130	5	30	Passed
Toluene-d8	10.4	10.4	10.4	10.3	10	10.4	104	0.0500	0.5	70 - 130	s	30	Passed
4-Bromofluorobenzene	10.3	10.4	10.4	10.5	10	10.4	104	0.0816	1	70 - 130	5	30	Passed
Dibromofluoromethane	10.2	9.96	10.0	10.2	10	10.1	101	0.128	1	70 - 130	5	30	Passed

REFERENCE:

AF5-024, Page 47

DEMONSTRATION OF CAPABILITY FOR 8015

DEMONSTRATION OF CAPABILITY

METHOD 5030/8015

Conc Unit: <u>µg/L</u> Sample Amount(ml): <u>5</u>

DADAMETED	EM04005A	EM04006A	EM04007A	07A EM04008A		Ave.	ve. Ave.		RSD	Accuracy	RSD (%)	COMMENTS	
FARAMETER	VG39M02L	VG39M02C	VG39M02X	VG39M02Y		Conc.	%Rec		(%)	Limits (% Rec)	Criteria	COMMENTS	
Gasoline(TOTAL)	473	498	483	519	500	493	99	20.3	4	70 - 130	≤ 30	Passed	
GRO(C6-C10)	512	532	518	567	500	532	106	24.5	5	70 - 130	≤ 30	Passed	
GRO(2MP-124TMB)	482	500	487	520	500	497	99	17.2	3	70 - 130	≤ 30	Passed	
GRO(C5-C12)	486	511	497	531	500	506	101	19.2	4	70 - 130	≤ 30	Passed	
Bromofluorobenzene	43.0	44.1	42.9	44.6	40	43.6	109	0.827	2	70 - 130	≤ 30	Passed	
1,1,1-Trifluorotoluene	39.4	39.5	39.0	39.9	40	39.4	99	0.380	1	70 - 130	≤ 30	Passed	

REFERENCE:

A39-076, Page 18

Page 1

5030FAA:

ANALYSIS LOG FOR VOLATILES

SOP	EMAX-8260 Rev No	EMAX-8260C Pey No.	EMAX-8260SIM Pey No		EMAX-M8260SIM Dev No		EMAX-TOPSIM Dev No	EMAX-624 Rev No.	5 🗖	EMAX-624 1 Pey No. 0
SOP	LI EMIAA-8200 Rev. NO.	LI EMIAA-8200C Rev. NO.	L EMIAX-82005IWI Kev.NO.	_	EMIAA-MI82005IWI KEV.NO.	_	EMIAA-TCPSINI KEV.NO.	 EMIAA-024 Rev.NO.	2 1	EWIAX-024.1 Rev.NO. 0

Start D	Date:		S-mL Purge 10-mL Purge	🗆 25-m	L Purge						Book #:	AF5-	XXX
	Sample				Sample				Instrument No.	F5			
	Prep	Data File Name	Lab Sample ID	Sample Amount	DF	١	w	ç	Notes		INITIAL CALIBRATION REFE	RENCE	
						рн < 2	а, <5ppm	1		DATE			
	01									ICAL ID			
	02										STANDARDS		
	03									NAME	ID	Amount (µl)	Conc. (mg/L)
	04									DCC			
	05									DCC			
	06									DCC			
	07									DCC			
	08									BFB			
ВΑ	09									IS/SURR.			
DTC	10									ICV/LCS			
	11									ICV/LCS			
	12									ICV/LCS			
	13									ICV/LCS			
	14									Data File Folder			
	15										LOT #	Syringe	e Lot #
	16									pH strip			
	17									Chlorine strip			
	18									Methanol			
	19									NaHSO ₄			
	20									Reagent Water			
	21									Sand			
<u>ا</u>	22									Electro	nic Data Archival Location	Dat	te
	23									HPCHEM_VO	A/TOF5		
	24									Comments:			
	25												
	26												
	27												
	28									Refer to sam	ple weight log		
	29									Analyzed By:			
	30									Date Disposed:		Disposed By:	

EMAX LABORATORIES, INC.	ANALYSIS RU for PURGEABL	ANALYSIS RUN LOG for PURGEABLE TPH					
Note: For samples and releva	nt QCs/Standards	Book #:	A39	-XXX			
analyzed, refer to attached	analytical sequence.	Instrument No.:	3	9			
Comments:		Analytical Sequence:					
Purge Volume = 5 ml		Method File:					
Soil Extract Amount Analyzed (1x) = 10)0 μL						
	•						
		Analytical Batch:					
		SOP #	Re	v. #			
		EMAX-5030B					
		EMAX-8015G					
		EMAX-AK101					
		EMAX-					
		STANDARDS ID	Amt Added (µL)	Conc (mg/			
		ICV					
		DCC GAS					
		DCC					
SYRINGES		BFB/TFT (Sample) Surrogate (DCC)					
5 mL - MSF-02-01-19		LCS/LCSD					
5 mL - MSF-01-03-06		MS/MSD					
1 mL - MSF-01-02-11		GRO (HC-Chain)					
1 mL - MSF-01-02-08							
1 mL - MSF-01-01-20							
500 μL - MSF-01-02-12							
500 μL - MSF-01-03-13		Solvent	ID/I	.ot #			
250 μL - MSF-01-03-19		Methanol					
100 μL - MSF-02-01-10		Reagent Water					
100 μL - MSF-02-01-17			Lo	t#			
50 μL - MSF-01-01-17		pH strip					

25 μL - MSF-01-03-11
 10 μL - MSF-02-01-07
 10 μL - MSF-02-01-08
 1 μL - MSF-01-03-12
 0.5 μL - MSF-01-03-23

ELECTRONIC DATA ARCHIVAL									
Location	Date								
EZC-3-BTEX									

Analyzed By	
-------------	--

_					
	-	٠	0	٠	
-	a	÷	-		

SOP REVIEW FORM

PURGE & TRAP

SOP#:	EMAX-5030	Rev <u>5</u>	Effective Date:	19-Jul-22
		COMMENTS	Daviawad	Dortory
		COMMENTS	Reviewed By	Date
Review	ed.		Josabarle	7/27/23
			· · · · · · · · · · · · · · · · · · ·	
				ļ
				

Page 1 of 16

STANDARD OPERATING PROCEDURES

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035	Revision No. 5	Date: 19-Jul-22
Prepared By:	Oanh Dinh	r	Date: 07/19/22
Approved By:	Farina Madamba	harley	Date:
Approved By:	Caspar Pang		Date: 7/1 15/22
		Control Number:	5035-05-

1.0 SCOPE AND APPLICATION

- 1.1. This method describes a closed-system purge and trap process for the sample preparation and extraction for the analysis of volatile organics in a solid matrix. It applies to the gas chromatographic determination of volatile organics in sediment, soil, and waste. The low soil method (0.5 to 200 µg/kg) utilizes a hermetically-sealed sample vial, the seal of which is never broken from the time of sampling to the time of sample preservation.
- 1.2. Procedures are also included for preparing high concentration sample for purging by Method 5030B or 5030C.
- 1.3. This SOP is an adaptation of SW846 Methods 5035 and 5035A.

2.0 SUMMARY OF METHOD

2.1. Low Concentration Soil Samples (0.5 - 200 µg/Kg)

- 2.1.1. Samples collected in EnCore^R tube are preserved within 48 hours of sample collection by directly transferring its contents into a 40 mL vial containing sodium bisulfate as preservative, 5 mL of reagent water and a stir bar. Samples are extracted in a purge and trap closed system interfaced to a GC instrument equipped with a detector appropriate for the determinative method.
- 2.1.2. The purge and trap closed system is equipped with an autosampler. The vial containing the sample is simultaneously analyzed and heated. A duplicate sample is prepared in case reanalysis is needed.
- 2.2. High Concentration Soil Samples or Encore tube/Terra Core are extracted with 5 mL methanol in case sample dilution is necessary.

2.3. Interferences

- 2.3.1. Impurities in the purge gas and organic compounds in the trap account for the majority of contamination problems. The analytical system must be demonstrated to be free from contamination by running method blanks. The use of non-polytetrafluoroethylene (non-PTFE) plastic coating, non-PTFE thread sealant, or flow controllers with rubber components in the purging device must be avoided. These compounds will result in interferences or false positives in the determinative step.
- 2.3.2. Samples can be contaminated by diffusion of volatile organics (particularly methylene chloride and fluorocarbons) during shipment or storage. A trip blank prepared from organic-free reagent water and carried through sampling and handling serves as a check on such contamination.
- 2.3.3. Contamination by carryover can occur whenever high-concentration and low-concentration samples are analyzed in sequence. Where practical, samples with unusually high concentrations

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035	Revision No.	5	Date:	19-Jul-22

of analytes should be followed by an analysis of organic-free reagent water to check for crosscontamination.

2.3.4. The volatile lab should be free of solvents and contamination. Special precautions must be taken to determine methylene chloride. The volatile area should be isolated from all atmospheric sources of methylene chloride, otherwise random background levels will result.

3.0 DETECTION LIMITS

3.1. Refer to applicable analytical SOP.

4.0 DYNAMIC RANGE

4.1. Refer to applicable analytical SOP.

5.0 SAMPLE HOLDING TIME AND PRESERVATION

5.1. Holding Time

- 5.1.1. Analyze preserved samples within 14 days from sampling date.
- 5.1.2. Analyzed extracts within 14 days from extraction date.

5.2. Preservation

- 5.2.1. Samples received in glass jars or brass tubes must be stored at \leq 6°C without freezing. Samples must be analyzed within 14 days from sampling date.
- 5.2.2. Samples received in encore tubes or terra core are frozen, preserved with sodium bisulfate or extracted with methanol prior to analysis.
 - Frozen encore tubes/terra core must be analyzed within 14 days from sampling date.
 - Samples preserved with sodium bisulfate within 48 hours from sampling date must be analyzed within 14 days from sampling date.
 - Methanol extracts must be analyzed within 14 days from sampling date.
 - Preserved samples and extracts must be stored at $\leq 6^{\circ}$ C without freezing.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-8015G Gasoline Range Organics
- 6.2. EMAX-8260 Volatile Organics by GC/MS
- 6.3. EMAX-8260C Volatile Organics by GC/MS
- 6.4. EMAX-8260SIM Volatile Organics by GC/MS SIM
- 6.5. EMAX-M8260SIM 1,4-Dioxane by GC/MS SIM
- 6.6. EMAX-QA05 Training
- 6.7. EMAX-QA08 Corrective Action
- 6.8. EMAX-QC01 Quality Control for Chemicals

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-50	35	Revision No.	5	Date:	19-Jul-22
6.9.	EMAX-QC07	Labware Cleaning				
6.10.	EMAX-SM03	Waste Disposal				

6.11. EMAX-SM04 Analytical and QC Sample Labeling

7.0 <u>SAFETY</u>

- 7.1. Read all SDS of chemicals listed in this SOP.
- 7.2. Treat reagents, standards, and samples as potential hazards. Observe the standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, and gloves at all times when performing this procedure. Perform sample and standard handling in the fume hood.
- 7.3. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amounts of tap water. If irritations or any other discomfort related to the incident persists, inform your supervisor immediately so that proper action can be taken.

8.0 INSTRUMENTS, CHEMICALS AND REAGENTS

8.1. Instruments and Supplies

- 8.1.1. Purge and Trap Autosampler Archon/Centurion or equivalent
- 8.1.2. Trap VOCARB 4000 (Supelco) or equivalent
- 8.1.3. Syringe 5 mL, gas-tight with Luerlok tip
- 8.1.4. Microsyringes 1, 5, 10, 25, 50, 100 μL (Hamilton 702N or equivalent)
- 8.1.5. Sparging Vessel 40 mL vials with screw cap and Teflon-lined septum
- 8.1.6. Stir bars Teflon- lined
- 8.1.7. Archon Soil Method Program (If applicable to the method) Internal Standard solution is added automatically by the instrument to the initial calibration standards containing all analytes of interest and surrogates, in the same fashion as used for the samples.

8.2. Chemicals and Reagents

- 8.2.1. Reagent Water Organic-free water, generated from active charcoal column
- 8.2.2. Reagent Soil Silica sand baked at 200°C overnight
- 8.2.3. Preservative Sodium Bisulfate, reagent-grade
- 8.2.4. Extraction Solvent Methanol, ultrapure

9.0 STANDARDS

9.1. Preparation of standards is outlined in Sec. 9.0 of applicable analytical SOP.

9.2. Spiking Standard Solution

9.2.1. Refer to applicable analytical SOP.

CLOSED SYSTEM PURGE AND TRAP

SOP	No.:		EMAX-503	5		Revision No.	5	Date:	19-Jul-22
10.0	PROC	EDURES							
	10.1.	Sample	Preparation						
		10.1.1.	<u>Decontan</u>	nination of Re	e-usable Lab v	vares			
			10.1.1.1.	Stir bars – with metha minimum o	tir bars – Wash recycled stir bars with tap water until no solids are visible. vith methanol and final rinse with copious amount of reagent water. Bake ninimum of 2 hours at 120°C and allow cooling before re-use.				e visible. Rinse er. Bake for a
		10.1.2.	Purifying	Reagent Soil					
			10.1.2.1.	Fill a clean lot number	1 L wide mout for traceabilit	th glass jar with silica s y purposes and bake i	sand. Lal t at 200°(bel the jar with Covernight.	n the silica sand
			10.1.2.2.	Analyze a 5	g sample to v	erify that the reagent	soil is org	anic free.	
			10.1.2.3.	Sample res discarded.	ult must be :	\leq ½ LOQ for all targe	t analyte	es, otherwise,	the lot will be
			10.1.2.4.	Submit resu	lt to the QA D	Department.			
		10.1.3.	Low Level	Sample					
			10.1.3.1.	Weigh 1 - 5 mL vial. No	g of sample (te and record	depending on determ the actual weight to t	inative m he neare	ethod require st 0.1 g.	ment) into a 40
			10.1.3.2.	Add 5 mL o	rganic free wa	iter using verified volu	metric di	spenser.1	
		10.1.4.	<u>High Leve</u>	I Sample					
			10.1.4.1.	Weigh 1 - 5 mL vial. No using volun stand so the	g of sample (te and record netric dispens at the sedime	depending on determ the actual weight to er and mix thorought nt can settle.	inative m the neare y for 5 m	nethod require est 0.1 g. Add inutes. Allow	ment) into a 40 5 mL methanol the mixture to
			10.1.4.2.	Prepare 5 r extract usin	nL of organic g an appropri	free water solution. ate microsyringe.	Withdra	w up to 100	uL of methanol
			10.1.4.3.	Add the me plunger slo the syringe	ethanol extrac wly to make r	ct to the 5 mL syringe room for the extract. T	e through Fake care	the Luerlok t not to introd	ip and pull the uce any air into
		10.1.5.	<u>EnCore</u>						
			10.1.5.1.	Low Level S	ample Preser	vation (< 200 µg/Kg)			
				10.1.5.1.1.	Remove End temperature	Core tubes from free e. Line them up chrone	zer and plogically	let them war according to t	m up to room he sample IDs.
				10.1.5.1.2.	Label the via Prepare at le	lls and line them up ir east one extra vial for p	n the sam preparation	ne order as the on blank.	e EnCore tubes.
				10.1.5.1.3.	Add 1 g of s stirring bar content.	sodium bisulfate, 5 m to each of the vials.	L of org Re-cap	anics free wat the vial and	er and a clean gently mix the
				10.1.5.1.4.	List the san samples are	nples into the prepail lined up.	ration lo	g in the same	e order as the

¹ Volumetric dispenser is verified prior to use, using Class "A" volumetric flask noted in preparation log.

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035	5		Revision No.	5	Date:	19-Jul-22
		10.1.5.1.5.	Weigh the first v Open the EnCore out one tub and r	ial and record th Tube envelope o e-seal the envelo	e weight to correspondi ope.	the nearest ng to the firs	t 0.01 g as W_1 . St vial and take
		10.1.5.1.6.	Using the EnCor quickly extrude t seal the vial with as W ₂ .	e tube sample he entire conten the screw cap. R	extruder, r t of the End ecord the v	emove the Core tube in veight to the	tube seal and to the vial and nearest 0.01 g
		Note: Due observed du	to the nature of v uring the sample tr	olatile compound ansfer from the E	ds, minimur InCore tube	n sample exp to the vial.	oosure must be
		10.1.5.1.7.	Repeat the same	procedure for the	e rest of the	samples.	
		10.1.5.1.8.	Duplicate the ent in case re-analysis	ire process suffix s is needed.	ing the sam	ple IDs with	"R" to be used
		10.1.5.1.9.	Extract another s concentration(s) each preparation	et of samples as is > 200 μg/kg. Ι batch.	described ir Prepare and	n Sec. 10.1.4 other prepar	in case sample ation blank for
	10.1.5.2.	Medium Le	evel Samples (> 200) μg/Kg)			
		10.1.5.2.1.	Remove EnCore room temperatu sample IDs.	tubes from samp re. Line them	ole storage up chrono	and let the logically acc	m warm up to cording to the
		10.1.5.2.2.	Label the vials a Prepare one extra	nd line up in the vial for the extra	ne same oi action blank	rder as the	EnCore tubes.
		10.1.5.2.3.	Add 5 mL of met vial after methan	hanol containing ol addition.	; 2.5 μg/mL	of surrogate	e. Re-cap each
		10.1.5.2.4.	List the samples i are lined up.	nto the extractio	n log in the	same order	as the samples
		10.1.5.2.5.	Weigh the first v Open the EnCore out one tube.	al and record th Tube envelope o	e weight to correpondir	the nearest g to the firs	t 0.01 g as W_1 . t vial, and take
		10.1.5.2.6.	Using the EnCor quickly extrude t seal the vial. Rea reagent soil for th	e tube sample he entire conten cord the weight t he extraction blan	extruder, r t of the En to the near k.	emove the Core tube in est 0.01 g as	tube seal and to the vial and W2.Use 5 g of
		Note: Due observed du	to the nature of v uring the sample tr	olatile compound ansfer from the E	ds, minimun InCore tube	n sample exµ to the vial.	oosure must be
		10.1.5.2.7.	Repeat the same	procedure for the	e rest of the	samples.	
		10.1.5.2.8.	Store extracts at :	≤ 6°C without free	ezing.		
10.1.6.	Terra Core	2					
	10.1.6.1.	Weigh each Iabel.	sample as receive	d. Record the ini	itial weight	as indicated	in each sample
	10.1.6.2.	Samples ar	e expected to be	in either reage	ent water p	preserved w	ith or without

sodium bisulfate or Methanol.

CLOSED SYSTEM PURGE AND TRAP

SOP N	lo.:	-	EMAX-5035	Revision No.	5	Date:	19-Jul-22
	10.2.	Instrume	ent Parameters				
		10.2.1.	Refer to applicable analytical SOP.				
	10.3.	Calibrati	on				
		10.3.1.	Refer to applicable analytical SOP.				
	10.4.	Analysis					
		10.4.1.	Refer to applicable analytical SOP.				
	10.5.	Calculati	ons				
		10.5.1.	Refer to applicable analytical SOP.				
	10.6.	Data Rec	duction				
		10.6.1.	Refer to applicable analytical SOP.				
	10.7.	Report G	eneration				
		10.7.1.	Refer to applicable analytical SOP.				
	10.8.	Data Rev	<i>r</i> iew				
		10.8.1.	Refer to applicable analytical SOP.				
	10.9.	Preventi	ve Maintenance				
		10.9.1.	Refer to applicable analytical SOP.				
11.0	QUAL	ITY CONTR	ROL				
	11.1.	The sequ They incl	ence of runs and quality control accepta ude method blank, calibrations, lab contro	nce criteria are sp ol sample, and ma	ecified in the trix spike/ma	e individual atrix spike d	analytical SOP. uplicate.

- 11.2. Properly treat all lab wares used in the sample preparation as specified in EMAX-QC07.
- 11.3. Reagents and standards must undergo quality control check prior to use. Refer to EMAX-QC01 for details.
- 11.4. Balance must be verified daily before use as described in EMAX-QC04.
- 11.5. Syringes must be purchased with a certificate of bias and precision. Discard the syringe when deterioration is observed.
- 11.6. All analysts conducting this method must demonstrate capability (IDOC/DOC) as described in EMAX-QA05.

12.0 CORRECTIVE ACTIONS

12.1. Refer to applicable analytical SOP.

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of solvent that may go to wastewater drains.
- 13.2. Handle solvents and extracts and preparation of standards under the fume hood.
- 13.3. Keep extraction area clean to prevent contamination of sample.

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035	Revision No.	5	Date:	19-Jul-22

14.0 WASTE MANAGEMENT

- 14.1. No sample may be dumped on the laboratory sink.
- 14.2. Separate and properly identify all unused expired standards for proper disposal.
- 14.3. Place all wastes generated during the process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired standards and other waste generated during the process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

- 15.1. When the low concentration samples are strongly alkaline or highly calcareous in nature, the sodium bisulfate solution may not be strong enough to reduce the pH of the sample to below 2. Additional steps may be required to preserve the samples. Such steps include: addition of large amount of sodium bisulfate solution, storage of the samples at -10°C, or significantly reducing the maximum holding time for low concentration samples. Whichever steps are employed, they should be clearly described in the case narrative.
- 15.2. Soil samples that contain carbonate minerals may effervescence upon contact with the acidic preservative solution in low concentration sampling vial. Therefore, when samples are known or suspected to contain high levels of carbonate, sodium bisulfate should be replaced with organic free reagent water and samples should be analyzed within 48 hours of sampling.

15.3. Definition of Terms

- 15.3.1. <u>Analyte</u> the specific chemicals or components for which a sample is analyzed; may be a group pf chemicals that belongs to the same chemical family, and which are analyzed together.
- 15.3.2. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.3.2.1. **Preparation batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.3.2.2. Analytical batch is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices; preparation batches, and can exceed 20 samples.
- 15.3.3. <u>Safety Data Sheet (SDS)</u> is written information concerning a chemical physical properties, toxicity, health hazards, fire hazard and reactivity data including storage, spill and handling precautions.
- 15.3.4. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.3.5. <u>Calibration Blank</u> is a target-analyte-free solvent subjected to the entire analytical process to establish zero baseline or background value.
- 15.3.6. <u>Calibration Check Compounds (CCC)</u> evaluate the integrity of the system. Variability of these compounds may indicate system leak or reactive sites in the column.

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035		Revision No.	5	Date:	19-Jul-22
15.	5.3.7.	Instrument Method – is a file generated parameter settings for a particular analys	l to contain the i is.	nstrument	calibration	and instrument
15	5.3.8.	Method Blank – is a target-analyte-free and/or analytical monitor contamination.	e sample subject	ed to the	entire samp	ble preparation
15.	5.3.9.	Lab Control Sample (LCS) – is a target-an of target analyte(s) or a reference mater sample preparation and/or analytical pr analytical system.	alyte-free sample ial with a certifie ocess. LCS is ana	e spiked wit d known va Ilyzed to m	h a verified lue subjecte onitor the a	known amount ed to the entire accuracy of the
15.	5.3.10.	Lab Control Sample Duplicate (LCSD) – is absence of MS/MSD sample.	a replicate of LC	S analyzed	to monitor	precision in the
15.	5.3.11.	<u>Sample</u> – is a specimen received in the accompanying COC. Samples collected in are considered the same and therefore specified by the project.	e laboratory bea n different contai labeled with the	ring a sam iners having same lab s	ple label tr g the same ample ID u	aceable to the field sample ID nless otherwise
15.	5.3.12.	Sample Duplicate – is a replicate of a sub- within the same preparation batch.	-sample taken fro	om one sam	ple, prepare	d and analyzed
15.	5.3.13.	Sub-sample – is an aliquot taken from identified by the sample preparation ID.	a sample for a	inalysis. Ea	ch sub-sam	ple is uniquely
15.	5.3.14.	Matrix – is a component or form of a sam	iple.			
15	5.3.15.	<u>Matrix Spike (MS)</u> – is a sample spiked subjected to the entire sample preparation matrix effect on a method's recovery efficient	d with a verified on and/or analytic ciency.	l known ar cal process.	mount of ta MS is analy	arget analyte(s) vzed to monitor
15.	5.3.16.	Matrix Spike Duplicate (MSD) – is a replic	ate of MS analyze	ed to monit	or precision	or recovery.
15.	5.3.17.	<u>Response Factor</u> – is the ratio of the peal extract.	k area of the targ	et compou	nd in the sa	mple or sample
15.	5.3.18.	Surrogate – are compounds added to even used to evaluate analytical efficiency by detected in environmental media.	ery blank, sample measuring recov	e, matrix sp very. Comp	ike duplicate oounds not	e and standard; expected to be
15.	5.3.19.	System Performance Check Compound compounds stability and to check for deg the system.	s (SPCC) – are radation caused	compound by contami	s that are nated lines o	used to check or active sites in
15.	5.3.20.	<u>Reagent Water</u> – is purified water free free free free interfere with the analytical process.	om any target an	alyte or an	y other subs	tance that may
15.	5.3.21.	<u>Reagent Soil</u> – organic-free Ottawa sand o	or equivalent.			
15.4. Ap	oplicatio	on of EMAX QC Procedures				
15.	5.4.1.	The procedures and QC criteria summari purgeable volatile analyses. In instance requirements given in the project takes p	zed in this SOP a ces where there recedence over t	pplies to al is a proje his SOP.	l projects w ct or progr	hen performing am QAPP, the

15.5. Department of Defense (DoD) and Department of Energy (DoE) Projects

CLOSED SYSTEM PURGE AND TRAP

SOP No.:	EMAX-5035	Revision No.	5	Date:	19-Jul-22

15.5.1. Samples from DoD and DoE sponsored projects follows the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD Quality System Manual (QSM), latest update, is applied.

16.0 <u>REFERENCES</u>

- 16.1. "Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples", USEPA SW-846 Method 5035, Rev. 0, December 1996 and Method 5035A, Rev. 1, July 2002..
- 16.2. EMAX Quality Systems Manual, as updated

17.0 <u>APPENDICES</u>

17.1. Appendices

	17.1.1.	Appendix 1	Demonstration of Capability for 8260
	17.1.2.	Appendix 2	Demonstration of Capability for 8015G
17.2.	Forms		
	17.2.1.	5035FSA1	Sample Preparation Log for 8260
	17.2.2.	5035FSA2	Extraction Log for 8260
	17.2.3.	5030FSB1	Sample Preparation Log for 8015
	17.2.4.	5030FSB2	Sample Preservation Log for 8015

DEMONSTRATION OF CAPABILITY FOR 8260

DEMONSTRATION OF CAPABILITY

METHOD 5035/8260

Unit: <u>µg/Kg</u> Sample Amount(g): <u>5</u> Sample Purge(ml): <u>5</u>

		0.00000	0400000	041022						Accuracy	DED	(04)	
	RANUZU	RANUZI	RAINUZZ	KANUZO	True	Ave.	Ave.	Std.		Acceptance	Crit	oria	
PARAMETER	VSF4A03L	VSF4A03C	VSF4A04L	VSF4A04C	Value	Conc.	% Rec.	Dev.	RSD	Limits (% Rec)	Cin	ena	Comments
Acetone	230	260	234	245	250	242	97	13.4	6	60 - 130	s	30	Passed
Acetonitrile	489	505	461	486	500	485	97	18.2	4	60 - 160	s	30	Passed
Acrolein	244	271	244	261	250	255	102	13.3	5	60 - 140	٤	30	Passed
Acrylonitrile	240	267	245	256	250	252	101	12.0	5	70 - 130	s	30	Passed
Benzene	51.0	50.0	49.5	50.6	50	50.3	101	0.660	1	70 - 130	\$	30	Passed
Bromobenzene	52.2	51.8	48.9	51.2	50	51.0	102	1.48	3	70 - 130	٤	30	Passed
Bromochloromethane	51.4	50.7	49.3	51.4	50	50.7	101	0.990	2	70 - 130	\$	30	Passed
Bromodichloromethane	50.3	51.2	50.4	50.5	50	50.6	101	0.408	1	70 - 130	5	30	Passed
Bromoform	53.6	53.4	50.1	53.2	50	52.6	105	1.66	3	70 - 130	5	30	Passed
Bromomethane	47.2	45.1	41.1	47.1	50	45.1	90	2.85	6	70 - 130	s	30	Passed
tert-Butyl alcohol	510	559	492	518	500	520	104	28.3	5	60 - 140	s	30	Passed
2-Butanone (MEK)	251	292	253	270	250	267	107	19.0	7	70 - 130	5	30	Passed
n-Butylbenzene	53.0	53.6	50.1	52.0	50	52.2	104	1.53	3	70 - 130	s	30	Passed
sec-Butylbenzene	52.6	53.0	49.1	51.4	50	51.5	103	1.75	3	70 - 130	٤	30	Passed
tert-Butylbenzene	52.7	53.5	49.1	51.4	50	51.7	103	1.92	4	70 - 130	s	30	Passed
Carbon disulfide	49.7	50.2	47.2	44.5	50	47.9	96	2.62	5	70 - 130	×	30	Passed
Carbon tetrachloride	49.9	50.4	48.5	49.6	50	49.6	99	0.804	2	70 - 130	×	30	Passed
Chlorobenzene	51.3	50.7	48.5	50.4	50	50.2	100	1.21	2	70 - 130	м	30	Passed
2-Chloroethyl vinyl ether	55.3	57.7	58.1	57.2	50	57.1	114	1.24	2	70 - 130	5	30	Passed
Chloroethane	46.7	44.4	39.7	46.9	50	44.4	89	3.35	8	70 - 130	5	30	Passed
Chloroform	48.9	48.6	47.9	49.1	50	48.6	97	0.525	1	70 - 130	5	30	Passed
1-Chlorohexane	54.3	53.3	51.3	52.8	50	52.9	106	1.25	2	30 - 160	5	30	Passed
Chloromethane	44.4	43.1	38.8	44.9	50	42.8	86	2.77	6	60 - 130	5	30	Passed
2-Chlorotoluene	52.1	52.4	49.2	51.2	50	51.2	102	1.44	3	70 - 130	5	30	Passed
4-Chlorotoluene	52.7	52.8	49.0	51.4	50	51.5	103	1.77	3	70 - 130	5	30	Passed
Dibromochloromethane	51.8	48.9	49.5	51.4	50	50.4	101	1.42	3	70 - 130	s	30	Passed
1,2-Dibromo-3-chloropropane	54.3	58.3	51.0	54.2	50	54.5	109	2.99	5	70 - 130	5	30	Passed
1,2-Dibromoethane	52.3	49.7	49.4	52.0	50	50.9	102	1.51	3	70 - 130	5	30	Passed
Dibromomethane	51.1	51.3	50.8	51.0	50	51.1	102	0.208	0.4	70 - 130	5	30	Passed
1,1-Dichloroethane	50.0	49.3	48.2	49.7	50	49.3	99	0.787	2	70 - 130	s	30	Passed
1,2-Dichloroethane	49.7	48.4	48.5	50.0	50	49.2	98	0.819	2	70 - 130	s	30	Passed
1,2-Dichlorobenzene	51.3	50.7	48.8	50.8	50	50.4	101	1.10	2	70 - 130	5	30	Passed
1,3-Dichlorobenzene	51.8	51.6	48.6	50.9	50	50.7	101	1.47	3	70 - 130	5	30	Passed
trans-1,4-Dichloro-2-Butene	53.5	55.4	49.8	52.6	50	52.8	106	2.33	4	70 - 140	5	30	Passed
1,4-Dichlorobenzene	52.0	52.2	48.8	51.0	50	51.0	102	1.56	3	70 - 130	s	30	Passed
Dichlorodifluoromethane	45.0	43.4	38.6	45.5	50	43.1	86	3.15	7	60 - 130	5	30	Passed
1,1-Dichloroethene	49.6	49.7	48.0	49.7	50	49.3	99	0.835	2	60 - 130	5	30	Passed
cis-1.2-Dichloroethene	51.2	52.2	48.9	50.9	50	50.8	102	1.38	3	70 - 130	5	30	Passed
trans-1.2-Dichloroethene	50.9	49.9	48.5	50.3	50	49.9	100	1.02	2	70 - 130	5	30	Passed
Dichlorofluoromethane	49.3	48.6	47.2	48.8	50	48.5	97	0.900	2	30 - 160	<	30	Passed
1 1-Dichloropropene	52.1	53.1	50.3	51.8	50	51.8	104	1.16	2	70 - 130	<	30	Passed
1.2-Dichloropropane	51.5	52.3	52.3	51.2	50	51.8	104	0.562	1	70 - 130	<	30	Passed
1 3-Dichloropropage	51.9	49.9	49.0	50.6	50	50.4	101	1.22	,	70 - 130	<	30	Passed
2.2-Dichloropropane	49.9	51.9	48.1	50.0	50	50.0	100	1.55	3	60 - 140	5	30	Passed
cis-1 3-Dichloropropene	52.4	52.9	53.4	51.8	50	52.6	105	0.685	1	70 - 130	<	30	Passed
trans-1 3-Dichloropropene	53.1	52.1	52.2	52.3	50	52.4	105	0.457	1	70 - 130	~	30	Passed
tert-Butyl ethyl ether (ETB	50.6	49.4	49.2	50.5	50	49.9	100	0.727	1	70 • 130	5	30	Passed

Appendix 1 (Cont.):

DEMONSTRATION OF CAPABILITY FOR 8260

DEMONSTRATION OF CAPABILITY

METHOD 5035/8260

										Accuracy		
	RAN020	RAN021	RAN022	RAN023	-					Accuracy	RSD (%)	
PARAMETER	VSF4A03L	VSF4A03C	VSF4A04L	VSF4A04C	Value	Conc.	% Rec.	Dev.	RSD	Limits (% Rec)	Criteria	Comments
Ethylbenzene	51.1	50.8	47.8	50.5	50	50.1	100	1.52	3	70 - 130	≤ 30	Passed
2-Hexanone (MBK)	250	282	263	265	250	265	106	13.1	5	70 - 130	≤ 30	Passed
Hexachlorobutadiene	51.0	52.6	48.9	50.6	50	50.8	102	1.52	3	70 - 140	≤ 30	Passed
lodomethane	58.0	56.5	55.1	57.7	50	56.8	114	1.32	2	70 - 140	≤ 30	Passed
Isopropyl ether (DIPE)	50.8	48.8	48.9	50.6	50	49.8	100	1.07	2	70 - 130	≤ 30	Passed
Isopropylbenzene	52.1	50.6	48.6	51.5	50	50.7	101	1.53	3	70 - 130	≤ 30	Passed
p-lsopropyltoluene	53.1	53.6	49.7	52.1	50	52.1	104	1.73	3	70 - 130	≤ 30	Passed
Methyl acetate	45.4	49.4	43.1	49.6	50	46.9	94	3.17	7	60 - 140	≤ 30	Passed
Methylene Chloride	49.2	47.7	47.3	48.9	50	48.3	97	0.918	2	70 - 130	≤ 30	Passed
4-Methyl-2-pentanone (MIBK)	245	282	265	264	250	264	106	15.1	6	70 - 130	≤ 30	Passed
tert-Butyl methyl ether	51.8	49.7	50.2	52.1	50	51.0	102	1.18	2	70 - 130	≤ 30	Passed
Naphthalene	48.6	48.8	45.9	48.6	50	48.0	96	1.39	3	70 - 130	≤ 30	Passed
n-Propylbenzene	53.7	54.1	50.2	52.4	50	52.6	105	1.76	3	70 - 130	≤ 30	Passed
Styrene	52.1	49.4	49.5	51.1	50	50.5	101	1.31	3	70 - 130	≤ 30	Passed
tert-Amyl methyl ether (TAME)	53.2	51.3	52.0	53.1	50	52.4	105	0.913	2	70 - 130	≤ 30	Passed
1,1,1,2-Tetrachloroethane	51.1	50.1	48.5	50.6	50	50.1	100	1.13	2	70 - 130	≤ 30	Passed
1,1,2,2-Tetrachloroethane	52.0	52.4	47.8	51.3	50	50.9	102	2.10	4	70 - 130	≤ 30	Passed
Tetrachloroethene	51.1	49.3	48.4	49.6	50	49.6	99	1.12	2	70 - 130	≤ 30	Passed
Toluene	51.9	53.2	51.7	50.8	50	51.9	104	0.990	2	70 - 130	≤ 30	Passed
1,1,1-Trichloroethane	49.4	51.0	48.4	49.4	50	49.6	99	1.08	2	70 - 130	≤ 30	Passed
1,1,2-Trichloroethane	51.0	49.8	50.6	51.0	50	50.6	101	0.566	1	70 - 130	≤ 30	Passed
1,2,3-Trichlorobenzene	53.2	52.6	50.3	52.6	50	52.2	104	1.28	2	70 - 130	≤ 30	Passed
1,2,4-Trichlorobenzene	54.1	53.1	50.4	53.6	50	52.8	106	1.65	3	70 - 130	≤ 30	Passed
Trichloroethene	50.3	50.4	50.9	50.1	50	50.4	101	0.340	1	70 - 130	≤ 30	Passed
Trichlorofluoromethane	44.6	43.8	38.6	45.8	50	43.2	86	3.17	7	70 - 140	≤ 30	Passed
1,2,3-Trichloropropane	52.1	53.4	49.4	52.5	50	51.9	104	1.72	3	70 - 130	≤ 30	Passed
1,1,2-Trichloro1,2,2-trifluoroethane	50.1	50.0	48.2	50.3	50	49.7	99	0.975	2	70 - 130	≤ 30	Passed
1,2,4-Trimethylbenzene	52.8	53.1	49.4	51.9	50	51.8	104	1.68	3	70 - 130	≤ 30	Passed
1,3,5-Trimethylbenzene	54.0	54.7	50.4	52.4	50	52.9	106	1.91	4	70 - 130	≤ 30	Passed
Vinyl Acetate	47.1	43.9	38.7	47.3	50	44.3	89	4.01	9	60 - 140	≤ 30	Passed
Vinyl Chloride	46.2	45.5	40.3	47.2	50	44.8	90	3.08	7	70 - 130	≤ 30	Passed
m-Xylene & p-xylene	103	100	97.0	101	100	100.2	100	2.52	3	70 - 130	≤ 30	Passed
o-Xylene	52.0	49.8	50.0	50.9	50	50.7	101	1.00	2	70 - 130	≤ 30	Passed
1,4-Dioxane	1100	1210	1110	1080	1000	1125	113	58.0	5	60 - 150	≤ 30	Passed
2-Butanol	494	567	466	539	500	517	103	45.1	9	70 - 140	≤ 30	Passed
Cyclohexane	48.5	54.1	48.1	52.3	50	50.8	102	2.93	6	60 - 140	≤ 30	Passed
Methylcyclohexane	47.9	52.5	49.8	51.1	50	50.3	101	1.96	4	60 - 150	≤ 30	Passed
Tetrahydrofuran	52.2	56.3	50.2	52.5	50	52.8	106	2.55	5	30 - 160	≤ 30	Passed
1,2-Dichloroethane-d4	42.8	48.0	46.0	50.8	50	46.9	94	3.37	7	70 - 130	≤ 30	Passed
Toluene-d8	45.4	53.3	48.8	52.9	50	50.1	100	3.74	7	70 - 130	≤ 30	Passed
4-Bromofluorobenzene	44.8	53.0	45.7	52.4	50	49.0	98	4.32	9	70 - 130	≤ 30	Passed
Dibromofluoromethane	44.8	50.8	46.5	52.7	50	48.7	97	3.67	8	70 - 130	≤ 30	Passed
Allyl Chloride	51.7	51.3	50.4	52.0	50	51.4	103	0.695	1	70 - 130	≤ 30	Passed
Isobutyl Alcohol	1080	1190	1040	1100	1000	1103	110	63.4	6	60 - 140	≤ 30	Passed
Propionitrile	518	564	493	522	500	524	105	29.4	6	70 - 130	≤ 30	Passed

REFERENCE:

AF4-019, Page 72

Appendix 2:

DEMONSTRATION OF CAPABILITY FOR 8015G

DEMONSTRATION OF CAPABILITY

METHOD 5035/8015

Conc Unit: µg/Kg Sample Amount(g): 5

PARAMETER	EM04015A	EM04016A	EM04017A	EM04018A	TV	Ave.	Ave.	SD	RSD	Accuracy Acceptance	RSD (%)	COMMENTS	
	GMM002SL	GMM002SC	GMM002SX	GMM002SY		Conc.	%Rec		(%)	Limits (% Rec)	Criteria		
Gasoline(TOTAL)	23701	22866	24241	23585	25000	23600	94	566	2	70 - 130	≤ 50	Passed	
GRO(C6-C10)	25328	24349	25740	25129	25000	25100	100	584	2	70 - 130	≤ 50	Passed	
GRO(2MP-124TMB)	23372	22474	23751	23190	25000	23200	93	535	2	70 - 130	≤ 50	Passed	
GRO(C5-C12)	24306	23410	24860	24154	25000	24200	97	598	2	70 - 130	≤ 50	Passed	
Bromofluorobenzene	2232	2146	2251	2215	2000	2210	111	45.7	2	70 - 130	≤ 50	Passed	
1,1,1-Trifluorotoluene	1873	1829	1907	1867	2000	1870	94	31.9	2	70 - 130	≤ 50	Passed	

REFERENCE:

A39-076, Page 18

Page 13 of 16 EMAX-5035 Rev. 5 Forms

5035FSA1:

SAMPLE PREPARATION LOG FOR 8260

SAMPLE PREPARATION LOG FOR VOLATILES

FileID: VS.xls

LABORATORIES, INC.

PrepBatchID	Lab Sample ID	ExpW1(g)	W1 (g)	DateTime	ExpVe (ml)	Ve (ml)	DateTime	Prep. Factor	Comment	
EMAX-5030 Rev. Balance Calibration Check performed prior to use BlankSoil ID: Prepared By:										
EMAX- 5035 Re	v. 🗆	BalanceID 2	5451062			MeOH Lot#:		Received by:	Date	
Soil		BalanceID 2	5650797		E>	pected W1(g):	5	Extract Location:		
Product					Ex	pected Ve(ml):	5			
Volumetric dis	penser was checked	d with 5-ml v	volumetric fl	ask		W1=Sample W	/eight	Ve=Extract Volume		

5035FSA2:

EXTRACTION LOG FOR 8260

EXTRACTION LOG FOR VOLATILES

FileID: VM.xls

PrepBathID	Lab Sample ID	W1 (g)	DateTime	Wf (g)	DateTime	ExpWs(g)	Ws(g)	%Moisture	CorrExt Vol(ml)	Prep⊡Factor	PFx50 df(T)	df(I)	df(J)	Comments	
EMAX-5035	Rev.	🗌 Balan	ce Calibration Chec	k performe	d prior to use	Blar	nkSoil Lot#:					Pre	pared By:		
Encore		🔄 Balan	ce ID 25650797			MeO	H/Surr. ID:		Standard Added By:						
Frozen Sa	mple	🗌 Balano	e ID 25451062			Weight	t MeOH(g):					Witn	essed By:		
Pre-weig	hed vial					Vol	MeOH(ml):					Extract	Revel By:		
Volumetric dispenser was checked with 5-ml volumetric flask Expected Ws(g) Extract Location:															

W1=Weight of Vial+Solvent Wf=W1 + Sample

Page 15 of 16 EMAX-5035 Rev. 5 Forms

FileID: GS.xls

5035FSB1:

SAMPLE PREPARATION LOG FOR 8015

SAMPLE PREPARATION LOG FOR TPH

LabSampleID Aliquot DateTime Unit Ve(ml) ExpVe(ml) AliquotFctr PrepBatchID ExpAmt Comments Ve=extract volume AliquotFctr=ExpAmt/Aliquot Extraction Started @ EMAX-5030 Rev. No. 2 Prepared By: Extraction Ended @ EMAX-5035 Rev. No. 2 Checked By: Date
Page 16 of 16 EMAX-5035 Rev. 5 Forms

5035FSB2:

SAMPLE PRESERVATION LOG FOR 8015

FileID: GM.xls

PRESERVATION LOG FOR TPH

PrepBatch ID	LabSampleID	Wi(g)	DateTime	Wf(g)	DateTime	Aliquot	Unit	Ve(mi)	%Moist	Vec(ml)	Exp Amt	ExpVe(ml)	AliquotFctr	Comments
											Ve=extrac	t volume:		AliquotFctr=ExpAmt/Aliquot
Extraction Started @			Weight MeOH(g):				-5035 R	ev. No. 2					Prepared By:	
Extraction Ended @			Vol MeOH(ml):			Volum	etric dis	spenser was	checked wit	th 5 mL Volu	imetric Flask		Checked By:	
Comments:													Date	

SOP REVIEW FORM

CLOSED SYSTEM PURGE & TRAP

SOP#: EMAX-5035

Rev 5

Effective Date: 19-Jul-22

COMMENTS	Reviewed By	Review Date
Reviewed. No technical update necessary,	Joanance	7/21/23
ii	- 	

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No. 10	Effective Date:	06-Jun-14
Prepared By:	Souzan Greas	Souran neas	Date:	_06_04_14
Approved By:	Kenette Pimentel	And S	Date:	06.04.14
Approved By:	QA Manager Caspar Pang	6-8	Date:	06-04-14
	Laboratory Director	Control Number:	8260-10-	

1.0 SCOPE AND APPLICATION

- 1.1. This analytical method is used to determine the concentration of volatile organic compounds whose boiling points are below 200°C and are water insoluble or slightly water-soluble found in solid or liquid samples. The list of compounds is summarized in Tables 6 and 7. Additional analytes may be added after verification.
- 1.2. This SOP is an adaptation of SW846 Method 8260B.

2.0 SUMMARY OF METHOD

2.1. A measured sample is extracted using a purge and trap concentrator system. The extract is introduced to a temperature-programmed GC. The analytes are eluted through the GC column separating each analyte relative to its volatility. These analytes are captured and ionized by the mass spectrometer. The ionized fragments are measured by mass to charge ratio. Analyte qualitative identification is based on the characteristic electron impact mass spectra. Analyte quantitative identification is based on the response of the major ion relative to an internal standard using a multi-point calibration curve.

2.2. Interferences

- 2.2.1. Contamination may occur by diffusion of volatile organics (particularly chlorofluorocarbons and methylene chloride) through sample container septum during shipment and storage. Trip blanks and storage blanks can serve as means of monitoring.
- 2.2.2. Glassware and other sample processing materials in which the samples come into contact with are possible sources of contamination. All glassware and other materials used must be purchased pre-cleaned or decontaminated prior to use.
- 2.2.3. Solvents and reagents are possible sources of contamination. All solvents and reagents must be GC grade and must pass the QC checks prior to use.
- 2.2.4. Contamination by carry-over can occur whenever high concentration samples are analyzed in sequence with a low concentration sample. To reduce potential carry-over, the concentrator must be thoroughly baked-out between samples and the sample syringe and purging device must be thoroughly rinsed with an appropriate solvent between samples.
- 2.2.5. Another possible source of contamination is the analytical instrument itself. This can be monitored by analyzing an instrument blank prior to any analysis.

3.0 DETECTION LIMITS

3.1. Detection Limit (DL), Limit of Detection (LOD) & Limit of Quantitation (LOQ)

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

- 3.1.1. Refer to EMAX-QA04 for generation, validation and verification for DL, LOD and LOQ.
- 3.1.2. Refer to Table 6 and Table 7 for established DL, LOD and LOQ levels.

4.0 DYNAMIC RANGE

- 4.1. The highest quantifiable concentration requiring no dilution is equal to the highest calibration point (see Sec. 9.4). All samples analyzed above this concentration are considered "over-range" and requires dilution to properly quantitate.
- 4.2. The concentration in the diluted sample should be at or above the project reporting limit. All diluted samples analyzed below this concentration are considered "under-range". A lower dilution factor is required to properly quantitate.

4.3. Typical Dynamic Range

4.3.1.	Water:	5 µg/L to 200	μ g/L (5 ml purge)
--------	--------	---------------	------------------------

1 μg/L to 40 μg/L (25 ml purge)

4.3.2. Soil: 5 μg/kg to 200 μg/kg

5.0 SAMPLE HOLDING TIME & PRESERVATION

5.1. Aqueous Samples

5.1.1. Samples received in the laboratory are expected to be contained in 40 ml vials with teflon lined septa with zero headspace.

Note: The size of any bubble caused by degassing upon cooling the sample must not exceed 6 mm.¹

- 5.1.2. Samples must be stored at $\leq 6^{\circ}$ C without freezing.
- 5.1.3. Samples preserved in HCL must be analyzed within 14 days from the date of sampling. Samples with no chemical preservative must be analyzed within 7 days from the date of sampling.
- 5.1.4. If Acrolein and Acrylonitrile are target analytes, samples must be analyzed within 14 days if preserved with Na₂S₂O₃ to pH 4-5. Samples received unpreserved must be analyzed with 3 days from sampling date².

5.2. Soil Samples

- 5.2.1. Samples received in glass jars or brass tubes must be stored at \leq 6°C without freezing. Samples for low level and extracted in methanol for high level must be analyzed within 14 days from sampling date.
- 5.2.2. Samples received in encore tubes may be frozen, preserved with sodium bisulfate or extracted with methanol prior to analysis.

¹ Referenced from SW846 Method 5030B, Section 6.1.

² Reference: 40CFR Table 11 Footnote 10

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

- Encore samples to be frozen must be analyzed within 14 days from sampling date.
- Encore samples to be preserved with sodium bisulfate for low level and extracted with methanol for high level must be done within 48 hours and analyzed within 14 days from sampling date.
- Preserved samples and extracts must be stored at \leq 6°C without freezing.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-5030 Purge and Trap
- 6.2. EMAX-5035 Closed-System Purge and Trap
- 6.3. EMAX-DM01 Data Flow and Review
- 6.4. EMAX-QA04 Detection Limit (DL)
- 6.5. EMAX-QA05 Training
- 6.6. EMAX-QA08 Corrective Action
- 6.7. EMAX-QC01 Quality Control for Chemicals
- 6.8. EMAX-QC02 Analytical Standard Preparation
- 6.9. EMAX-QC07 Glassware Cleaning
- 6.10. EMAX-SM01 Sample Management
- 6.11. EMAX-SM03 Waste Disposal
- 6.12. EMAX-SM04 Analytical and QC Sample Labeling

7.0 <u>SAFETY</u>

- 7.1. Read all SDS of chemicals listed in this SOP.
- 7.2. Treat all reagents, standards, and samples as potential hazards. Observe standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, and gloves at all times when performing this procedure. Perform all sample and standard handling in the fume hood.
- 7.3. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of the body, rinse the affected body part thoroughly with copious amounts of water. If irritations or any other discomfort related to the incident persist, inform your supervisor immediately so that proper action can be taken.

8.0 INSTRUMENTS, CHEMICALS & REAGENTS

8.1. Instruments and Supplies

Gas Chromatography	HP 5890 Series II or equivalent
Detector	HP 5971 MSD or equivalent

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

Column	RTX 502.2 (0.32 mm x 60 m), 1.8 μm thickness or equivalent after verification that the four gases (chloromethane, bromomethene, chloroethane, and vinyl chloride) can be resolved > 90% from each other in the total ion chromatogram
Data Acquisition Software	ChemStation or equivalent
Purge & Trap Device	OI 4560/Encon Evolution/EST or equivalent
Multiple purging module	Archon/Centurion or equivalent
Gases	Ultra-high purity helium/Air
Syringes	5 ml, 25 ml Luerlok gas-tight
Microsyringes	1, 10, 20, 25, 50, 100 and 1000 μl (Hamilton 702N or equivalent)
Volumetric Flasks	2, 5, 10, 50 and 100 ml with ground glass stopper
Heated Sparge	Archon or Automatic sample heating jacket or equivalent

8.2. Chemicals and Reagents

Extraction Solvent	Purge & Trap Grade Methanol or equivalent
Reagent Water	Organic-free water
Reagent Soil	Organic-free Ottawa Sand or equivalent
Preservative	Sodium Bisulfate

9.0 STANDARDS

9.1. Standard preparation for VOA is summarized in Tables 1 to 4. Refer to EMAX-QC02 for proper analytical standard preparation and EMAX-SM04 for proper labeling. Other concentration levels may be prepared as long as it complies with the method and/or project requirements.

9.2. Stock Standard

- 9.2.1. Purchase Stock Standards as certified solutions.
- 9.2.2. Purchase one set of calibration standard (refer to Table 1) for calibration and a secondary source Stock Standard for calibration verification (refer to Table 2).
- 9.2.3. Purchase Surrogate Mix at 2500 mg/L and Internal Standard at 2500 mg/L (refer to Table 3).
- 9.2.4. Purchase BromoFluorobenzene (BFB) as Tuning Standard at 5000 mg/L (refer to Table 4).
- 9.2.5. After opening, transfer in inert vials with minimal headspace and store at -10°C to -20°C.

9.3. Intermediate Standards

9.3.1. Using the stock standard solutions, prepare intermediate standards in methanol according to Tables 1 to 4 and store with minimal headspace in an inert vial.

9.4. Initial Calibration Standards (ICAL)

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

9.4.1. ICAL for 5 ml Purge

9.4.1.1. Using intermediate standards (refer to Tables 1 and 3), prepare multi calibration standards (minimum of five different concentrations) in reagent water as suggested below.

Calibration Pt.	VOA (µg/L)*	Surrogate (µg/L)	Internal Std (µg/L)
1	5	5	50
2	10	10	50
3	20	20	50
4	50	50	50
5	100	100	50
6	200	200	50

* Ketones, Acrolein, Acrylonitrile and tert-Butanol are 5X the indicated concentration and m/p-Xylene is 2x the indicated concentration.

9.4.2. ICAL for 25 ml Purge

9.4.2.1. Using intermediate standards (refer to Tables 1 and 3), prepare multi calibration standards (minimum of five different concentrations) in reagent water as suggested below:

Calibration Pt.	VOA (µg/L)*	Surrogate (µg/L)	Internal Std (µg/L)
1	0.5	0.5	10
2	1	1	10
3	2	2	10
4	10	10	10
5	20	20	10
6	40	40	10

* Ketones, Acrolein, Acrylonitrile and tert-Butanol are 5X the indicated concentration and m/p-Xylene is 2x the indicated concentration.

9.5. Initial Calibration Verification Standard (ICV)

- 9.5.1. Using the Intermediate Standard prepared from the secondary source (refer to Tables 2 and 3), spike into 5 ml or 25 ml purge in reagent water as suggested below.
 - 9.5.1.1. ICV for 5 ml purge

ICV	VOA*	Surrogate	Internal Standard
	(µg/L)	(µg/L)	(µg/L)
5 ml	50	50	50

* Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

9.5.1.2. ICV for 25 ml purge

ICV	VOA*	Surrogate	Internal Standard
	(μg/L)	(μg/L)	(µg/L)
25 ml	10	10	10

* *Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.*

9.6. Daily Calibration Check Standard (DCC)

- 9.6.1. Using the Intermediate Standard prepared from the same source as the ICAL Standard (refer to Tables 1 and 3), spike into 5 ml or 25 ml purge in reagent water as suggested below.
 - 9.6.1.1. DCC for 5 ml purge

DCC	VOA*	Surrogate	Internal Standard
	(µg/L)	(µg/L)	(µg/L)
5 ml	50	50	50

* *Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.*

9.6.1.2. DCC for 25 ml purge

DCC	VOA*	Surrogate	Internal Standard
	(µg/L)	(µg/L)	(µg/L)
25	10	10	10

* *Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.*

9.7. LCS and Matrix Spike Standard

9.7.1. For spike standards, use the Intermediate Standard prepared from the secondary source (refer to Tables 2 and 3), spike into the 5 ml or 25 ml purge sample as suggested below (unless otherwise specified by the project). Spike 5 ml or 25 ml reagent water for LCS water or 5 g reagent soil in 5 ml reagent water for LCS soil.

9.7.1.1. LCS and Matrix Spike for 5 ml purge

LCS or MS/MSD	VOA*	Surrogate	Internal Standard
	(µg/L)	(μg/L)	(µg/L)
5 ml	50	50	50

* Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

9.7.1.2. LCS and Matrix Spike for 25 ml purge

LCS or MS/MSD	VOA*	Surrogate	Internal Standard
	(µg/L)	(μg/L)	(µg/L)
25 ml	10	10	10

* *Ketones, Acrolein, Acrylonitrile and Tert-Butanol are 5x the indicated concentration and M/P-xylene is 2X the indicated concentration.*

10.0 PROCEDURES

10.1. Sample Preparation

- 10.1.1. For aqueous samples, refer to EMAX-5030.
 - 10.1.1.1. Check the pH and presence of residual chlorine from remaining sample. Record samples with pH \ge 2 and residual chlorine \ge 5 mg/L in the analysis log.
- 10.1.2. For soil samples, refer to EMAX-5035.

10.2. Instrument Parameters

- 10.2.1. From the main gas supply (gas Tanks) regulate gas pressure at 80 psi.
- 10.1.1. Fine-tune the instrument guided by the parameter conditions suggested below. Adjust the parameter conditions accordingly to obtain optimum condition. Print the instrument parameter and post it on the instrument for daily routine maintenance check.

10.2.2. <u>Typical GC Parameters</u>

Carrier gas flow (column) helium	1 – 5 ml/min
Initial Temp	35°C; hold for 1 min.
Rate 1	8°C/min. to 160°C/min
Rate 2	30°C/min to 230°C/min; hold for 3 min.
Inject Port	200°C
Interface	250°C

10.2.3. Mass Spectrometer Parameter

Scan Start	0.5 min.
Mass Range	35 to 300
Multiplier	1200 to 2700

10.2.4. <u>Typical Purge and Trap Condition</u>

10.2.4.1. Purge samples at 40°C for 11 minutes, desorbed at 250°C for 2 minutes and then bake the trap at 260°C for 11 minutes.

10.3. Calibration

10.3.1. Set GC/MS operating condition as described in Section 10.2.

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No. 10 Effective Date: 06-Jun-14
10.3.2.	Perform T	une Check
	10.3.2.1.	Introduce a BFB to yield 5 – 50 ng by either direct injection or purge and trap in 5 ml or 25 ml organic-free water (using tuning standard). Refer to table 4.
	10.3.2.2.	Evaluate the tune check by the highest scan on the peak or the average of at least 3 scans (before, at and after the apex) with a background subtraction using a single scan no more than 20 scans prior to the elution of BFB.
	10.3.2.3.	Check Table 5 for acceptance criteria or follow the manufacturer's recommendation for tuning. A valid tune check expires after 12 hours.
	10.3.2.4.	If non-compliant refer to Section 12 for corrective action.
10.3.3.	Initial Cali	bration (ICAL)
	10.3.3.1.	Perform ICAL when one of the conditions occurs.
		Instrument is new
		Instrument undergoes a major repair
		DCC failed to meet the acceptance criteria
	10.3.3.2.	Optimize the instrument condition prior to ICAL
		Ensure that instrument parameters are set up properly
		Ensure that there is no evidence of leak
		Ensure that instrument maintenance is performed on schedule
		 Ensure that instrument tune check and column performance is not indicative that it is at the threshold of failing the acceptance criteria
	10.3.3.3.	Analyze a multi-point initial calibration curve as suggested in Figure 3 after a valid tune check.
	10.3.3.4.	Base quantitation of identified compounds on the integrated abundance from the EICP of the assigned primary characteristic ion (refer to Tables 6 and 7). For optimum output, assign internal standard to each compound based on the nearest retention time or as suggested on Tables (6 and 7).
	10.3.3.5.	Evaluate the ICAL Acceptance
		10.3.3.5.1. Check for completeness of target compound list. If there is/are missing compound(s), perform the following:
		Check the established retention time window
		Check the relative intensity of major ions
		Adjust accordingly if necessary
		10.3.3.5.2. Evaluate retention time of each analyte with respect to the nearest internal standard. The relative retention time (RRT) of each analyte should agree

within ± 0.06 RRT units.

SOP No.:	EMAX-826	0	Revision No.	10	Effective Date:	06-Jun-14
		10.3.3.5.3. At a mi (SPCC) and Calibration	nimum, evaluate on Check Compou	System Per nds (CCC) a	formance Check Co as specified in Appe	mpounds ndix 1.
		10.3.3.5.4. Check compounds included not meet the minim the chromatographi Perform necessary in 10.3.3.2, Section 12	RSD and correlation d with the initial ca um correlation co c system is consid nstrument mainte for corrective acti	on coefficie alibration e efficient (0. ered too re nance and on.	nt. If more than 10 xceed the 15% RSD .99) for alternate cu active for analysis t repeat calibration.	% of the limit and do rve fits, then o begin. Refer to
	10.3.3.6.	Application of ICAL	Curve for Quantita	ition		
		10.3.3.6.1. Genera each concentration. Standard Deviation Eq10.5.1.1, Eq10.	ate a summary of l Calculate the Ave (SD), and the Relat 5.1.2, Eq10.5.1.6	Relative Re erage Relati tive Standa 5 and Eq10	sponse Factors for e ive Response Factor rd Deviation (RSD) a 0.5.1.7 respectively.	each analyte at r (RRFm), the according to
		10.3.3.6.2. If RSD	s ≤ 15% average r	esponse fa	ctor may be applied	Ι.
		10.3.3.6.3. Apply I response) if it is dete may be applied to a correlation coefficie	nverse Weighting ermined to be the ny analyte includir nt of ≥ 0.995.	Factor (1/y best fit for ng analyte t	y or 1/y ² ; y being the specific analytes. ∃ hat has RSD of ≤ 15	e instrument This approach % and
		10.3.3.6.4. Apply I knowledge of instru This approach may b 15% and correlation	inear least square ment response is l be applied to any a coefficient of ≥ 0.	s regression known to b analyte incl .995.	n if past experience e the best fit for sp uding analyte that I	or priori ecific analytes. nas RSD of ≤
		10.3.3.6.5. It may analytes ³ . When exe software], make sur rather the intercept favors better accura	be appropriate to ercising this option e that the origin ((is set to zero. Thi cy of quantitation	force the r n [as includ),0) is not in s option sh	egression through a ed in the data acqu ncluded as a calibra all only be applied i	ero for specific isition tion point but f the curve
	10.3.3.7.	Submit summary of review.	ICAL, raw data and	d manual ir	ntegration (if any) fo	or secondary
10.3	.4. <u>Initial Ca</u>	libration Verification (ICV)			
	10.3.4.1.	Analyze ICV to verify	the concentratio	n of the ICA	AL standards (refer	to Section 9.5).
	10.3.4.2.	Check for completer	ness of analytes as	described	in Section 10.4.3.	
	10.3.4.3.	Compare the reten Excursion of ± 30 se check the column he prior to further anal	tion times of the conds indicates in ead pressure, gas ysis.	e internal s istrument r supply or le	standards to the I nalfunction. When eaks. Corrective ac	CAL mid-point. non-compliant tion is required
	10.3.4.4.	Compare the area of the initial calibration a factor of two (-50%)	of the Internal Sta 1 point. The extra 6 to +100%).	ndards (IS) cted ion cu	acquired against t rrent profile (EICP)	he midpoint of must be within

³ SW846 Method 8000B, Section 7.5.3

SOP No.:	-	EMAX-8260	Revi	ision No	10	Effective Date:	06-Jun-14			
		10.3.4.5. 10.3.4.6.	Refer to Appendix 1 for ICV a	acceptance o Section 1	e criteria and 12 for correc	d/or corrective act	tion.			
	10.3.5.	Daily Con	inuing Calibration (DCC)							
		10.3.5.1.	Analyze DCC to check the va	lidity of th	e ICAL (refe	⁻ to 9.6).				
		10.3.5.2.	Check for completeness of a	nalytes as	described ir	Section 10.4.3.				
		10.3.5.3.	Evaluate System Performar Compounds (CCC) as specifie	valuate System Performance Check Compounds (SPCC) and Calibration Check compounds (CCC) as specified in Appendix 1.						
		10.3.5.4.	Compare the retention tim Excursion of ± 30 seconds in check the column head pres prior to further analysis.	mpare the retention times of the internal standards to the ICAL mid-point. Sursion of \pm 30 seconds indicates instrument malfunction. When non-compliant teck the column head pressure, gas supply or leaks. Corrective action is required or to further analysis.						
		10.3.5.5.	Compare the area of the In the initial calibration point. a factor of two (-50% to +10	Compare the area of the Internal Standards (IS) acquired against the midpoint of he initial calibration point. The extracted ion current profile (EICP) must be within a factor of two (-50% to +100%).						
		10.3.5.6.	Establish RRF of each analyte	e, calculate	e %D (Eq10	.5.2.1) against the	e ICAL.			
		10.3.5.7.	Refer to Appendix 1 for DCC	acceptanc	ce criteria an	d/or corrective ac	ction.			
		10.3.5.8.	When non-compliant refer t	o Section 2	12 for correc	tive action.				
10.4.	Analysis									
	10.4.1.	<u>Analytical</u>	<u>Sequence</u>							
		10.4.1.1.	Analyze BFB and evaluate tu	ning						
		10.4.1.2.	Analyze DCC and check ICAL	validity						
		10.4.1.3.	Analyze Lab Control Sample							
		10.4.1.4.	Analyze Lab Control Sample	Duplicate	(if required)					
		10.4.1.5.	Analyze Method Blank							
		10.4.1.6.	Analyze samples to a max injection.	ximum nu	umber of 1	2-hours from the	e time of BFB			
		10.4.1.7.	Analyze a pair of matrix spik	es (MS/MS	SD) for every	20 samples of the	e same matrix.			
		10.4.1.8.	Record analytical sequence i	in the anal	ysis log.					
	10.4.2.	Sample Re	sult Evaluation							

- 10.4.2.1. Check the QC criteria as soon as the data is available.
 - ✓ Check method blank. If result is non-compliant and analyte in question is not detected in any sample or contamination is < 10X of the sample concentration, results maybe reportable. Verify with the PM if results can be reported.</p>
 - ✓ Compare the retention times of each Internal Standards (IS) to the ICAL mid point (must be ± 30 seconds).

SOP No.:	EMAX-8260 Revis	ion No. <u>10</u>	Effective Date: _	06-Jun-14		
	 ✓ Compare the area of eac Extracted Ion Current Pr +100%). 	ch IS acquired again rofile (EICP) must k	st the mid point o be within a factor	f the ICAL. The of two (-50 to		
	 Check concentration of ta 	arget analytes if cali	bration range is ex	ceeded.		
	 ✓ Check surrogate recover absence of PSR, default t 	ies against project s o Appendix 1 QC lim	pecific requiremen	nt (PSR). In the		
	 ✓ If any of the above che Note observations on th result, e.g. inconsistency further action. 	ckpoints indicate a ne analysis log. Wl y from the first and	problem, re-analy hen results arise t alysis, consult the	rsis is required. to questionable Supervisor for		
	10.4.2.2. Properly fill up the analysis lo	g.				
10.4.3.	Qualitative Identification					
	• The intensities of the characteristic each other.	ities of the characteristic ions maximize in the same scan or within one scan of .				
	• The relative retention time (RRT) of the sample component is within 0.06 RRT units of the RRT of the standard component.					
	• The relative intensity of the charact of these ions in the reference spectr	ative intensity of the characteristic ions agrees within 30% of the relative intensity e ions in the reference spectrum.				
	 Check the chromatogram for possib the chromatogram that were not ic peak if necessary. For manual integ 	chromatogram for possible misidentified analytes. Investigate visible peaks in atogram that were not identified in the data output. Manually integrate the essary. For manual integration refer to EMAX-DM01.				
	 Structural isomers that produce vindividual isomers if they have suf resolution is achieved if the height 25% of the sum of the two peak he isomeric pairs.⁴ 	very similar mass ficiently different G of the valley betwe ights. Otherwise, s	spectra should b C retention times een two isomer pe tructural isomers a	e identified as . Sufficient GC aks is less than are identified as		
	10.4.3.1. For samples containing comp perform a library search for p (Chem Station program) to in spectral library. Visually ir determine the identification guidelines below.	r samples containing components not associated with the calibration stand rform a library search for purposes of tentative identification ⁵ (TIC). Executive nem Station program) to initiate the library search using NIST/EPA/MSDC ectral library. Visually inspect each extracted mass ion chromatograp termine the identification of the unknown before final reporting following idelines below				
	 Relative intensities of ma 10% of the most abundar 	ajor ions in the refernt ion) should be pre	rence spectrum (io esent in the sample	ns greater than spectrum.		
	 The relative intensities Example: for an ion with corresponding sample ion 	of the major ior n an abundance of n abundance must b	ns should agree 50% of the standa be between 30 and	within + 20%. Ird spectra, the 70%.		

⁴ SW846 Method 8260B, Section 7.6.1.4 ⁵ Library search is performed only when indicated in the PSR.

VOLATILE ORGANICS BY GC/MS

SOP No.:	-	EMAX-8260	Revision No. 10 Effective Date: 06-Jun-14					
		•	• Molecular ions present in reference spectrum should be present in sample spectrum.					
		•	 Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of co-eluting analytes. 					
		•	Ions present in the reference spectrum but not present in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or co-eluting analytes. Data system library reduction programs can sometimes create these discrepancies.					
		10.4.3.2. F	Reporting TICs					
		•	If the library search produces a match at or above 85%, report the analyte.					
		•	 If the library search produces more than one analyte at or above 85%, report the first analyte (highest). 					
		•	 If the library search produces no matches at or above 85%, the compound should be reported as unknown. 					
	10.4.4.	<u>Quantitatio</u>	<u>n</u>					
		10.4.4.1. A c t t	Apply the appropriate quantitation method (Section 10.3.3.6). Calculate the concentration of any positively identified target analyte using Eq10.5.3. Apply the dilution factor for diluted samples to calculate for the final concentration of the sample.					
	10.4.5.	<u>Manual Inte</u>	egration					
		10.4.5.1. R	Refer to EMAX-DM01, Manual Integration Section.					
	10.4.6.	Dealing wit	h Carryover					
		10.4.6.1. C e	Check the sample analyzed after a sample having target analyte concentrations exceeding the calibration range.					
		10.4.6.2. li c	f there is no target analyte detected as found in the sample that exceeded the calibration range, proceed with data reduction.					
		10.4.6.3. lf c c	f there is any target analyte detected as found in the sample that exceeded the calibration range, re-analyze the sample to rule out carry over. If carry over is confirmed, proceed with data reduction and report the data from re-analysis.					
		10.4.6.4. T s r C	To clean-up the autosampler purge line consider purging a 25 ml or 5 ml sample spiked with 100 μ l of methanol and let it run like a blank sample. If improved result is noted repeat this process until no evidence of contamination is observed. Dtherwise inform the Supervisor for further instruction.					
10.5.	Calculat	ions						
	10.5.1.	Initial Calibr	ration					

10.5.1.1. Calculate for the Relative Response Factor (RRF)

SOP No.:	EMAX-826	0	Revision No.	10	Effective Date:	06-Jun-14
		$RRF = \frac{A_X C_{IS}}{A_{IS} C_X}$ where: $A_X - A_{IS} - C_X - C_X - C_X - C_{IS} - C_X$	Area of character Area of character Concentration of Concentration of	ristic ion for ristic ion for the compo the specific	the compound bein the specific internal und being measured tinternal standard	Eq10.5.1.1 g measured standard
	10.5.1.2.	Calculate for the Ave	erage Relative Res	ponse Fact	or (RRF _m)	
		$RRF_{m} = \frac{\sum RRF}{n}$ where: $\sum RRF - n - n$	Summation of re Number of mea	esponse fac	tors	Eq10.5.1.2
	10.5.1.3.	Calculate for Least S	quare Linear Regr	ession		
		y = ax + b where: $y - Respondent x - Amound a - x1 = s a = -\frac{1}{2} where:\frac{x}{x} = a \frac{y}{y} = a b - x0 = in b = \frac{1}{2}$	onse ratio (A_x/A_{IS}) int ratio (C_x/C_{IS}) lope of the line $\sum (x-\overline{x})(y-\overline{y})$ $\sum (x-\overline{x})^2$ e: overage of amoun average of respon- ntercept of the line $\overline{y} - a * \overline{x}$	v) t ratios se ratios e		Eq10.5.1.3
	10.5.1.4.	Calculate for Inverse	Weighting Factor			
		y = ax + b where:				Eq10.5.1.4
		y - Responsex - Amoua - x1 = sa = -where	onse ratio (A _x /A _{IS}) ont ratio (C _x /C _{IS}) lope of the line $\frac{\sum (x - x_a)(y - x_a)}{\sum (x - x_a)^2}$ e: $x_a = \sum [x(1/y_a) - x(1/y_a)]$	$\frac{y_a}{x} / \sum_{i=1}^{n} \frac{y_a}{x} / \sum_{i=1}^{n} \frac{y_a}{x} / \sum_{i=1}^{n} \frac{y_a}{x} + y_$	$\left(\begin{array}{c} x \\ x \end{array} \right) \right] \left(\begin{array}{c} x \\ x \end{array} \right) \right]$	

SOP No.:	EMAX-8260	Revision No. <u>10</u> Effective Date: <u>06-Jun-14</u>
	b	or $x_{a} = \sum \left[\frac{x(1/x^{2})}{\sum (1/x^{2})} \right]$ $y_{a} = \sum \left[\frac{y(1/x^{2})}{\sum (1/x^{2})} \right]$ $x0 = \text{ intercept of the line}$ $b = y_{a} - a * x_{a}$
	10.5.1.5. Calcula	te Inverse Quadratic
	y = ax where:	$c^2 + bx + c$
	У	- Resp_Ratio = $x0 + x1 * Amt_Ratio + x2 * (Amt_Ratio)^2$
	x	– Amt_Ratio
	С	_ x0 =Det 0/Det b
	b	_ x1 =Det 1/Det b
	a	_ x2=Det 2/Det b
		1
	$W_i = 0$	$\frac{\overline{x_i}}{\sum_{i=1}^{n} \frac{1}{x_i}}$
	where:	$_{i=1}$ \boldsymbol{X}_{i}
	X.=	
	$Y_i =$	response ratio=Resp of Std/Resp of IS
	Wi=	1/X)/SUM(1/X)
	<x>=</x>	SUM(W _i *X _i)
	<y>=</y>	SUM(W _i *Y _i)
	<xx>=</xx>	$SUM(W_i^*(X_i)^2)$
	<xxx>=</xxx>	$SUM(W_i^*(X_i)^3)$
	<xxxx>=</xxxx>	$SUM(W_i^*(X_i)^4)$
	<yy>=</yy>	$SUM(W_i^*(Y_i)^{-})$
	<***	$SUM(W_i * X_i * Y_i)$
	<yd2>=</yd2>	$SUM((Y_{i} < Y))^{2} * W_{i})$
	Ye=	x0+x1*X _i +x2*X _i ² - <y>)</y>
	<ye2>=</ye2>	SUM(Ye ² *W _i)

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260			Revision No.	10	Effective Date:	06-Jun-14
		Det b	1	<x></x>	<xx< td=""><td>></td><td></td></xx<>	>	
			<x></x>	<xx></xx>	<xxx< td=""><td>></td><td></td></xxx<>	>	
			<xx></xx>	<xxx></xxx>	<xxxx< td=""><td>></td><td></td></xxxx<>	>	
		Det 0	1	<x></x>	<xx< td=""><td>></td><td></td></xx<>	>	
			<x></x>	<xx></xx>	<xxx< td=""><td>></td><td></td></xxx<>	>	
			<y></y>	<xy></xy>	<xxy< td=""><td>></td><td></td></xxy<>	>	
		Det 1	1	<x></x>	<xx< td=""><td>></td><td></td></xx<>	>	
			<y></y>	<xy></xy>	<xxy< td=""><td>></td><td></td></xxy<>	>	
			<xx></xx>	<xxx></xxx>	<xxxx< td=""><td>></td><td></td></xxxx<>	>	
		Det 2	<y></y>	<xy></xy>	<xxy< td=""><td>></td><td></td></xxy<>	>	
			<x></x>	<xx></xx>	<xxx< td=""><td>></td><td></td></xxx<>	>	
			<xx></xx>	<xxx></xxx>	<xxxx< td=""><td>></td><td></td></xxxx<>	>	
		r2= ccf2=	<ye2>/<yd2> (r2)^{1/2}</yd2></ye2>				
	10.5.1.6.	Calcula	te the Standard	Deviation (SD)			
		<i>SD</i> = 1	$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$				Eq10.5.1.

where:

 Result at ith measurement $\frac{x_i}{x}$ - Mean of the n measurements

п Number of measurements

10.5.1.7. Calculate the % relative standard deviation (%RSD)

$$%RSD = \frac{SD}{RRF_m} * 100\%$$
 Eq.-10.5.1.7
where:

SD – Standard deviation RRF_m – Average response factor

10.5.1.8. Calculate the relative retention time (RRT)

$$RRT = \frac{\text{Retention Time of the Analyte}}{\text{Retention Time of the Internal Standard}} Eq.-10.5.1.8$$

10.5.2. Calibration Check/Continuing Calibration

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

10.5.2.1. Calculate Percent Difference (%D)

$$%D = \frac{\left[RRF_c - RRF_m\right]}{RRF_m} * 100\%$$
 Eq.-10.5.2.1
where:

 RRF_c – Response factor from continuing calibration standard RRF_m – Average response factor

10.5.2.2. % Drift

$$\% Drift = \frac{[found Conc. - true Conc]}{true Conc.} * 100\%$$
Eq.-10.5.2.2

10.5.3. <u>Calculation of Sample Concentration (Water and Soil/Sediment Samples)</u>

10.5.3.1. When a compound is identified, the quantitation of that compound shall be based on the integrated abundance from the EICP of the primary characteristic ion.

10.5.3.2. Water Samples

Concentration
$$(ug/L) = \frac{(Ax)(ls)}{(Ais)(RRF_m)} \times DF$$
 Eq.-10.5.3.2
where:
 $A_x - Area of characteristic ion for the compound to be measured
 $l_s - Concentration of internal standard added in \mug/L$
 $A_{is} - Area of characteristic ion for the internal standard
 $RRF_m - Average response factor$
 $DF - Dilution factor = \frac{purge volume in ml (5 ml or 25 ml)}{sample amount in ml}$$$

10.5.3.3. Soil/Sediment Samples (Dry weight basis)

$$Concentration (ug/kg) = \frac{(Ax)(Is)}{(Ais)(RRF_m)(DW)} x DF$$
 Eq.-10.5.3.3

where:

$$\begin{array}{rcl} A_x & - & \mbox{Area of characteristic ion for the compound to be measured} \\ I_s & - & \mbox{Concentration of internal standard added in µg/L} \\ A_{is} & - & \mbox{Area of characteristic ion for the internal standard} \\ RRF_m & - & \mbox{Average response factor} \\ DF & - & \mbox{Dilution factor} = \frac{5 \ g}{(sample \ amount \ in \ g)} \\ DW & - & \mbox{\% solid} = \frac{100 - \% moisture}{100} \end{array}$$

10.5.3.4. Extracted Soil/Sediment Samples (Dry weight basis)

$Concentration (ug/kg) = \frac{(Ax)(Is)}{(Ais)(RRF_m)(DW)} x DF$ Eq.-10.5.3.4

where:

 A_x – Area of characteristic ion for the compound to be measured

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No. 10 Effective Date: 06-Jun-14
	I _s –	Concentration of internal standard added in μ g/L
	A _{is} –	Area of characteristic ion for the internal standard
	RRF _m –	Average response factor
	DF –	Dilution factor
		$(purged volume in \mu L)(5g)$
		(extract aliquot in μL)(sample amount in g)
	DW –	% solid = $\frac{100 - \% moisture}{100}$
		100
10.5.4.	Alternatively, the regr	ession line (area ratio of Ax/Ais versus concentration using first degree)

- 10.5.4. Alternatively, the regression line (area ratio of AX/Ais versus concentration using first degree) fitted to the initial calibration may be used for determination of the sample concentration when RSD of the analyte is greater than 15% (Section 10.3.3.6).
- 10.5.5. Concentration of TIC is estimated by the same method as target compounds with the following assumptions:
 - 10.5.5.1. The area Ax and Ais are derived from total ion chromatogram. Ais refers to the closest internal standard (IS) free of interference.
 - 10.5.5.2. RRF of the TIC is 1.

10.5.6. <u>Method Proficiency</u>

10.5.6.1. Percent Recovery

% Re cov *ery* =
$$\frac{(C_f - C)}{C_s} \times 100$$
 Eq.-10.5.6.1

where:

C_f – Concentration found

C – Concentration of sample (use 0 for LCS)

 C_s – Concentration of spike

10.5.6.2. Relative Percent Difference (RPD)

$$RPD = \frac{|C_1 - C_2|}{\left(\frac{C_1 + C_2}{2}\right)} \times 100$$
 Eq.-10.5.6.2

where:

- C_l Measured concentration of the first sample aliquot
- C_2 Measured concentration of the second sample aliquot

10.6. Data Reduction

- 10.6.1. Make a copy of the analysis log.
- 10.6.2. Print a copy of the sample weight log (if any).
- 10.6.3. Highlight the data to be reported.

VOLATILE ORGANICS BY GC/MS

SOP No.:	_	EMAX-8260 Revision No. 10 Effective Date: 06-Jun-14						
	10.6.4.	Print a copy of the raw data and the QC report.						
	10.6.5.	Collate the reportable raw data separating the QC results from the sample results.						
	10.6.6.	Keep all other data generated with the analytical folder marked with "For record only".						
10.7.	Report G	Seneration						
	10.7.1.	Generate the method.txt file using WDB1C.exe.						
	10.7.2.	Generate the sample results using F1NV3C.exe or F1NV3C4.exe.						
	10.7.3.	Generate the QC summary using QCV3CN.exe or QCV3CN4.exe.						
	10.7.4.	Generate the Instrument Performance Check (ICAL and DCC) using F5VOA.exe.						
	10.7.5.	Generate the IS and RT summary using F8VC.exe.						
	10.7.6.	Generate Lab Chronicle using LABCHRN1.exe						
	10.7.7.	Generate Case Narrative using CN1.exe						
	10.7.8.	Arrange the analysis package in sequence as detailed below using section separators. Attach all raw data to every form generated, to include manual integration and re-analyses.						
		10.7.8.1. Case Narrative						
		10.7.8.2. Lab Chronicle						
		10.7.8.3. Sample Results						
		10.7.8.4. Method Blank Results						
		10.7.8.5. LCS/LCSD Summary						
		10.7.8.6. MS/MSD Summary						
		10.7.8.7. Instrument Performance Check (ICAL)						
		10.7.8.8. ICAL Summary						
		10.7.8.9. ICV Summary						
		10.7.8.10. Instrument Performance Check (DCC)						
		10.7.8.11. IS and RT Summary						
		10.7.8.12. DCC Summary						
		10.7.8.13. Analysis Log						
		10.7.8.14. Sample Weight Log (if any)						
		10.7.8.15. Non-Conformance Report (If any)						
10.8.	Data Rev	view						
	10.8.1.	Perform a 100% data review in accordance to EMAX-DM01and the PSR.						
		10.8.1.1. If any of the checkpoints below indicates a problem, re-analysis is required.						

✓ Check internal standard area. They should be within -50 to +100% of ICAL midpoint to be acceptable, otherwise follow PSR.

 \checkmark

✓

 \checkmark

✓

STANDARD OPERATING PROCEDURES

VOLATILE ORGANICS BY GC/MS

SOP No.:	-	EMAX-8260)	Revisio	on No	10	Effective Dat	te: <u>06</u> -	Jun-14
		√	Check retention tim seconds to be acce	e of each	IS to the I nerwise fo	CAL midpoi llow PSR.	nt. They sł	nould be w	ithin ± 30
		\checkmark	Check surrogate rec PSR, default to in-h	overies aga nouse QC li	ainst proje mits.	ect specific	criteria (PSF	R). In the a	bsence of
		\checkmark	Check concentration	n of target	analytes i	fcalibration	range is ex	ceeded.	
		10.8.1.2.	Review the attached	d logs that	they are p	properly fille	ed.		
		10.8.1.3.	Check the generate generated indicating	d reports a g positive r	against th esults are	e raw data. qualitative	Check tha ly and quan	t the analy titatively co	vtical data orrect.
		10.8.1.4.	Review the case nar the analytical proce the case narrative g	rative and ss. Edit as enerator p	check tha necessary rogram.	at it accurat y to reflect	ely describe essential iss	es what tra sues not ca	nspired in ptured by
	10.8.2.	Submit th	e analytical folder fo	r secondar	y review.				
10.9.	Preventi	ve Mainten	ance						
	10.9.1.	Perform maintena optimum data qual	instrument routine nce logs. Routine conditions, thus reduity.	preventive maintenan ucing the p	e mainter ce ensure oossibility	nance and es that all of instrume	record on equipment ent malfunc	instrumer is operati tion that n	nt-specific ing under nay affect
	10.9.2.	The table	below list suggested	routine ma	aintenanc	e schedule.			
	Task			Every Day	Every Week	Every Month	Every 3 Months	Every 6 Months	As Needed
	Tune C	heck		~					
	Check g	gas cylinder:	s pressure	~					
	Check t	he foreline:	pump oil level		~				
	Check t	he calibrati:	on vial						~
	Check and if necessary, change injection port liners, septa and O- rings.						~		
	Replace	e the forelin	e pump oil					~	
	Replace	e the diffusi	on pump fluid					✓	
	Replace	e the traps a	and filters					✓	
	Clean t	he ion sour	Ce .						~

Change the carrier gas trap(s) and

purifier

Replace column

AutoTune the MSD

Replace the worn out parts

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

11.0 QUALITY CONTROL

11.1. Analytical Batch QC

- 11.1.1. Perform tune check to verify that the mass spectrometer meets standard mass spectra abundance criteria prior to calibration and check for any contamination.
- 11.1.2. Perform initial calibration (ICAL) to establish a calibration curve for the quantification of the analytes of interest.
- 11.1.3. Establish retention time window position for each analyte every after ICAL for proper qualitative identification.
- 11.1.4. Perform initial continuing calibration verification (ICV) every after ICAL to verify accuracy of ICAL.
- 11.1.5. Perform continuing calibration verification (CCV) every 12 hours to verify that instrument response is reliable, and has not changed significantly from the current ICAL curve.
- 11.1.6. Evaluate relative retention time for each analytes in every sample to be within ± 0.06 RRT units.
- 11.1.7. Verify internal standard (IS) for quantitative accuracy and that its Retention time is within ± 30 seconds from retention time of the midpoint standard in the ICAL and EICP area is within -50% to +100% of ICAL midpoint standard.
- 11.1.8. Evaluate surrogate recovery to monitor instrument response on every sample.

11.2. Preparation Batch QC

- 11.2.1. Reagent water used for IB shall be of the same source for all QC samples and sample dilutions.
- 11.2.2. Analyze MB, LCS, MS/MSD and < 20 field samples.
- 11.2.3. Solvents and reagents must undergo quality control check prior to its use. Refer to EMAX-QC01 for details.
- 11.2.4. Properly treat lab wares used in the sample preparation as specified in EMAX-QC07.

11.3. Method QC

- 11.3.1. All analytes reported must have a valid DL, LOD and LOQ as described in EMAX-QA04.
- 11.3.2. All analysts conducting this analysis must demonstrate capability (IDOC/DOC) as described in EMAX-QA05.
- 11.4. Refer to Appendix 1 for all related Quality Control parameters, frequency and acceptance criteria.

12.0 CORRECTIVE ACTION

12.1. Corrective action for each Quality Control procedure is summarized in Appendix 1.

12.2. Analytical Batch QC

- 12.2.1. <u>Tune Check</u> If tune check is non-compliant consider the following suggestion to correct the problem:
 - Check the abundance of mass 95 and 174. If it is significantly less than previous tune checks, it is indicative of insufficient amount of BFB injected. Probable causes are:

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

improper spiking, leaks, standard degradation or low vacuum system. Repeat tune check ensuring that BFB was properly spiked or rule out leaks, prepare a fresh BFB standard and repeat the tune check.

- If problem persist, re-tune the instrument and repeat tune check.
- If problem is unresolved, inform the supervisor for further action.

12.2.2. Initial Calibration

- 12.2.2.1. If the %RSD is out of acceptance criteria, consider the following suggestions to correct the problem.
 - If one of the standards returns a bias low or bias high on all of the analytes then that point is considered an out-liner. Prepare a standard at that ICAL point and re-analyze.
 - If the highest ICAL point appears to be saturated, drop the highest point.
 - If the lowest point returns a bias low or bias high response or the peaks are not distinct and sharp, drop the lowest point.
- Note : The lowest calibration point identifies the limit of quantitation (LOQ). Therefore, check that the LOQ is in conformance to the current projects where the ICAL will be used.
- 12.2.2.2. If instrument problem is suspected, consider the following suggestion to correct the problem:
 - Check the connection and make sure they are air tight and perform maintenance as needed.
 - Check the gas flow.
 - Re-tune the MS.
 - Prepare a fresh standard and repeat calibration.
 - Clean the MS source and repeat calibration.
 - If problem is unresolved, inform the supervisor for further action.
- 12.2.3. <u>Initial Calibration Verification (ICV)</u> If the ICV is non-compliant, consider the following suggestions to correct the problem:
 - Re-analyze ICV to rule out poor purge.
 - If ICV is still out of acceptance criteria, prepare a fresh standard and re-analyze to rule out any preparation error.
 - If ICV is still out of acceptance criteria, prepare a fresh ICAL standard and repeat calibration.
 - If problem is unresolved, inform the supervisor for further action.
- 12.2.4. <u>Daily Calibration Check (DCC)</u> If DCC is non-compliant consider the following suggestions to correct the problem:

SOP N	0.:	-	EMAX-8260	Revision No.	10	Effective Date: _	06-Jun-14
			 If majority of the analyte resp apparent, it is indicative of a base 	oonse are low ad purge or lea	v and no	evidence of leak ir vial. Re-analyze DCC	the system is
			• If problem persist, rule out sta	ndard degrad	ation. P	repare a fresh stand	ard and repeat
			• Otherwise execute instrument	maintenance	and perfo	orm ICAL.	
		12.2.5.	Instrument Blank – If instrument b to correct the problem:	lank is non-co	ompliant,	consider the follow	ing suggestions
			 If trace level of THMs is observed Otherwise, bake the trap at the minutes. 	rved, it is indi e manufacture	cative ther's recon	at water filters nee nmended temperatu	d replacement. re for about 30
			• If contamination is high, flush t	he sample line	e with me	thanol and replace t	he trap.
			• If problem is unresolved, inform	n the supervis	or for fur	ther action.	
	12.3.	Preparat	tion Batch QC				
		12.3.1.	For insufficient amount of sample(s), inform the s	superviso	r immediately for fu	ther action.
		12.3.2.	If MB is non-compliant, consider the	suggestions as	s describe	d in Instrument Blan	κ.
		12.3.3.	If LCS is non-compliant, consider the	following sugg	gestions t	o correct the problem	1:
			 If result is bias low or high, prep samples. 	are a fresh sta	andard ar	nd re-analyze LCS and	the associated
			• If problem is unresolved, inform	the superviso	or for fur	ther advice.	
		12.3.4.	If MS is non-compliant consider the	following sug	gestion t	o correct the probler	n:
			• Check the standard log and ana calculation is correct.	Ilytical log and	l verify th	nat the spike amount	value used for
			• If LCS is within acceptance crit calculation is correct, then it i matrix interference in the case	eria then and s indicative o narrative.	the righ f matrix	t amount of spike an interference. Discus	mount used for s the probable
:	12.4.	Discuss v the case	water samples that are labeled prese narrative.	rved having a	pH ≥ 2 a	nd/or residual chlor	ine ≥ 5 mg/L in
:	12.5.	A Non-C	onformance Report (NCR) is required	when the follo	owing cire	cumstances occur.	
		• A	nomalies other than specified in Appe	ndix 1, is obse	erved.		
		• Sa	ample is out of technical holding time.				
		12.5.1.	Refer to EMAX-QA08 for NCR detail	S.			
13.0	POLLU	JTION PRE	EVENTION				
-	13.1.	Observe	all necessary precautions to avoid spilla	age of solvent t	hat may	go to wastewater dra	ins.
	13.2.	Prepare	all standards in fume hoods.	-	,	-	

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

14.0 WASTE MANAGEMENT

- 14.1. No samples shall be dumped on the laboratory sink.
- 14.2. Separate and properly identify all unused and expired analytical standards for proper disposal.
- 14.3. Place all waste generated during analytical process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired analytical standards and other waste generated during the analytical process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. Definition of Terms

- 15.1.1. <u>Analyte</u> The specific chemicals or components for which a sample is analyzed; may be a group of chemicals that belong to the same chemical family, and which are analyzed together.
- 15.1.2. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - 15.1.2.1. **Preparation Batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - 15.1.2.2. **Analytical batch** is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices, preparation batches, and can exceed 20 samples.
- 15.1.3. <u>Detection Limit (DL)</u> is defined as the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- 15.1.4. <u>Limit of Detection (LOD)</u> is defined as the smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative result rate (Type II error) is 1 %.
- 15.1.5. <u>Limit of Quantitation (LOQ)</u> is at the lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- 15.1.6. <u>Safety Data Sheet (SDS)</u> is written information concerning a chemical physical properties, toxicity, health hazards, fire hazard and reactivity data including storage, spill and handling precautions.
- 15.1.7. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.1.8. <u>Calibration Blank</u> is a target-analyte-free solvent subjected to the entire analytical process to establish zero baseline or background value.

SOP No.:		EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14			
	15.1.9.	<u>Carry-over</u> – are contaminants contaminated sample that is pass	s retained in ed into the suc	the instru	iment/apparatus ipple(s).	from a highly			
	15.1.10	Calibration Check Compounds (these compounds may indicate sy	<u>alibration Check Compounds (CCC)</u> – evaluate the integrity of the system. Variability of hese compounds may indicate system leak or reactive sites in the column.						
	15.1.11	Instrument Method – is a file gen parameter settings for a particula	erated to cont r analysis.	ain the instr	ument calibration	and instrument			
	15.1.12	Method Blank – is a target-analy and/or analytical to monitor cont	te-free sample amination.	e subjected	to the entire sam	ple preparation			
	15.1.13	Lab Control Sample (LCS) – is a amount of target analyte(s) or a r the entire sample preparation a accuracy of the analytical system.	target-analyte reference mate and/or analytic	e-free samp erial with a c cal process.	le spiked with a ertified known va LCS is analyzed	verified known lue subjected to to monitor the			
	15.1.14	Lab Control Sample Duplicate (LC the absence of MS/MSD sample.	<u>CSD)</u> – is a repl	icate of LCS	analyzed to mon	itor precision in			
	15.1.15	Sample – is a specimen received accompanying COC. Samples colle are considered the same and the specified by the project.	l in the labora acted in differe refore labeled	tory bearing nt container with the san	g a sample label t rs having the same ne lab sample ID u	raceable to the e field sample ID Inless otherwise			
	15.1.16	Sample Duplicate – is a replicat analyzed within the same prepara	e of a sub-sar ation batch.	nple taken	from one sample	e, prepared and			
	15.1.17	Sub-sample – is an aliquot taken identified by the sample preparat	n from a samp ion ID.	ble for analy	/sis. Each sub-san	nple is uniquely			
	15.1.18	Matrix – is a component or form of	of a sample.						
	15.1.19	<u>Matrix Spike (MS)</u> – is a sample subjected to the entire sample monitor matrix effect on a metho	spiked with a preparation a d's recovery ef	verified kn nd/or analy ficiency.	own amount of t tical process. MS	arget analyte(s) 5 is analyzed to			
	15.1.20	Matrix Spike Duplicate (MSD) – is	a replicate of I	VIS analyzed	to monitor precis	ion or recovery.			
	15.1.21	<u>Response Factor</u> – is the ratio o sample extract.	f the peak are	ea of the ta	rget compound ir	n the sample or			
	15.1.22.	Surrogate – are compounds ac duplicate and standard; used Compounds not expected to be d	lded to every to evaluate a etected in envi	blank, san nalytical eff ronmental n	nple, matrix spik ficiency by meas nedia.	e, matrix spike uring recovery.			
	15.1.23.	<u>SPCC</u> – System performance ch compound stability and to check in the system.	eck compoun for degradatio	ds are com on cause by o	pounds that are contaminated line	used to check s or active sites			
	15.1.24.	<u>Reagent Water</u> – is purified water interfere with the analytical proces	free from any s.	target analyt	e or any other sub	ostance that may			
	15.1.25.	<u>Reagent Soil</u> – organic-free Ottawa	a sand or equiva	alent.					
15.2.	Applicat	ion of EMAX QC Procedures							

VOLATILE ORGANICS BY GC/MS

SOP No.:	EMAX-8260	Revision No.	10	Effective Date:	06-Jun-14

15.2.1. The procedures and QC criteria summarized in this SOP applies to all projects when performing Volatile analysis by GC/MS. The standard analyte list and RL are presented in Tables 6 & 7. In instances where there is a project or program QAPP, the requirements given in the project takes precedence over this SOP.

15.3. Department of Defense (DoD) and Department of Energy (DoE) Projects

15.3.1. Samples from DoD and DoE sponsored projects follows the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD Quality Systems Manual (QSM), latest update, is applied.

16.0 <u>REFERENCES</u>

- 16.1. U.S. EPA Method 8260B; SW846, as updated
- 16.2. EMAX Quality Systems Manual, as updated

17.0 APPENDICES

17.2.

17.1. Tables

17.1.	1. Table 1	Initial Calibration Intermediate Standards Preparation
17.1.	2. Table 2	Initial Calibration Verification/LCS/MS/MSD Intermediate Standards Preparation
17.1.	3. Table 3	Surrogate/Internal Standards Preparation
17.1.	4. Table 4	Tuning Solution Standards Preparation
17.1.	5. Table 5	BFB Key Ion Abundance Criteria
17.1.	6. Table 6	Typical Analyte List, Quantitation Ions, IS, Surrogates, Calibration Standards, Detection Limits for 5 ml Purge
17.1.	7. Table 7	Typical Analyte List, Quantitation Ions, IS, Surrogates, Calibration Standards, Detection Limits for 25 ml Purge
Figur	es	
17.2.	1. Figure 1	Peak Evaluation Techniques
17.2.	2. Figure 2	Typical Chromatogram
17.2.	3. Figure 3	Typical ICAL Summary
17.2.	4. Figure 4	Typical Instrument Performance Check (Tuning)
17.2.	5. Figure 5	Typical Instrument Performance Check (Tuning) Summary
17.2.	6. Figure 6	Typical Internal Standard Area and Retention Time Summary
17.2.	7. Figure 7	Typical Sample Result Summary
17.2.	8. Figure 8	Typical LCS/LCSD Summary
17.2.	9. Figure 9	Typical MS/MSD Summary
17.2.	10. Figure 10	Typical Case Narrative

SOP No.:	-	EMAX-8260	Revision No. 10 Effective Date: 06-Jun-14			
				-		
17.3.	Appendi	ces				
	17.3.1.	Appendix 1	Summary of Quality Control Procedures			
	17.3.2.	Appendix 2	Demonstration of Capability for 25 ml			
	17.3.3.	Appendix 3	Demonstration of Capability for 5 ml			
	17.3.4.	Appendix 4	Demonstration of Capability for 5 g			
17.4.	Forms					
	17.4.1.	8260FS	Sample Preparation Log			
	17.4.2.	8260FA	Analytical Run Log			
	17.4.3.	8260FM	Instrument Maintenance Log			

Table 1:

INITIAL CALIBRATION INTERMEDIATE STANDARDS PREPARATION

ICAL/DCC	Stoc	Preparation (Solvent: Methanol)		Final Conc.		
Standard	Standard Name	Source	Conc. (mg/L)	Aliquot (µl)	Final Vol. (ml)	(mg/L)
	1-Chlorohexane	AccuStandard	2000	50	2	50
	2-Chloroethylvinylether	CPI	2000	50	2	50
Ι	Oxygenate Gasoline Additive	AccuStandard	2000-10000	50	2	50 - 250
	Custom VOA Mix	СЫ	2000, 20000, 40000	50	2	50, 500, 1000
п	VOC Gas Mix	Ultra Scientific	2000	250	2	250
11	Vinyl Acetate	CPI	2500	200	2	250
III	Carbon Disulfide	CPI	5000	100	2	250
IV	VOA Calibration Mix 1	Restek	5000	100	2	250
IV	Acrolein / Acrylonitrile	AccuStandard	5000	100	2	250

Table 2:

INITIAL CALIBRATION VERIFICATION/LCS/MS/MSD

INTERMEDIATE STANDARDS PREPARATION

ICV / LCS / MS	Stoc	Preparation (Solvent: Methanol)		Final Conc.		
Standard	Standard Name	Source	Conc. (mg/L)	Aliquot (µl)	Final Vol. (ml)	(mg/L)
	1-Chlorohexane	Ultra Scientific	1000	100	2	50
	2-Chloroethylvinylether	AccuStandard	2000	50	2	50
Ι	California Oxygenate Mix	Restek	2000 - 10000	50	2	50 - 250
	Custom 8260 Mega Mix	Restek	2000, 20000, 40000	50	2	50, 500, 1000
	Volatile Organic Cpds Mix 6	Supelco	2000	250	2	250
II	Vinyl Acetate	Restek	2000	250	2	250
III	Carbon Disulfide Solution	Ultra scientific	5000	20	2	50
IV	TCL Volatile Mix 1	Supelco	2000	250	2	250
1 V	Acrolein / Acrylonitrile	Ultra Scientific	2000	250	2	250

Table 3:

SURROGATE / INTERNAL STANDARDS PREPARATION

Intermediate	Stock	Preparation (Solvent: Methanol)		Final Conc.		
Stanuaru	Standard Name	Source	Conc. (mg/L)	Aliquot (µl)	Final Vol. (ml)	(mg/L)
Surrogate	8260 Surrogate Mix	Restek	2500	200	2	250
Internal Standard	Custom 8260 Internal Standard Mix, 3-30	CPI	2500	200	2	250

Table 4:

TUNING SOLUTION STANDARDS PREPARATION

BFB Intermediate	Stock		Prepa (Solvent: I	ration Methanol)	Final Conc.	
Standard	Standard Name	Source	Conc. (mg/L)	Aliquot (µl)	Final Vol. (ml)	(mg/L)
Tuning Compound	BFB	Restek	5000	20	2	50

Table 5:

BFB KEY ION ABUNDANCE CRITERIA

M/z	Required Intensity (relative abundance)
50	15 to 40% of m/z 95
75	30 to 60% of m/z 95
95	Base peak, 100% relative abundance
96	5 to 9% of m/z 95
173	Less than 2% of m/z 174
174	Greater than 50% of m/z 95
175	5 to 9% of m/z 174
176	Greater than 95% but less than 101% of m/z 174
177	5 to 9% of m/z 176

Page 29 of 55 EMAX-8260 Rev. 10 Tables

Table 6:

TYPICAL TARGET ANALYTE LIST FOR 5-ml PURGE

ANALYTES	CHARACT			ICAL ANALYTE CONC					TRATI	ONS (μg/L)	ICV/DCC	LCS/MS	WATER (µg/L)			SOIL (µg/Kg)			
	PRIMARY	SECONDARY	IS	SURR	1	2	3	4	5	6	7	8	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ	DL	LOD	LOQ
1,1,1,2-Tetrachloroethane	131	133, 119, 117	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1,1-Trichloroethane	97	99, 61	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1,2,2-Tetrachloroethane	83	85	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1,2-Trichloro-1,2,2-trifluoroethane	151	153	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
1,1,2-Trichloroethane	97	83, 85, 99	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1-Dichloroethane	63	65, 83	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1-Dichloroethene	61	63, 96	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,1-Dichloropropene	110	112	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,2,3-Trichlorobenzene	180	182, 145	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
1,2,3-Trichloropropane	110	61, 77	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
1,2,4-Trichlorobenzene	180	182, 145	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
1,2,4-Trimethylbenzene	105	120	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.55	1	5
1,2-Dibromo-3-chloropropane	157	155, 75	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
1,2-Dibromoethane	107	109	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,2-Dichlorobenzene	146	111, 148	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,2-Dichloroethane	62	64	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,2-Dichloropropane	63	41, 76	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,3,5-Trimethylbenzene	105	120, 119	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.59	1	5
1,3-Dichlorobenzene	146	111, 148	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.52	1	5
1,3-Dichloropropane	76	78	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1,4-Dichlorobenzene	146	111, 148	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
1-Chlorohexane	91	93, 55, 56	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.58	1	5
2,2-Dichloropropane	77	97, 79	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
2-Butanone (MEK)	43	72	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	2.5	5	10
2-Chloroethyl vinyl ether	63	65, 106	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
2-Chlorotoluene	91	126	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.82	1	5
2-Hexanone (MBK)	43	58, 100	IS2	Sur3	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	2.86	5	10
4-Chlorotoluene	91	126	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.61	1	5	0.67	1	5
4-Methyl-2-pentanone (MIBK)	43	58, 85, 100	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	2.75	5	10
Acetone	43	58, 42	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	3.06	5	10
Acrolein	56	55	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	2.5	5	10
Acrylonitrile	53	52, 51	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	2.5	5	10	2.5	5	10
Benzene	78	77, 52	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Bromobenzene	156	77, 158	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Bromochloromethane	49	128, 130	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Bromodichloromethane	83	85	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Bromoform	173	171, 175	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
Bromomethane	94	96	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1.1	2	5	1.81	2	5

Page 30 of 55 EMAX-8260 Rev. 10 Tables

Table 6:

TYPICAL TARGET ANALYTE LIST FOR 5-ml PURGE

ANALYTES	CHARACT	ERISTIC ION(S)			ICA	AL AN	IALY ⁻	TE CO	NCEN	TRATI	ONS (µg/L)	ICV/DCC	LCS/MS	WA	ATER (µ	ıg/L)	SC)IL (µg/	Kg)
	PRIMARY	SECONDARY	IS	SURR	1	2	3	4	5	6	7	8	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ	DL	LOD	LOQ
Carbon disulfide	76	78	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Carbon tetrachloride	119	117	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.54	1	5
Chlorobenzene	112	51, 77, 114	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Chloroethane	64	49, 66	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
Chloroform	83	85, 47	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Chloromethane	50	52	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1.02	2	5
cis-1,2-Dichloroethene	96	61, 98	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
cis-1,3-Dichloropropene	75	77, 39, 110	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Dibromochloromethane	129	127	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Dibromomethane	93	95, 174	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Dichlorodifluoromethane	85	87	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1.3	2	5	1.16	2	5
Dichlorofluoromethane	67	69	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Diisopropyl ether (DIPE)	45	87	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Ethyl Methacrylate	69	99, 41	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
Ethylbenzene	91	106	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Ethyl-tert-butyl ether (ETBE)	59	87	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Hexachlorobutadiene	225	223, 227	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
lodomethane	142	127	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
Isopropylbenzene	105	120, 79, 103	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.64	1	5
m/p-Xylenes	91	106	IS2	Sur3	4	10	20	40	100	160	200	400	100	100	1	2	10	1	2	10
Methylene chloride	49	84, 86	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	1	2	5
Methyl-t-butyl ether (MTBE)	73	57	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
Naphthalene	128	127	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
n-Butylbenzene	91	92, 134	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.73	1	5	0.7	1	5
n-Propylbenzene	91	65, 120	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.51	1	5	0.65	1	5
o-Xylene	91	106	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
p-Isopropyltoluene	119	91, 134	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.56	1	5	0.62	1	5
sec-Butylbenzene	105	134	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.67	1	5
Styrene	104	78, 103	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
tert-Amylmethyl ether (TAME)	87	55,73	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
tert-Butyl alcohol (TBA)	59	41	IS1	Sur0/1	10	25	50	100	250	400	500	1000	250	250	7.1	10	25	9.18	10	20
tert-Butylbenzene	134	91, 119	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.62	1	5
Tetrachloroethene	164	129, 131, 166	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.52	1	5	0.5	1	5
Toluene	91	92	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
trans-1,2-Dichloroethene	61	96, 98	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
trans-1,3-Dichloropropene	75	77, 39	IS2	Sur3	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5
trans-1,4-Dichloro-2-butene	53	88	IS3	Sur2	2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5
Trichloroethene	130	97, 132, 95	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.5	1	5	0.5	1	5

Page 31 of 55 EMAX-8260 Rev. 10 Tables

Table 6:

TYPICAL TARGET ANALYTE LIST FOR 5-ml PURGE

ANALYTES	CHARACT	ERISTIC ION(S)			ICAL ANALYTE CONCENTRATIONS (µg/L)								ICV/DCC	LCS/MS	WA	WATER (µg/L)			SOIL (µg/Kg)		
	PRIMARY	SECONDARY	IS	SURR	1	2	3	4	5	6	7	8	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ	DL	LOD	LOQ	
Trichlorofluoromethane	101	103	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.86	1	5	1.06	2	5	
Vinyl acetate	43	86	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	1	2	5	1.26	2	5	
Vinyl chloride	62	64	IS1	Sur0/1	2	5	10	20	50	80	100	200	50	50	0.61	1	5	1	2	5	
Dibromofluoromethane (Sur0)	111	113, 192	IS1		2	5	10	20	50	80	100	200	50	50	1	2	5	0.5	1	5	
1,2-Dichloroethane-d4 (Sur1)	65	102	IS1		2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5	
4-Bromofluorobenzene (Sur2)	95	174, 176	IS3		2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5	
Toluene-D8 (Sur3)	98	100	IS2		2	5	10	20	50	80	100	200	50	50	1	2	5	1	2	5	
1,4-Difluorobenzene (IS1)	114	88																			
Chlorobenzene-d5 (IS2)	117	82, 119																			
1,2-Dichlorobenzene-d4 (IS3)	152	150																			

Note: Since, retention time of Dibromofluoromethane (Sur0) and 1,2-Dichloroethane-d4 (Sur1) is too close (~43 sec) hence, Dibromofluoromethane (Sur0) is only used when required by the project.

Page 32 of 55 EMAX-8260 Rev. 10 Tables

Table 7:

TYPICAL TARGET ANALYTE LIST FOR 25-ml PURGE

	CHARACTERISTIC ION(S)				ICAL ANALYTE CONCENTRATIONS (µg/L)								ICV/DCC	LCS/MS	WATER (µg/L)			
Analytes	PRIMARY	SECONDARY	IS	SURR	1	2	3	4	5	6	7	8	9	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ
1,1,1,2-Tetrachloroethane	131	133, 119, 117	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,1,1-Trichloroethane	97	99, 61	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,1,2,2-Tetrachloroethane	83	85	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
1,1,2-Trichloro-1,2,2-																		
trifluoroethane	151	153	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.17	0.3	0.5
1,1,2-menioroethane	97	83, 85, 99	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,1-Dichloroethane	63	65, 83	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,1-Dichloroethene	61	63, 96	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,1-Dichloropropene	110	112	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,2,3-Trichlorobenzene	180	182, 145	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
1,2,3-Trichloropropane	110	61, 77	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
1,2,4-Trichlorobenzene	180	182, 145	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
1,2,4-Trimethylbenzene	105	120	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
1,2-Dibromo-3-chloropropane	157	155, 75	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
1,2-Dibromoethane	107	109	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,2-Dichlorobenzene	146	111, 148	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,2-Dichloroethane	62	64	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,2-Dichloropropane	63	41, 76	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,3,5-Trimethylbenzene	105	120, 119	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.13	0.2	0.5
1,3-Dichlorobenzene	146	111, 148	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
1,3-Dichloropropane	76	78	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1,4-Dichlorobenzene	146	111, 148	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
1-Chlorohexane	91	93, 55, 56	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.14	0.2	0.5
2,2-Dichloropropane	77	97, 79	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.16	0.2	0.5
2-Butanone (MEK)	43	72	IS1	Sur0/1	1.5	2.5	5	10	25	50	100	150	200	50	50	2	4	10
2-Chloroethyl vinyl ether	63	65, 106	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
2-Chlorotoluene	91	126	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.12	0.2	0.5
2-Hexanone (MBK)	43	58, 100	IS2	Sur3	1.5	2.5	5	10	25	50	100	150	200	50	50	2.3	4	5
4-Chlorotoluene	91	126	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
4-Methyl-2-pentanone (MIBK)	43	58, 85, 100	IS1	Sur0/1	1.5	2.5	5	10	25	50	100	150	200	50	50	2.2	4	5
Acetone	43	58, 42	IS1	Sur0/1	1.5	2.5	5	10	25	50	100	150	200	50	50	2.6	5	10
Acrolein	56	55	IS1	Sur0/1	1.5	2.5	5	10	25	50	100	150	200	50	50	2.5	5	10
Acrylonitrile	53	52, 51	IS1	Sur0/1	1.5	2.5	5	10	25	50	100	150	200	50	50	2.5	5	10
Benzene	78	77, 52	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5

Page 33 of 55 EMAX-8260 Rev. 10 Tables

Table 7:

TYPICAL TARGET ANALYTE LIST FOR 25-ml PURGE

	CHARACTERISTIC ION(S)				ICAL ANALYTE CONCENTRATIONS (µg/L)								ICV/DCC	LCS/MS	WATER (µg/L)			
Analytes	PRIMARY	SECONDARY	IS	SURR	1	2	3	4	5	6	7	8	9	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ
Bromobenzene	156	77, 158	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Bromochloromethane	49	128, 130	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
Bromodichloromethane	83	85	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Bromoform	173	171, 175	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
Bromomethane	94	96	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.16	0.3	0.5
Carbon disulfide	76	78	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Carbon tetrachloride	119	117	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Chlorobenzene	112	51, 77, 114	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Chloroethane	64	49, 66	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.27	0.3	0.5
Chloroform	83	85, 47	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Chloromethane	50	52	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
cis-1,2-Dichloroethene	96	61, 98	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
cis-1,3-Dichloropropene	75	77, 39, 110	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Dibromochloromethane	129	127	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Dibromomethane	93	95, 174	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Dichlorodifluoromethane	85	87	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
Dichlorofluoromethane	67	69	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Diisopropyl ether (DIPE)	45	87	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
Ethyl Methacrylate	69	99, 41	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
Ethylbenzene	91	106	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Ethyl-tert-butyl ether (ETBE)	59	87	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
Hexachlorobutadiene	225	223, 227	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.22	0.3	0.5
lodomethane	142	127	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
Isopropylbenzene	105	120, 79, 103	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
m/p-Xylenes	91	106	IS2	Sur3	0.6	1	2	4	10	20	40	60	80	20	20	0.21	0.4	1
Methylene chloride	49	84, 86	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
Methyl-t-butyl ether (MTBE)	73	57	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.13	0.2	0.5
Naphthalene	128	127	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
n-Butylbenzene	91	92, 134	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.17	0.2	0.5
n-Propylbenzene	91	65, 120	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.13	0.2	0.5
o-Xylene	91	106	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
p-Isopropyltoluene	119	91, 134	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.14	0.2	0.5
sec-Butylbenzene	105	134	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.13	0.2	0.5

Page 34 of 55 EMAX-8260 Rev. 10 Tables

Table 7:

TYPICAL TARGET ANALYTE LIST FOR 25-ml PURGE

	CHARACTERISTIC ION(S)					ICAL ANALYTE CONCENTRATIONS (µg/L)									LCS/MS	WA	ATER (µ	lg/L)
Analytes	PRIMARY	SECONDARY	IS	SURR	1	2	З	4	5	6	7	8	9	EV(µg/L)	EV(µg/L)	DL	LOD	LOQ
Styrene	104	78, 103	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
tert-Amylmethyl ether (TAME)	87	55,73	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
tert-Butyl alcohol (TBA)	59	41	IS1	Sur0/1	1.5	2	5	10	25	50	100	150	200	50	50	2.5	5	10
tert-Butylbenzene	134	91, 119	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.13	0.2	0.5
Tetrachloroethene	164	129, 131, 166	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.2	0.5
Toluene	91	92	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
trans-1,2-Dichloroethene	61	96, 98	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
trans-1,3-Dichloropropene	75	77, 39	IS2	Sur3	0.3	0.5	1	2	5	10	20	30	40	10	10	0.11	0.2	0.5
trans-1,4-Dichloro-2-butene	53	88	IS3	Sur2	0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
Trichloroethene	130	97, 132, 95	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.1	0.2	0.5
Trichlorofluoromethane	101	103	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.15	0.3	0.5
Vinyl acetate	43	86	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.25	0.5	1
Vinyl chloride	62	64	IS1	Sur0/1	0.3	0.5	1	2	5	10	20	30	40	10	10	0.12	0.2	0.5
Dibromofluoromethane (Sur0)	111	113, 192	IS1		0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
1,2-Dichloroethane-d4 (Sur1)	65	102	IS1		0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
4-Bromofluorobenzene (Sur2)	95	174, 176	IS3		0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
Toluene-D8 (Sur3)	98	100	IS2		0.3	0.5	1	2	5	10	20	30	40	10	10	0.5	1	2
1,4-Difluorobenzene (IS1)	114	88																
Chlorobenzene-d5 (IS2)	117	82, 119																
1,2-Dichlorobenzene-d4 (IS3)	152	150																

Note: Since retention time of Dibromofluoromethane (Sur0) and 1,2-Dichloroethane-d4 (Sur1) is too close (~43 sec) hence, Dibromofluoromethane (Sur0) is only used when required by the project.

Figure 2:

Quantitation Report

Vial: 2 Data File : D:\HPCHEM\1\DATA\11E25\REC395.D Acq On : 25 May 2011 1:40 pm Operator: AS : TO67 Inst Sample : IV067E2402 10ppb Misc : 10ppb 8260/50ppb KET-ACR-ACN-TBA MS Integration Params: LSCINT1.P Multiplr: 1.00 Quant Results File: V067E24.RES Quant Time: May 25 16:32 2011 : D:\HPCHEM\1\METHODS\V067E24.M (RTE Integrator) : METHOD 8260B 4.0 Method Title Last Update : Wed May 25 16:26:28 2011 Response via : Initial Calibration Indance TIC: REC395.D Abundanc 8000000 7500000 7000000 6500000 6000000 5500000 1.6rg Bolieteen(toRtpathane,T.M m-Xylene & p-Xylene,T.M 5000000 4500000 ne.T.M 4000000 isopropybenzene,T,M cene T.M 3500000 190 1-Chlorohexane,T,M NC.T.M 3000000 M.T. enely/Web. 1.4-DIFLUOROBENZENE 2 Increased CHLOROGENZENE PM LAD-BURNERSERVERSERVERS 2500000 ALC: No. of Concentration of Concentrati rictions 1.2.2-triflugrophane 1.2.4-Trichesobergene T.M. Hexaeteriologiadiene, T.M. Shell, M and think ether (ETBE),T,M Mutamingthe advance. T.M. RIMSIGPIP Symptotection of T.M. 2000000 1.3-Dichlorobi A-Dichlorobi WP BOOMSE benzene,T,M ane LM NL S 1,2-Dibromo-3-chloropropane, T,M AL MARKED 1.2-Dkthla ols-1,3-Dichlo Manad.M. Ettysh modulo 1500000 Ę ane T.M ž Dichlomort 2,3-Trichlor And they C2-DIENO Grand Street 1000000분 A Distance đ art But 500000 0 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 3.00 2.00 Time--> Page 4 REC395.D V067E24.M Wed May 25 16:38:57 2011

Page 37 of 55 EMAX-8260 Rev. 10 Figures

Figure 3:

TYPICAL ICAL SUMMARY

INITIAL_CALIBRATION - RELATIVE_RESPONSE_FACTOR

Instrument ID :03 Beginning DateTime :03/12/13 07:57 Spike Units :PPB IC File :RCB023 Column Spec :ZB-624 ID :0.25MM Ending DateTime :03/12/13 12:58 HPChem Method :V003C12

		7	E	1	2	E	10	20	70	50	100		·	
1				00.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10	20	30	50	100		i 1	
1		07:57	08:31	09:05	09:39	10:11	10:45	11:18	11:52	12:25	12:58			
M IDX	Parameters	RCB018	RCB019	RCB020	RCB021	RCB022	RCB023	RCB024	RCB025	RCB026	RCB027	Av_RRF	%_RSD	Av_Rt_M
			======			======	======	======	======				=====	
1	1,4-DIFLUOROBENZENE	1	1	1	1	1	1	1	1	1	1	1	0	13.1167
2	Chlorotrifluoroethylene											0.000	0.00	0.0000
3	Dichlorodifluoromethane	0.312	0.311	0.326	0.327	0.302	0.284	0.298	0.281	0.271	0.265	0.298	7.35	4.0527
4	Chloromethane	0.497	0.479	0.499	0.498	0.449	0.423	0.434	0.414	0.395	0.379	0.447	10.02	4.5516
5	Vinvl chloride	0.295	0.288	0.315	0.308	0.286	0.271	0.286	0.277	0.270	0.273	0.287	5.39	4.8866
6	2-Chloro-1.1.1-trifluoroethane											0.000	0.00	0.0000
1 7	Bromomethane	0.307	0.306	0.320	0.311	0.275	0.265	0.267	0.247	0.210		0.279	12.91	5.7735
l i	Chloroethane	0.209	0.223	0.239	0.233	0.210	0.202	0.209	0.197	0.184	0.165	0.207	10 58	6 0466
	Dichlorofluoromethane	0.670	0 653	0.680	0.650	0 668	0.592	0 632	0 621	0 635	0 625	0 661	3 06	6 5916
1 16	Trichlorofluoromethene	0.321	0 351	0 385	0.602	0 365	0 363	0 384	0.376	0.366	0.363	0.347	5 05	6 6740
6 11	Accoloin	0.012	0.010	0.011	0.402	0.012	0.013	0.013	0.013	0.013	0.013	0.012	0.77	7 7670
1 12	1 1 2 Trichland 1 2 2 toifluanaethana	0.012	0.010	0.007	0.107	0.012	0.013	0.015	0.013	0.015	0.100	0.012	7.23	7 8001
12	1.1 Dishlarathan	0.214	0.199	0.207	0.193	0.190	0.175	0.100	0.176	0.105	0.100	0.190	6.07	7.0701
1 - 13	1,1-Dichloroethene	0.015	0.012	0.020	0.579	0.570	0.554	0.540	0.523	0.545	0.514	0.566	10.97	0 1020
5 14	Acetone	0 553		0.045	0.035	0.052	0.051	0.029	0.027	0.029	0.028	0.032	18.18	8.1020
1 15	Iodomethane	0.555	0.519	0.566	0.525	0.512	0.471	0.490	0.4/6	0.484	0.486	0.508	0.41	8.3338
16	Carbon disulfide	1.259	1.220	1.291	1.367	1.204	1.194	1.218	1.179	1.185	1.151	1.227	5.20	8.4588
17	Methyl acetate											0.000	0.00	0.0000
18	Methylene chloride			0.548	0.484	0.450	0.419	0.422	0.397	0.422	0.401	0.443	11.51	9.0085
5 19	tert-Butyl alcohol	0.009	0.009	0.011	0.010	0.010	0.009	0.010	0.009	0.010	0.009	0.010	6.11	9.2093
20	tert-Butyl methyl ether (MTBE)	0.430	0.405	0.440	0.420	0.409	0.367	0.381	0.371	0.404	0.374	0.400	6.43	9.4267
21	trans-1,2-Dichloroethene	0.681	0.638	0.664	0.629	0.618	0.585	0.584	0.553	0.577	0.535	0.606	7.83	9.4834
5 22	Acrylonitrile	0.036	0.036	0.041	0.040	0.038	0.039	0.037	0.037	0.038	0.036	0.038	5.13	9.5161
23	Isopropyl ether (DIPE)	1.387	1.263	1.335	1.285	1.234	1.171	1.151	1.110	1.121	1.024	1.208	9.29	10.2472
24	1.1-Dichloroethane	0.768	0.739	0.749	0.730	0.706	0.676	0.668	0.644	0.653	0.605	0.694	7.62	10.2785
25	Vinvl acetate		0.332	0.283	0.324	0.337	0.355	0.379	0.413	0.347	0.317	0.343	10.92	10.3003
26	tert-Butyl ethyl ether (ETBE)	0.796	0.755	0.728	0.707	0.718	0.694	0.681	0.696	0.732	0.705	0.721	4.69	10.8667
27	2.2-Dichloropropane	0.395	0.372	0.378	0.353	0.339	0.345	0.323	0.310	0.300	0.263	0.338	11.78	11.2345
5 28	2-Butanone	0.083	0.072	0.068	0.069	0.064	0.064	0.055	0.056	0.058	0.053	0.064	14.51	11.2761
20	cis-1 2-Dichloroethene	0.469	0.440	0.442	0.430	0 415	0.405	0.384	0.379	0.390	0.365	0.412	8.05	11 2687
5 30	2-Butanol											0 000	0.00	0.0000
1 3	Bromochloromethane	0 307	0 300	0 315	0 300	0 300	0 276	0 277	0 276	0 288	0 257	0 202	08. A	11 6797
1 7	Teteebudeefuree	0.507	0.507	0.0/8	0.045	0.037	0.034	0.033	0.034	0.036	0.034	0.038	13 03	11 7372
1 7	(chi anglorm	0 705	0 600	0.640	0.601	0.672	0.607	0.605	0.030	0.630	0.570	0.030	7 24	11 7705
3	Chlorotorm	0.705	0.090	0.007	0.071	0.072	0.007	0.005	0.000	0.020	0.579	0.040	6.24	12 0724
34	Dibromotluoromethane	0.520	0.507	0.550	0.342	0.540	0.527	0.311	0.315	0.311	0.294	0.329	0.00	12.0320
	1,1,1-Irichloroethane	0.525	0.515	0.500	0.404	0.512	0.471	0.4//	0.472	0.470	0.435	0.486	2.50	12.0566
30	Cyclohexane											0.000	0.00	0.0000
37	1,1-Dichloropropene	0.209	0.194	0.192	0.189	0.183	0.178	0.181	0.182	0.174	0.159	0.184	7.23	12.2738
34	Carbon tetrachloride	0.467	0.452	0.446	0.423	0.441	0.427	0.429	0.426	0.426	0.403	0.434	4.16	12.2857
39	1,2-Dichloroethane-d4	0.270	0.266	0.275	0.269	0.258	0.251	0.225				0.259	6.60	12.5581
40	Benzene	1.724	1.622	1.501	1.421	1.497	1.348	1.382	1.392	1.393		1.476	8.50	12.6150
4	tert-Amyl methyl ether (TAME)	0.100	0.103	0.107	0.100	0.109	0.098	0.097	0.102	0.105	0.098	0.102	4.11	12.6595
4	2 1,2-Dichloroethane	0.299	0.308	0.290	0.294	0.303	0.287	0.279	0.277	0.287	0.256	0.288	5.20	12.6729
43	Trichloroethene	0.428	0.404	0.405	0.389	0.419	0.382	0.382	0.375	0.400	0.366	0.395	4.98	13.5291
4	Methylcyclohexane											0.000	0.00	0.0000
4	1.2-Dichloropropane	0.387	0.398	0.375	0.376	0.407	0.377	0.381	0.361	0.376	0.342	0.378	4.76	13.8776
20 4	6 1.4-Dioxane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	9.47	14.0562
4	Dibromomethane	0.163	0.146	0.158	0.146	0.166	0.142	0.149	0.144	0.158	0.145	0.152	5.80	14.0935
41	Bromodichloromethane	0.438	0.407	0.437	0.429	0.470	0.419	0.416	0.430	0.448	0.413	0.431	4.33	14.2617
1 1												1		

Page 38 of 55 EMAX-8260 Rev. 10 Figures

Figure 3 (cont.):

TYPICAL ICAL SUMMARY

491	2-Chloroethyl vinyl ether		0.052	0.053	0.0591	0.0641	0.062	0.064	0.0671	0.0771	0.073	0.063	13.09 14.5606
50	cis-1.3-Dichloropropene	0.511	0.509	0.493	0.489	0.553	0.509	0.513	0.510	0.537	0.492	0.512	3.91 14.8291
5 51	4-Methyl-2-pentanone	0.182	0.169	0.170	0.164	0.180	0.168	0.154	0.160	0.170	0.144	0.166	6.86 14.9541
52	CHLOROBENZENE-D5	1	1	1	1	1	1	1	1	1	1	1	0 17, 1073
53	Toluene-d8	1.471	1.484	1.407	1.468	1.417	1.414	1.426	1.350	1.404		1.427	2.94 15.1712
54	Toluene	1.975	1.822	1.622	1.764	1.814	1.638	1.732	1.646	1.710		1.747	6.46 15.2622
55	Ethyl methacrylate	0.274	0.248	0.237	0.247	0.287	0.268	0.263	0.270	0.286	0.266	0.264	6.15 15.5111
56	trans-1.3-Dichloropropene	0.383	0.368	0.358	0.376	0.420	0.392	0.406	0.404	0.429	0.403	0.394	5.77 15.5483
57	1.1.2-Trichloroethane	0.222	0.209	0.198	0.196	0.213	0.196	0.195	0.206	0.217	0.201	0.205	4.79 15.8267
58	Tetrachloroethene	0.438	0.389	0.368	0.385	0.382	0.355	0.371	0.366	0.383	0.352	0.379	6.42 15.9995
5 59	2-Hexanone	0.119	0.137	0.116	0.121	0.117	0.125	0.112	0.121	0.125	0.106	0.120	6.87 16.0248
60	1.3-Dichloropropane	0.416	0.397	0.392	0.417	0.411	0.384	0.385	0.389	0.415	0.377	0.398	3,79 16,0531
61	Dibromochloromethane	0.252	0.234	0.233	0.261	0.259	0.256	0.262	0.267	0.287	0.268	0.258	6.22 16.3941
62	1.2-Dibromoethane	0.207	0.208	0.195	0.197	0.212	0.193	0.202	0.205	0.224	0.208	0.205	4.47 16.5847
63	1-Chlorohexane	0.897	0.862	0.785	0.803	0.835	0.761	0.806	0.779	0.829	0.757	0.811	5.53 16.9495
64	Chlorobenzene	1.152	1.065	0.937	0.954	0.990	0.958	0.962	0.991	1.007	0.911	0.993	7.08 17.1475
65	Ethylbenzene	2.251	2.178	2.021	1.994	2.182	1.965	2.014	2.014	1.839		2.051	6.29 17.1930
66	1.1.1.2-Tetrachloroethane	0.319	0.317	0.311	0.307	0.333	0.304	0.308	0.319	0.318	0.294	0.313	3.37 17.2264
2 67	m-Xylene & p-Xylene	1.713	1.626	1.515	1.469	1.497	1.439	1.490	1.387			1.517	6.90 17.3227
68	o-Xylene	1.694	1.653	1.478	1.477	1.519	1.428	1.437	1.428	1,440		1,506	6.65 17.8581
69	Styrene	1.028	1.012	0.971	0.933	1.027	0.971	0.981	0.978	0.998	0.874	0.977	4.73 17.8787
70	1.2-DICHLOROBENZENE-D4	1	1	1	1	1	1	1	1	1	1	1	0 20.6245
71	Bromoform	0.330	0.326	0.329	0.333	0.339	0.334	0.362	0.385	0.425	0.401	0.356	9.92 18.2613
72	Isopropylbenzene	5.562	5.517	5.180	5.026	5.022	4.609	5.010	5.013	5.337		5.142	5.76 18.2767
73	4-Bromofluorobenzene	1.603	1.546	1.384	1.356	1.335	1.258	1.308	1.333	1.419	1.324	1.386	7.83 18.5621
74	1.1.2.2-Tetrachloroethane	0.746	0.756	0.716	0.675	0.696	0.618	0.665	0.707	0.749	0.704	0.703	6.08 18.7036
75	trans-1,4-Dichloro-2-butene	0.187	0.180	0.176	0.186	0.198	0.177	0.197	0.205	0.223	0.201	0.193	7.69 18.7438
76	n-Propylbenzene	8.651	8.030	7.852	7.211	7.500	6.892	7.592	7.274			7.625	7.21 18.7857
77	1,2,3-Trichloropropane	0.177	0.170	0.160	0.153	0.158	0.140	0.147	0.149	0.157	0.138	0.155	7.93 18.8019
78	Bromobenzene	1.165	1.071	1.055	1.014	1.052	0.931	0.983	1.022	1.109	1.010	1.041	6.31 18.8227
79	1,3,5-Trimethylbenzene	4.694	4.553	4.332	4.080	4.256	3.733	4.106	4.101	4.355	3.299	4.151	9.67 18.9612
80	2-Chlorotoluene	5.150	4.552	4.413	4.224	4.372	3.923	4.126	4.108	4.517	3.691	4.308	9.28 18.9999
81	4-Chlorotoluene	4.441	3.866	3.719	3.646	3.838	3.506	3.604	3.728	4.047	3.296	3.769	8.31 19.1265
82	tert-Butylbenzene	1.011	0.999	0.944	0.893	0.936	0.837	0.894	0.889	0.955	0.865	0.922	6.14 19.4213
83	1,2,4-Trimethylbenzene	4.627	4.271	3.973	4.095	4.026	3.564	3.677	3.874	4.208	3.401	3.972	9.12 19.4794
84	sec-Butylbenzene	6.845	6.467	6.537	6.165	6.138	5.570	5.934	5.860	6.013		6.170	6.32 19.6962
85	p-Isopropyltoluene	4.982	4.670	4.483	4.208	4.407	4.011	4.268	4.060	4.454		4.394	6.93 19.8402
86	1,3-Dichlorobenzene	2.358	2.168	2.115	2.002	2.047	1.927	2.037	1.985	2.204	2.008	2.085	6.15 19.9961
87	1,4-Dichlorobenzene	2.379	2.019	1.958	1.903	1.942	1.756	1.873	1.837	2.027	1.854	1.955	8.73 20.1063
88	n-Butylbenzene	5.550	4.899	5.079	4.650	4.817	4.593	4.886	4.619	4.980	1	4.897	6.06 20.3928
89	1,2-Dichlorobenzene	1.816	1.636	1.646	1.560	1.576	1.448	1.505	1.471	1.578	1.464	1.570	7.08 20.6528
90	1,2-Dibromo-3-chloropropane	0.063	0.069	0.073	0.072	0.076	0.068	0.073	0.073	0.078	0.074	0.072	6.04 21.7696
91	1,2,4-Trichlorobenzene	0.972	0.844	0.786	0.841	0.831	0.798	0.763	0.733	0.817	0.766	0.815	8.11 23.0070
92	Hexachlorobutadiene		0.740	0.722	0.700	0.678	0.604	0.560	0.503	0.559	0.527	0.621	14.43 23.1360
93	Naphthalene	1.249	1.099	1.013	1.042	1.036	0.961	0.917	0.843	0.957	0.895	1.001	11.58 23.4983
94	1,2,3-Trichlorobenzene	0.700	0.631	0.619	0.614	0.617	0.556	0.499	0.460	0.505	0.476	0.568	14.08 23.9168
1													

Spike Amount = Nominal Amount * M Ave_%RSD : 7.5 Max_%RSD : 18.2

Use Least Square Linear Regression with weighting factor of inverse concentration for comps with %_RSD > 15 Resp_Ratio = xo + x1 * Amt_Ratio

IDX	Parameter	x0	x1	CCF
14	Acetone	0.00872	0.02772	0.9996

TYPICAL INSTRUMENT PERFORMANCE CHECK (TUNING)

BFB

Data File	:	D:\HPCHEM\1\DATA\11D07\RDB064.D	Vial: 2	
Acg On	:	7 Apr 2011 7:43 pm	Operator: MW	1
Sample	:	BFB03D04	Inst : TO	103
Misc	:	T/CHECK	Multiplr: 1.	00
MS Integra	at:	ion Params: 524INT.P		
Method	: 1	D:\HPCHEM\1\METHODS\VO03D07.M (RTE	Integrator)	
Title	: 1	METHOD 8260 25mL		

Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail	
50 75 95 173 174 175 176 177	95 95 95 174 95 174 174 174 176	15 30 100 5 0.00 50 5 95 5	40 60 100 9 2 100 9 101 9	22.9 46.4 100.0 6.6 0.0 65.3 7.4 96.7 6.7	20916 42347 91301 6055 0 59619 4406 57635 3884	PASS PASS PASS PASS PASS PASS PASS PASS	

RDB064.D V003D07.M Fri Apr 08 09:01:53 2011

Page 40 of 55 EMAX-8260 Rev. 10 Figures

TYPICAL INSTRUMENT PERFORMANCE CHECK (TUNING) SUMMARY

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	EMAX Inc		Contract:	CLEAN	WATER	PROJECT
Lab	Code:	EMXT	Case No.:	SAS No.:	S	DG No.	: YYMNNN
Lab	File II): RDC521		BFB Injecti	ion Da	te : 0	4/29/14
Inst	rument	ID: 67		BFB Injecti	ion Ti	me : 0	9:52
GC 0	Column:F	RTX502.2ID:0).25mm (mm)	Heated Purg	ge: (Y	/N) N	

L		I		1	% RE	LATIVE	I
L	m/e	I	ION ABUNDANCE CRITERIA	1	ABU	NDANCE	I
ŀ		ŀ		== =			=
L	50	I	15.0 - 40.0% of mass 95			20.69	I
L	75	I	30.0 - 60.0% of mass 95			45.82	I
L	95	I	Base peak, 100% relative abundance		1	00.00	I
L	96	I	5.0 - 9.0% of mass 95	I		6.39	I
L	173	I	Less than 2.0% of mass 174	I	0.00(0.0)1	I
L	174	I	Greater than 50% of mass 95			70.43	I
L	175	I	5.0 - 9.0% of mass 174	I	5.04(7.2)1	I
L	176	I	95.0 - 101.0% of mass 174	I	67.25(95.5)1	I
L	177	I	5.0 - 9.0% of mass 176	I	4.57(6.8)2	I
I_		I.					_1
			1-Value is % mass 174 2-V	alue	is 🖁	mass 17	6

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

					_	
EPA	I LAB	LAB	- I	DATE	L	TIME
SAMPLE NO.	SAMPLE ID	FILE ID		ANALYZED	L	ANALYZED
======================================		== ========	== =		I=	
1 VSTD010	CV067D0914	RDC523	- I	04/29/14	L	11:14
2 MBLK1W	V067D21B	RDC527	- I	04/29/14	Ľ	13:15
3 LCS1W	V067D21L	RDC524	- I	04/29/14	Ľ	11:44
4 LCD1W	V067D21C	RDC525	- I	04/29/14	L	12:15
5 XXX-59XX001	MNNN-02	RDC534	- T	04/29/14	Ľ	16:55
6 XXX-59XX001MS	MNNN-02M	RDC535	- T	04/29/14	Ľ	17:26
7 XXX-59XX001MSD	MNNN-02S	RDC536	1	04/29/14	Ľ	18:57
1	I	I	1		L	I

Figure 6:

TYPICAL INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name : EMAX INC.	Project	2	CLEAN WATER PROJECT
Lab Code : EMXT	SDG No.	2	YYMNNN
Lab File ID : RDC168	Date Analyzed	:	04/09/14
Instrument ID: 67	Time Analyzed	:	18:54
GC Column : RTX502.2ID:0.25mm	(mm) Heated Purge	:	No

		I	IS	1 (1	DI	BF)		IS	2 ((СВ	Z)		IS3	(D	CB)	_ I
		L	AREA	ŧ.	L	RT	ŧ	AREA	ŧ	I.	RT	ŧ	AREA	#	RT	# 1
		=			=				-	=		==	======	==	=====	==
	12 HOUR STD	1	321331		L	8.08		1022177		1	3.17		321226		18.40	1
	UPPER LIMIT	12	642662		L	8.58		2044354		1	3.67		642452		18.90	1
	LOWER LIMIT	L	660666		L	7.58		511089		1	2.67		160613		17.90	1
	=======================================	=		==	=					=		==	======	==	=====	==
	SAMPLE ID	L			L					L			I		I.	1
	=======================================	=		==	=		==			=		==	======	==	=====	==
1	VSTD010	1	155410		L	8.07		908594		1	3.15		276831		18.38	1
2	MBLK1W	1	259632		L	8.07		956984		1	3.15		261376		18.38	1
3	LCS1W	1	216852		L	8.07		957974		1	3.15		290568		18.38	1
4	LCD1W	1	262335		L	8.07		983468		1	3.15		300886		18.38	1
5	XXX-59GW001	11	202358		Ľ	8.07		934767		1	3.16		277693		18.38	1
6	XXX-59GW001MS	1	216852		Ľ	8.07		957974		1	3.17		290568		18.38	1
7	XXX-59GW001MSD	1	262335		Ľ	8.07		983468		1	3.17		300886		18.38	1
		L			L					Ľ					I.	1

```
IS1 (DFB) = 1,4-Difluorobenzene
IS2 (CBZ) = Chlorobenzene-d5
IS3 (DCB) = 1,2-Dichlorobenzene-d4
AREA UPPER LIMIT = + 100% of internal standard area
```

```
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.5 minutes (30 sec) of internal standard RT
RT LOWER LIMIT = - 0.5 minutes (30 sec) of internal standard RT
```

Column used to flag internal standard area values with an asterisk * Values outside of QC limits.

Figure 7:

TYPICAL SAMPLE RESULT SUMMARY

METHOD SW5030C/8260B VOLATILE ORGANICS BY GC/MS

Client : XYZ INC. Project : CLEAN WATER PROJECT Batch No. : YYMNNN Sample ID: XX-59XX001 Lab Samp ID: MNNN-02 Lab File ID: RDC534 Ext Btch ID: V067D21 Calib. Ref.: RDC168		Date Co Date Re Date Ex Date And Dilution Matrix % Moistu: Instrumes	llected: 04/ eceived: 04/ tracted: 04/ alyzed: 04/2 Factor: 1 : WAT re : NA nt ID : 67	28/14 29/14 29/14 16:55 9/14 16:55 ER
	DECILITE	100	DT	TOD
PARAMETERS	(ug/L)	(ug/L)	(ug/L)	(ug/L)
BENZENE	0.11J	1.0	0.10	0.20
BROMODICHLOROMETHANE	ND	1.0	0.10	0.20
BROMOFORM	1.5	1.0	0.15	0.30
BROMOMETHANE	ND	1.0	0.16	0.30
CARBON TETRACHLORIDE	ND	1.0	0.10	0.20
CHLOROBENZENE	ND	1.0	0.10	0.20
CHLOROETHANE	ND	1.0	0.27	0.30
CHLOROFORM	ND	1.0	0.10	0.20
CHLOROMETHANE	ND	2.0	0.15	0.30
DIBROMOCHLOROMETHANE	0.20J	1.0	0.10	0.20
1,2-DICHLOROBENZENE	ND	1.0	0.10	0.20
1,3-DICHLOROBENZENE	ND	1.0	0.11	0.20
1,4-DICHLOROBENZENE	ND	1.0	0.10	0.20
DICHLORODIFLUOROMETHANE (FREON 12)	ND	1.0	0.15	0.30
1,1-DICHLOROETHANE	ND	1.0	0.10	0.20
1,2-DICHLOROETHANE	ND	1.0	0.10	0.20
1,1-DICHLOROETHENE	ND	1.0	0.10	0.20
1,2-DICHLOROETHENE (TOTAL)	0.30J	1.0	0.10	0.20
1,2-DICHLOROPROPANE	ND	1.0	0.10	0.20
TRANS-1, 3-DICHLOROPROPENE	ND	1.0	0.11	0.20
CIS-1, 3-DICHLOROPROPENE	ND	1.0	0.10	0.20
ETHYLBENZENE	ND	1.0	0.10	0.20
METHYLENE CHLORIDE	ND	5.0	0.25	0.50
1,1,2,2-TETRACHLOROETHANE	ND	1.0	0.11	0.20
TETRACHLOROETHENE	0.19J	1.0	0.15	0.20
TOLUENE	62	1.0	0.10	0.20
1,1,1-TRICHLOROETHANE	ND	1.0	0.10	0.20
1,1,2-TRICHLOROETHANE	ND	1.0	0.10	0.20
TRICHLOROFLUOROMETHANE (FREON 11)	ND	1.0	0.15	0.30
TRICHLOROETHENE	14	1.0	0.10	0.20
VINYL CHLORIDE	ND	2.0	0.12	0.20
XYLENES (TOTAL)	ND	1.0	0.10	0.50
SURROGATE PARAMETERS	RESULTS	SPK_AMT	<pre>% RECOVERY</pre>	QC LIMIT
1, Z-DICHLOROETHANE-D4	8.44	10.00	84.4	70-120
4-BROMOFLUOROBENZENE	9.41	10.00	94.1	75-120
TOPOTOFIC TOPOMETUNE	10.3	10.00	103	85-120
DIBRONOFLOOROMEIMANE	9.95	10.00	99.5	85-115

Figure 8:

TYPICAL LCS/LCSD SUMMARY

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ INC. CLEAN WATER PR YYMNNN SW5030C/8260B	OJECT									
				 % мо	TSTURE:	NA					
DILUTION FACTOR:	1	1	1	0 110	IDIONE.						
SAMPLE ID:	MBLK1W										
LAB SAMP ID:	V067D21B	V067D21L	V067D21C								
LAB FILE ID:	RDC527	RDC524	RDC525								
DATE EXTRACTED:	04/29/1413:15 04/20/1413:15	04/29/1411:44	04/29/1412:1	5 DATE	COLLECTEL	D: NA	4				
DALE ANALIZED: DPFD BATCH.	V067D21	V067D21	V067D21	5 DAIL	RECEIVED	. 04/29/1	-				
CALIB. REF:	RDC168	RDC168	RDC168								
ACCESSION:											
		BLNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	MAX RPD
PARAMETER		(ug/L)	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)	(%)	(%)
Benzene			10 0	 9 32	93	10 0	9 17	92		80-120	30
Bromodichlorometl	hane		10.0	9.52	97	10.0	9.17	94	23	75-120	30
Bromoform	nune	ND	10.0	10.1	101	10.0	9.80	98	3	70-130	30
Bromomethane		ND	10.0	10.6	106	10.0	9.80	98	7	30-145	30
Carbon Tetrachlo:	ride	ND	10.0	8.35	83	10.0	8.20	82	2	65-140	30
Chlorobenzene		ND	10.0	9.78	98	10.0	9.68	97	1	80-120	30
Chloroethane		ND	10.0	11.0	110	10.0	10.1	101	8	60-135	30
Chloroform		ND	10.0	9.84	98	10.0	9.56	96	3	65-135	30
Chloromethane		ND	10.0	10.2	102	10.0	9.58	96	7	40-125	30
Dibromochloromet	hane	ND	10.0	9.64	96	10.0	9.49	95	2	60-135	30
1,2-Dichlorobenz	ene	ND	10.0	10.3	103	10.0	10.1	101	2	70-120	30
1,3-Dichlorobenzo	ene	ND	10.0	10.1	101	10.0	9.91	99	2	75-125	30
1,4-Dichlorobenz	ene 	10) ND	10.0	10.0	100	10.0	9.87	99	L C	75-125	30
1 1 Dichlorootho	methane (Freon	12) ND	10.0	9.93	99	10.0	9.39	94	2	30-135	30
1 2-Dichloroetha			10.0	7 97	80	10.0	7 88	90 79	1	70-135	30
1.1-Dichloroethe	ne	ND	10.0	7 58	76	10.0	7.00	74	2	70-130	30
1.2-Dichloroethe	ne (Total)	ND	20.0	17.1	85	20.0	16.6	83	3	70-125	30
1,2-Dichloroprop	ane	ND	10.0	9.90	99	10.0	9.70	97	2	75-125	30
Trans-1, 3-Dichlo:	ropropene	ND	10.0	8.39	84	10.0	8.49	85	1	55-140	30
cis-1,3-Dichloro	propene	ND	10.0	9.23	92	10.0	8.93	89	3	70-130	30
Ethylbenzene		ND	10.0	9.84	98	10.0	9.67	97	2	75-125	30
Methylene Chlorid	de	ND	10.0	8.28	83	10.0	8.40	84	1	55-140	30
1,1,2,2-Tetrachle	oroethane	ND	10.0	10.5	105	10.0	10.3	103	2	65-130	30
Tetrachloroethen	e	ND	10.0	9.31	93	10.0	9.20	92	1	45-150	30
Toluene		ND	10.0	9.57	96	10.0	9.47	95	1	75-120	30
1,1,1-Trichloroe	thane	ND	10.0	8.74	87	10.0	8.56	86	2	65-130	30
1,1,2-Trichloroe	thane (Reason 1	1) ND	10.0	10.3	103	10.0	10.3	103	0	75-125	30
Trichleresthere	echane (Freon 1	.1) ND	10.0	10.8	T08	10.0	9.93	33	9	00-145 70 125	30
Vinvl Chlorido		ND CIM	10.0	9.46 10 9	95 103	10.0	9.19	92	3 7	70-125 50-145	30
Vylenes (Total)		עא תזא	30 0	28 5	45	30 0	28 0	93	2	80-120	30
MITCHED (IOCAT)		ND	50.0	20.3	22	50.0	20.0	22	2	00-120	50

SURROGATE PARAMETER	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	QC LIMIT
	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)
1,2-Dichloroethane-d4	10.0	8.20	82	10.0	8.24	82	70-120
4-Bromofluorobenzene	10.0	9.69	97	10.0	9.70	97	75-120
Toluene-d8	10.0	10.4	104	10.0	10.4	104	85-120

Page 44 of 55 EMAX-8260 Rev. 10 Figures

Figure 9:

TYPICAL MS/MSD SUMMARY

			EMAX QUALIT MS/MSD	Y CONTROL ANALYSIS	DATA						
CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ INC. CLEAN WATER PRO YYMNNN SW5030C/8260B	OJECT									
MATRIX: DILUTION FACTOR: SAMPLE ID:	WATER 1 XXX-59XX001	1 XXX-59XX001MS	1 XXX-59XX0011	% MSD	MOISTURE:	NA					
LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MNNN-02 RDC534 04/29/1416:55 04/29/1416:55 VO67D21 RDC168	MNNN-02M RDC535 04/29/1417:26 04/29/1417:26 V067D21 RDC168	MNNN-02S RDC536 04/29/1418: 04/29/1418: VO67D21 RDC168	15 DA 15 DA	TE COLLECTE TE RECEIVED	D: NA : 04/29/1	4				
ACCESSION:											
PARAMETER		BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RS (ug/L	LT BSD) % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
Benzene Bromodichloromet: Bromodichloromet: Bromoform Bromomethane Carbon Tetrachlo: Chlorobenzene Chloroethane Dibromochlorometi 1,2-Dichlorobenz 1,3-Dichlorobenz 1,1-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Dichloroetha: 1,2-Zichloroetha: 1,2-Zichloroetha: 1,1,2,2-Tetrachlo: Tetrachloroetha: 1,1,2-Trichloroe Tichlorofluorom Trichloroethae Vinyl Chloride Xylenes (Total)	hane ride nane ene ene methane (Freon ne ne foropropene poropene de boroethane e thane thane thane thane (Freon 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 10.0\\ 30.0\\ \end{array}$	9.3 9.6 10. 10. 8.3 9.7 11. 9.8 10. 10. 10. 10. 10. 10. 10. 10. 9.9 9.2 7.9 7.9 7.5 7.9 9.8 8.3 9.2 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10.0\\ 30.0\\ \end{array}$	9. 9. 9. 9. 8. 10 9. 9. 10 9. 9. 10 9. 9. 8. 7. 7. 16 9. 8. 8. 10 9. 9. 28	17 92 37 94 80 98 80 98 80 98 20 82 68 97 .1 101 56 96 58 96 49 95 .1 101 91 99 87 99 39 94 99 90 88 79 41 74 .6 83 70 97 49 85 93 89 67 97 40 84 .3 103 20 92 47 95 56 86 .3 103 93 99 19 92 61 96 .0 93	2 3 3 7 2 1 8 3 7 2 2 2 1 6 3 1 2 3 2 1 2 1 2 1 2 1 2 0 9 3 7 2 3 7 2	80 - 120 75 - 120 70 - 130 30 - 145 65 - 140 80 - 122 60 - 135 40 - 125 60 - 135 40 - 125 70 - 120 75 - 125 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 135 55 - 140 75 - 125 55 - 140 65 - 130 75 - 125 55 - 130 75 - 125 55 - 130 75 - 125 50 - 145 80 - 120	30 30 30 30 30 30 30 30 30 30 30 30 30 3
SURROGATE PARAME	 rer	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	QC LIMIT (%)	=======	====	
1,2-Dichloroetha 4-Bromofluoroben Toluene-d8 Dibromofluoromet	ne-d4 zene hane	10.0 10.0 10.0 10.0	8.20 9.69 10.4 9.92	82 97 104 99	10.0 10.0 10.0 10.0	8.24 9.70 10.4 9.85	82 97 104 98	70-120 75-120 85-120 85-115			

Figure 10:

CASE NARRATIVE

Client : XYZ INC.

Project : CLEAN WATER PROJECT

SDG : YYDNNN

METHOD SW5030C/8260B VOLATILE ORGANICS BY GC/MS

A total of two (2) water samples were received on 04/29/14 for Volatile Organics by GC/MS analysis, Method 5030C/8260B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods and Project QAPP Clean Water Project.

Holding Time Samples were analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were within specification. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Results were compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for VO67D21L/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries and RPDs for MNNN-02M/S were within project QC limits.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

Appendix 1:

SUMMARY OF QUALITY CONTROL PROCEDURES

QC PROCEDURE	FREQUENCY	ACCEPTANCE CRITERIA	CORRECTIVE ACTION		1st Rvw	2 nd Rvw
Check of mass spectral ion intensities using BFB	Prior to initial calibration and calibration verification	Refer to criteria listed in Table 5	Retune instrument and verify			
Multi point Initial Calibration(ICAL) minimum of 5 points	Initially; as needed	SPCCs : RF ≥ 0.1 for Bromoform, Chloromethane and 1,1-Dichloroethane RF ≥ 0.3 for Chlorobenzene and 1,1,2,2-Tetrachloroethane CCCs: RSD ≤ 30% for the following analytes: Chloroform, 1,1-DCE, 1,2-DCP, Ethylbenzene, Toluene and Vinyl Chloride. 1.) if RRF is applied, then RSD ≤ 15% 2.) If 1st order is applied, then r ≥ 0.995 with min 5 pt ICAL 3.) If 2nd order is applied, then r ≥ 0.99 with min 6 pt ICAL	Check for outliers. Otherwise, optimize the inst repeat initial calibration.	rument then		
Initial calibration verification (ICV)	After initial calibration	All analytes within ± 20% of expected value except for the following compounds due to erratic chromatographic behavior: Bromomethane, Chloroethane, Chloromethane, Dichlorodifluoromethane but must be within <u>+</u> 35% of expected value.	Verify second source standard. Prepare fresh st ICV. If that fails, Optimize instrument and repea	andard and rerun at ICAL.		
Evaluation of relative retention times (RRT)	Each sample	Within ± 0.06 RRT units	Correct the problem then reanalyze all samples last retention time check	analyzed since the		
Continuing Calibration verification (CCV)	Daily, before sample analysis and every 12 hours of analysis time	SPCCs: Min. RF same as ICAL CCC : %Diff ≤ 20% (when using RFs) or drift (when using least squares regression or non-linear calibration)	Correct the problem then repeat initial calibrat	ion		
Internal Standard (IS)	All samples	Retention time ± 30 seconds from retention time of the midpoint standard in the ICAL; EICP area within -50% to +100% of ICAL midpoint standard	Inspect mass spectrometer and GC for malfunc reanalysis of samples analyzed while system wa	tions; mandatory as malfunctioning		
Method blank (MB)	One per preparation batch	No analytes detected > ½ LOQ	Rule out instrument contamination by re-analy problem persist refer to PSR. In the absence of and results >10X of the MB concentration. Othe contamination source, re-prep and re-analyze r all associated samples.	zing the MB. If PSR, report NDs erwise, cure nethod blank and		
LCS	One LCS per preparation	Within project QC Limits	Re-prep and re-analyze the LCS and all associate	ed samples		
MS/MSD	One MS/MSD per every 20 project samples per matrix	Within project QC Limits	Check if sample was properly spiked. If indicative interference, discuss in case narrative, otherwise analyze the sample	ve of matrix se re-prep and re-		
Surrogate	Every Sample, MB, LCS, MS/MSD, DCC	Within project QC Limits	Correct the problem then re-analyze			
Comments:				Reviewed by:		
This QCP is applicable in th	ne absence of the PSR			Data		
Report values between LO	D and LOQ. Refer to PSR for Flagging	Criteria.		Date:		

Page 47 of 55 EMAX-8260 Rev. 10 Appendices

Appendix 2:

DEMONSTRATION OF CAPABILITY for 25 ml

Unit:	μg/L							D;	ate Anal	yzed: 01/3	1 & 02/01/12
Sample Amount(mi):	25	_							Analyze	d by: D. Ng	guyen
Sample Purge(mil):	25	•									
	RAY133	RAY134	RBY004	RBY005	Tau	Aure	Au an	Seal.			
PARAMETER	VOE5A10L	VOE5A10C	VOE58011	VOESB01C	Value	Conc.	% Rec.	Dev.	RSD	QC Criteria	Comments
	VOIDHIDE	10134100	101 50510	10130010					-		
Acetone	46.2	49.8	45.0	49.4	50	47.6	95	2.378	5	60 - 130	Passed
Acetonitrile	83.4	86.1	86.7	83.0	100	85.5	85	2.632	3	50-130	Passed
Acrolein	47.0	50.2	42.0	48.0	50	46.8	94	3.502	7	10-160	Passed
Acrylonitrile	50.0	52.1	45.0	51.3	50	49.6	99	3.188	6	60 - 150	Passed
Benzene	9.39	10.0	9.71	9.62	10	9.69	97	0.255	3	70-130	Passed
Bromobenzene	9.65	10.4	9.85	10.1	10	10.0	100	0.344	3	70-130	Passed
Bromochloromethane	9.08	9.78	9.18	9.48	10	9.4	94	0.315	3	70-130	Passed
Bromodichloromethane	9.58	10.1	9.81	10.0	10	9.9	99	0.239	2	70 - 130	Passed
Bromoform	9.70	10.3	9.00	10.0	10	9.76	98	0.568	6	60 - 130	Passed
Bromomethane	9.49	10.2	10.6	10.3	10	10.14	101	0.465	5	50 - 140	Passed
tert-Butyl alcohol	51.8	54.4	42.6	48.4	50	49.3	99	5.096	10	50 - 150	Passed
2-Butanone (MEK)	49.3	51.8	42.1	50.5	50	48.4	97	4.344	9	70 - 130	Passed
n-Butylbenzene	10.0	10.8	11.1	10.4	10	10.6	106	0.472	4	70 - 130	Passed
sec-Butylbenzene	9.94	10.8	10.8	10.5	10	10.5	105	0.397	4	70 - 130	Passed
tert-Butylbenzene	8.78	9.46	9.31	8.95	10	9.1	91	0.315	3	70 - 130	Passed
Carbon disulfide	9.24	10.2	8.45	8.74	10	9.15	92	0.755	8	50 - 130	Passed
Carbon tetrachloride	9.24	10.0	10.0	9.65	10	9.7	97	0.343	4	60 - 130	Passed
Chlorobenzene	9.08	9.68	9.39	9.22	10	9.3	93	0.257	3	70 - 130	Passed
2-Chloroethyl vinyl ether	9.55	9.91	8.16	9.38	10	9.3	93	0.760	8	10 - 160	Passed
Chloroethane	9.11	9.81	9.89	10.1	10	9.72	97	0.414	4	60 - 130	Passed
Chloroform	9.02	9.65	9.54	9.39	10	9.4	94	0.272	3	70 - 130	Passed
1-Chlorohexane	8.77	9.38	9.10	8.85	10	9.0	90	0.278	3	70 - 130	Passed
Chloromethane	9.12	9.52	9.39	9.53	10	9.39	94	0.191	2	50 - 130	Passed
2-Chlorotoluene	9.86	10.7	10.1	10.7	10	10.3	103	0.433	4	70 - 130	Passed
4-Chlorotoluene	9.70	10.4	11.1	9.9	10	10.3	103	0.611	6	70 - 130	Passed
Isopropyl ether (DIPE)	9.76	10.4	9.33	9.68	10	9.8	98	0.435	4	70 - 130	Passed
Dibromochloromethane	9.85	10.4	9.62	10.2	10	10.0	100	0.346	3	70 - 130	Passed
1,2-Dibromo-3-chloropropane	9.14	9.80	8.25	8.90	10	9.02	90	0.641	7	60 - 130	Passed
1,2-Dibromoethane	9.90	10.5	9.39	10.2	10	10.0	100	0.487	5	70 - 130	Passed
Dibromomethane	9.82	10.3	8.87	9.58	10	9.6	96	0.584	6	70 - 130	Passed
1,1-Dichloroethane	9.15	9.83	9.42	9.31	10	9.4	94	0.292	3	70 - 130	Passed
1,2-Dichloroethane	9.45	10.0	9.52	9.89	10	9.7	97	0.261	3	70 - 130	Passed
1,2-Dichlorobenzene	8.98	9.68	9.33	9.26	10	9.3	93	0.290	3	70 - 130	Passed
1,3-Dichlorobenzene	9.61	10.4	9.92	9.88	10	9.9	99	0.327	3	70 - 130	Passed
trans-1,4-Dichloro-2-Butene	10.6	11.5	9.58	10.8	10	10.6	106	0.812	8	50 - 140	Passed
1,4-Dichlorobenzene	9.82	10.6	10.1	10.1	10	10.2	102	0.340	3	70 - 130	Passed
Dichlorodifluoromethane	9.14	10.0	9.22	9.67	10	9.50	95	0.383	4	50 - 140	Passed
1,1-Dichloroethene	9.17	9.8	9.40	9.27	10	9.4	94	0.289	3	60 - 130	Passed
cis-1,2-Dichloroethene	9.40	10.1	9.71	9.60	10	9.7	97	0.285	3	70 - 130	Passed
trans-1,2-Dichloroethene	9.27	9.83	9.34	9.21	10	9.4	94	0.282	3	60 - 130	Passed
Dichlorofluoromethane	8.27	9.12	9.84	9.25	10	9.12	91	0.646	7	70 - 130	Passed
1,1-Dichloropropene	9.42	10.2	9.79	9.72	10	9.8	98	0.319	3	70 - 130	Passed
1,2-Dichloropropane	9.43	10.0	9.48	9.68	10	9.6	96	0.256	3	70 - 130	Passed
1,3-Dichloropropane	9.82	10.4	9.54	10.1	10	10.0	100	0.359	4	70 - 130	Passed

Appendix 2 (cont.):

DEMONSTRATION OF CAPABILITY for 25 ml

Unit:	μg/L							D:	ate Anal	yzed: 01/3	1 & 02/01/12
Sample Amount(ml):	25								Analyze	ed by: D. Ng	uyen
Sample Purse(ml):	25								-		
Sample Lange(m).	RAY133	RAV134	RBY004	RBY005	T		A	6 .4			
PARAMETER	VOE5410L	VOF5A10C	VOE5B01L	VOE5B01C	Value	Conc.	% Rec.	Dev.	RSD	QC Criteria	Comments
2.2-Dichloropropane	9.07	10.4	10.2	9.65	10	9.8	98	0.598	6	60 - 140	Passed
cis-1,3-Dichloropropene	10.0	10.7	10.0	10.3	10	10.3	103	0.339	3	70 - 130	Passed
trans-1,3-Dichloropropene	9.30	9.75	9.06	9.42	10	9.4	94	0.288	3	70 - 130	Passed
tert-Butyl ethyl ether (ETB	11.1	11.8	10.1	10.8	10	11.0	110	0.685	6	70 - 130	Passed
Ethyl Methacrylate	9.30	9.68	8.15	9.21	10	9.1	91	0.656	7	70 - 130	Passed
Ethylbenzene	9.47	10.1	10.0	9.68	10	9.8	98	0.300	3	70 - 130	Passed
2-Hexanone (MBK)	50.6	52.3	42.7	50.6	50	49.0	98	4.298	9	70 - 140	Passed
Hexachlorobutadiene	8.21	8.92	8.99	8.06	10	8.6	86	0.469	5	70 - 130	Passed
lodomethane	9.16	10.0	9.31	9.21	10	9.43	94	0.417	4	50 - 150	Passed
Isopropylbenzene	10.4	11.2	11.0	10.8	10	10.9	109	0.380	3	70 - 130	Passed
p-lsopropyitoluene	10.1	11.0	11.0	10.4	10	10.6	106	0.423	4	70 - 130	Passed
Methylene Chloride	8.56	9.09	8.74	8.87	10	8.8	88	0.225	3	60 - 130	Passed
4-Methyl-2-pentanone (MIBK)	52.9	54.7	45.5	53.6	50	51.7	103	4.184	8	70 - 130	Passed
tert-Butyl methyl ether	10.1	10.7	8.99	10.1	10	10.0	100	0.723	7	60 - 130	Passed
Naphthalene	10.3	10.7	9.41	9.88	10	10.07	101	0.565	6	50 - 140	Passed
n-Propylbenzene	10.6	11.4	11.2	11.1	10	11.1	111	0.369	3	70 - 130	Passed
Styrene	9.63	10.4	10.0	9.8	10	10.0	100	0.311	3	70 - 130	Passed
tert-Amyl methyl ether (TAME)	11.3	12.0	10.2	11.1	10	11.1	111	0.747	7	60 - 140	Passed
1,1,1,2-Tetrachloroethane	9.32	9.91	9.59	9.54	10	9.6	96	0.246	3	70 - 130	Passed
1,1,2,2-Tetrachloroethane	9.92	10.6	9.52	10.5	10	10.1	101	0.501	5	60 - 130	Passed
Tetrachloroethene	9.08	9.77	9.50	9.01	10	9.3	93	0.356	4	60 - 130	Passed
Toluene	9.68	10.3	10.1	9.94	10	10.0	100	0.262	3	70 - 130	Passed
1,1,1-Trichloroethane	8.83	10.0	10.2	9.52	10	9.6	96	0.591	6	70 - 130	Passed
1,1,2-Trichloroethane	9.67	10.1	9.45	10.1	10	9.8	98	0.346	4	70 - 130	Passed
1,2,3-Trichlorobenzene	8.77	9.14	8.46	8.40	10	8.7	87	0.339	4	60 - 130	Passed
1,2,4-Trichlorobenzene	9.04	9.63	8.93	8.60	10	9.1	91	0.432	5	60 - 140	Passed
Trichloroethene	9.21	9.93	9.42	9.29	10	9.5	95	0.326	3	70 - 130	Passed
Trichlorofluoromethane	9.06	9.62	10.1	10.3	10	9.76	98	0.544	6	60 - 140	Passed
1,2,3-Trichloropropane	9.93	10.5	9.45	10.6	10	10.1	101	0.524	5	70 - 130	Passed
1,1,2-Trichloro1,2,2-trifluoroethane	8.70	9.49	9.45	9.05	10	9.2	92	0.376	4	60 - 150	Passed
1,2,4-Trimethylbenzene	9.8	10.6	10.6	10.2	10	10.3	103	0.374	4	70 - 130	Passed
1,3,5-Trimethylbenzene	9.9	10.7	10.5	10.2	10	10.3	103	0.335	3	70 - 130	Passed
Vinyl Acetate	10.9	11.0	9.68	11.1	10	10.66	107	0.662	6	40 - 150	Passed
Vinyl Chloride	8.26	8.56	9.02	9.01	10	8.71	87	0.372	4	60 - 130	Passed
m-Xylene & p-xylene	19.2	20.6	20.4	19.6	20	19.9	100	0.633	3	60 - 140	Passed
o-Xylene	8.80	9.41	9.18	8.93	10	9.1	91	0.270	3	70 - 130	Passed
1,2-Dichloroethane-d4	10.0	10.0	9.9	10.3	10	10.05	101	0.200	2	70 - 130	Passed
Toluene-d8	10.3	10.3	10.4	10.3	10	10.32	103	0.046	0.5	70 - 130	Passed
4-Bromofluorobenzene	10.6	10.6	10.5	10.9	10	10.68	107	0.189	2	70 - 130	Passed
Dibromofluoromethane	10.0	9.93	10.1	10.2	10	10.06	101	0.105	1	70 - 130	Passed

Appendix 3:

DEMONSTRATION OF CAPABILITY for 5 ml

Unit:	μg/L							D	ate Anal	01/0 yzed: 01/0	7/13 & 8/13
Sample Amount(ml):	5								Analyze	ed by: <u>C. M</u>	endoza
Sample Purge(ml):	5										
PARAMETER	RAN044 VSF4A07L	RAN045 VSF4A07C	RAN058 VSF4A08L	RAN059 VSF4A08C	True Value	Ave. Conc.	Ave. % Rec.	Std. Dev.	RSD	QC Criteria	Comments
Acetone	261	261	275	272	250	267	107	7.569	3	60 130	Passed
Acetonitrile	540	546	510	533	500	532	106	15.685	3	30 160	Passed
Acrolein	334	330	337	325	250	331	133	5.396	2	30 160	Passed
Acrylonitrile	269	270	278	271	250	272	109	4.119	2	70 130	Passed
Benzene	51.0	52.3	48.2	49.6	50	50.3	101	1.744	3	70 130	Passed
Bromobenzene	46.8	48.0	45.4	46.2	50	46.6	93	1.104	2	70 130	Passed
Bromochloromethane	51.7	52.2	50.7	51.2	50	51.5	103	0.611	1	70 130	Passed
Bromodichloromethane	49.5	50.8	48.4	49.2	50	49.5	99	1.022	2	70 130	Passed
Bromoform	47.8	48.6	45.6	47.5	50	47.4	95	1.282	3	70 130	Passed
Bromomethane	54.8	51.5	50.4	50.5	50	51.8	104	2.076	4	60 130	Passed
tert-Butyl alcohol	281	285	255	271	250	273	109	13.989	5	60 140	Passed
2-Butanone (MEK)	279	278	284	282	250	281	112	3.049	1	70 130	Passed
n-Butylbenzene	53.8	54.5	49.7	50.6	50	52.2	104	2.387	5	70 130	Passed
sec-Butylbenzene	52.0	52.5	47.9	49.4	50	50.5	101	2.181	4	70 130	Passed
tert-Butylbenzene	52.4	52.3	48.2	49.6	50	50.6	101	2.047	4	70 130	Passed
Carbon disulfide	48.2	46.9	44.2	46.0	50	46.4	93	1.669	4	60 130	Passed
Carbon tetrachloride	52.9	53.1	49.7	51.2	50	51.7	103	1.588	3	70 130	Passed
Chlorobenzene	49.3	50.2	47.1	47.9	50	48.6	97	1.402	3	70 130	Passed
2-Chloroethyl vinyl ether	50.1	49.7	36.4	38.4	50	43.7	87	7.258	17	50 150	Passed
Chloroethane	58.5	52.1	53.0	53.1	50	54.2	108	2.944	5	70 130	Passed
Chloroform	52.1	52.6	50.9	51.3	50	51.7	103	0.749	1	70 130	Passed
1-Chlorohexane	56.0	56.6	50.6	51.8	50	53.7	107	2.974	6	70 130	Passed
Chloromethane	53.8	48.8	48.5	50.0	50	50.3	101	2.456	5	60 130	Passed
2-Chlorotoluene	49.0	48.9	45.9	46.6	50	47.6	95	1.619	3	70 130	Passed
4-Chlorotoluene	51.9	53.0	49.5	49.8	50	51.1	102	1.675	3	70 130	Passed
2-Chloro-1,1,1-trifluoroethane	54.6	53.8	51.2	54.3	50	53.5	107	1.562	3	30 160	Passed
Chlorotrifluoroethylene	46.4	44.7	41.6	45.6	50	44.6	89	2.093	5	30 160	Passed
Dibromochloromethane	48.4	49.7	47.4	47.9	50	48.4	97	1.017	2	70 130	Passed
1,2-Dibromo-3-chloropropane	47.1	47.9	44.3	45.6	50	46.2	92	1.577	3	60 130	Passed
1,2-Dibromoethane	49.2	50.7	47.3	48.4	50	48.9	98	1.452	3	70 130	Passed
Dibromomethane	48.1	49.6	47.1	48.3	50	48.3	97	1.022	2	70 130	Passed
1,1-Dichloroethane	55.3	55.9	52.7	53.4	50	54.3	109	1.554	3	70 130	Passed
1,2-Dichloroethane	49.5	50.1	48.7	49.8	50	49.5	99	0.593	1	70 130	Passed
1,2-Dichlorobenzene	47.0	47.6	45.5	45.6	50	46.4	93	1.064	2	70 130	Passed
1,3-Dichlorobenzene	48.6	49.3	45.9	46.2	50	47.5	95	1.704	4	70 130	Passed
trans-1,4-Dichloro-2-Butene	51.0	50.7	48.7	50.0	50	50.1	100	1.012	2	70 130	Passed
1,4-Dichlorobenzene	49.0	49.7	46.6	46.7	50	48.0	96	1.599	3	70 130	Passed
Dichlorodifluoromethane	51.3	47.0	46.7	47.4	50	48.1	96	2.151	4	60 130	Passed
1,1-Dichloroethene	58.3	58.5	54.2	55.1	50	56.5	113	2.189	4	70 130	Passed
cis-1,2-Dichloroethene	53.3	53.5	50.9	51.2	50	52.2	104	1.358	3	70 130	Passed
trans-1,2-Dichloroethene	55.7	55.7	51.9	52.8	50	54.0	108	1.960	4	70 130	Passed
Dichlorofluoromethane	56.9	57.0	54.7	55.1	50	55.9	112	1.234	2	70 130	Passed
1,1-Dichloropropene	53.1	53.5	48.5	49.7	50	51.2	102	2.483	5	70 130	Passed
1,2-Dichloropropane	51.0	52.2	48.8	50.4	50	50.6	101	1.413	3	70 130	Passed

Appendix 3 (cont.):

DEMONSTRATION OF CAPABILITY for 5 ml

										01/0	7/13 &
Unit:	μg/L							D	ate Anal	yzed: 01/0	8/13
Sample Amount(ml):	5								Analyze	d by: <u>C. M</u>	endoza
Sample Purge(ml):	5										
D40445770	RAN044	RAN045	RAN058	RAN059	True	Ave.	Ave.	Std.		000.0	· · · ·
PARAMETER	VSF4A07L	VSF4A07C	VSF4A08L	VSF4A08C	Value	Conc.	% Rec.	Dev.	RSD	QC Criteria	Comments
1.3-Dichloropropane	49.4	50.8	47.8	49.3	50	49.3	99	1.251	3	70 130	Passed
2,2-Dichloropropane	57.2	57.1	54.0	54.5	50	55.7	111	1.706	3	70 140	Passed
cis 1,3 Dichloropropene	51.3	52.8	49.1	50.4	50	50.9	102	1.548	3	70 130	Passed
trans-1,3-Dichloropropene	51.2	52.4	49.6	50.5	50	50.9	102	1.191	2	70 130	Passed
tert-Butyl ethyl ether (ETB	56.5	57.2	53.8	55.1	50	55.7	111	1.523	3	70 130	Passed
Ethyl Methacrylate	52.9	53.6	49.9	51.0	50	52	104	1.679	3	30 160	Passed
Ethylbenzene	51.6	52.9	48.5	49.6	50	50.7	101	1.946	4	70 130	Passed
2-Hexanone (MBK)	275	275	284	277	250	278.0	111	4.403	2	70 130	Passed
Hexachlorobutadiene	47.3	49.2	45.7	45.1	50	46.8	94	1.814	4	70 130	Passed
lodomethane	40.7	39.4	36.9	39.0	50	39.0	78	1.595	4	60 130	Passed
Isopropyl ether (DIPE)	57.2	58.2	54.5	56.0	50	56.5	113	1.595	3	70 130	Passed
Isopropylbenzene	52.1	52.3	48.0	49.5	50	50.5	101	2.093	4	70 130	Passed
p-isopropyitoluene	52.4	53.0	48.7	49.2	50	51	102	2.199	4	70 130	Passed
Methyl acetate	52.9	52.1	54.2	55.6	50	53.7	107	1.525	3	30 160	Passed
Methylene Chloride	50.4	51.6	49.6	50.2	50	50.5	101	0.856	2	70 130	Passed
4-Methyl-2-pentanone (MIBK)	278	279	283	276	250	278.7	111	2.713	1	70 130	Passed
tert-Butyl methyl ether	54.7	55.3	52.6	53.8	50	54.1	108	1.140	2	70 130	Passed
Naphthalene	43.7	44.3	40.8	39.8	50	42.2	84	2.180	5	60 140	Passed
n-Propylbenzene	51.9	52.3	47.9	49.3	50	50.4	101	2.098	4	70 130	Passed
Styrene	51.6	53.2	49.6	50.4	50	51.2	102	1.553	3	70 130	Passed
tert-Amyl methyl ether (TAME)	55.3	56.0	53.3	54.2	50	54.7	109	1.212	2	70 130	Passed
1,1,1,2-Tetrachloroethane	48.7	50.4	47.5	48.2	50	48.7	97	1.250	3	30 160	Passed
1,1,2,2-Tetrachloroethane	49.1	49.2	45.7	47.4	50	47.9	96	1.652	3	30 160	Passed
Tetrachloroethene	50.6	51.2	47.0	48.0	50	49.2	98	2.014	4	70 130	Passed
Toluene	51.3	52.4	48.6	49.7	50	50.5	101	1.718	3	70 130	Passed
1,1,1-Trichloroethane	55.0	55.2	52.6	52.9	50	53.9	108	1.405	3	30 160	Passed
1,1,2-Trichloroethane	48.3	50.1	46.3	48.0	50	48.2	96	1.553	3	30 160	Passed
1,2,3-Trichlorobenzene	48.0	49.6	46.0	44.8	50	47.1	94	2.140	5	70 130	Passed
1,2,4-Trichlorobenzene	50.8	51.5	46.7	45.5	50	48.6	97	2.965	6	70 130	Passed
Trichloroethene	50.7	51.5	47.7	48.3	50	49.5	99	1.834	4	70 130	Passed
Trichlorofluoromethane	61.7	55.1	54.8	55.3	50	56.7	113	3.322	6	70 140	Passed
1,2,3-Trichloropropane	47.8	47.7	45.6	47.4	50	47.1	94	1.036	2	70 130	Passed
1,1,2-Trichloro1,2,2-trifluoroethane	57.4	56.8	52.9	53.6	50	55.2	110	2.264	4	70 - 130	Passed
1,2,4-Trimethylbenzene	51.5	52.0	48.2	49.2	50	50.2	100	1.810	4	70 130	Passed
1,3,5-Trimethylbenzene	51.7	52.3	48.0	49.2	50	50.3	101	2.016	4	70 130	Passed
Vinyl Acetate	65.3	59.2	58.1	58.5	50	60.3	121	3.366	6	50 140	Passed
Vinyl Chloride	59.8	52.9	54.5	54.5	50	55.4	111	3.040	5	70 140	Passed
m-Xylene & p-xylene	103	105	97.0	98.7	100	101.0	101	3.765	4	70 130	Passed
o-Xylene	52.3	53.5	49.4	50.7	50	51.5	103	1.786	3	70 130	Passed
Allyl Chloride	57.3	58.3	54.1	55.5	50	56.3	113	1.869	3	30 160	Passed

Page 51 of 55 EMAX-8260 Rev. 10 Appendices

Appendix 4:

DEMONSTRATION OF CAPABILITY for 5 g

Unit:	µg/Kg							Da	ate Anal	yzed: 03/2	0 & 03/21/12
Sample Amount(g):	5								Analyze	d by: C. M	endoza
Sample Purse(mi):	5	•									
Sample Forgelini).	RCP061	RCP062	RCP086	RCP087	Taur	A	4.4	6			
PARAMETER	V002004I	W0000040	1002006	V0020060	Value	Conc.	% Rec.	Dev.	RSD	QC Criteria	Comments
	V002004E	V002C04C	VOUZCOBE	V0020060							
Acetone	259	264	288	281	250	273	109	14.005	5	40 - 140	Passed
Acetonitrile	480	506	528	546	500	515	103	28.361	6	50 - 150	Passed
Acrylonitrile	240	245	275	268	250	257	103	17.133	7	10 - 160	Passed
Benzene	50.1	49.3	49.9	49.6	50	49.7	99	0.364	1	70 - 130	Passed
Bromobenzene	49.3	47.4	48.9	49.1	50	48.7	97	0.838	2	70 - 130	Passed
Bromochloromethane	52.6	53.3	55.0	56.1	50	54.2	108	1.592	3	70 - 130	Passed
Bromodichloromethane	50.1	49.8	51.8	52.2	50	51.0	102	1.207	2	70 - 130	Passed
Bromoform	49.2	49.2	50.3	49.6	50	49.6	99	0.501	1	70 - 130	Passed
Bromomethane	46.4	46.6	45.4	46.7	50	46.3	93	0.585	1	60 - 130	Passed
tert-Butyl alcohol	254	266	274	285	250	270	108	13.169	5	40 - 150	Passed
2-Butanone (MEK)	246	251	271	260	250	257	103	11.327	4	60 - 140	Passed
n-Butylbenzene	53.2	51.3	52.5	53.9	50	52.7	105	1.105	2	70 - 130	Passed
sec-Butylbenzene	52.1	51.3	51.9	52.3	50	51.9	104	0.441	1	70 - 130	Passed
tert-Butylbenzene	48.4	48.0	48.7	49.4	50	48.6	97	0.572	1	70 - 130	Passed
Carbon disulfide	48.1	49.8	52.1	42.5	50	48.1	96	4.087	8	60 - 130	Passed
Carbon tetrachloride	52.5	51.2	52.2	51.2	50	51.8	104	0.666	1	70 - 130	Passed
Chlorobenzene	51.3	51.3	49.8	51.2	50	50.9	102	0.728	1	70 - 130	Passed
2-Chloroethyl vinyl ether	57.8	57.8	51.8	51.2	50	54.6	109	3.681	7	50 - 140	Passed
Chloroethane	55.0	56.1	52.3	53.3	50	54.2	108	1.696	3	70 - 140	Passed
Chloroform	55.4	55.5	53.0	54.3	50	54.5	109	1.171	2	70 - 130	Passed
1-Chlorohexane	53.3	51.9	51.8	52.2	50	52.3	105	0.678	1	70 - 130	Passed
Chloromethane	49.5	51.4	50.8	52.4	50	51.0	102	1.201	2	60 - 130	Passed
2-Chlorotoluene	44.7	48.4	45.5	48.0	50	46.6	93	1.814	4	70 - 130	Passed
4-Chlorotoluene	57.2	51.0	56.4	52.5	50	54.3	109	3.031	6	60 - 130	Passed
Dibromochloromethane	49.5	49.7	51.1	52.9	50	50.8	102	1.574	3	70 - 130	Passed
1,2-Dibromo-3-chloropropane	44.9	46.0	47.8	48.2	50	46.7	93	1.570	3	60 - 130	Passed
1,2-Dibromoethane	47.2	48.1	50.3	50.4	50	49.0	98	1.600	3	70 - 130	Passed
Dibromomethane	48.8	48.5	49.8	50.6	50	49.4	99	0.957	2	70 - 130	Passed
1,1-Dichloroethane	55.4	55.2	54.5	55.8	50	55.2	110	0.518	1	70 - 130	Passed
1,2-Dichloroethane	51.3	50.9	51.7	51.1	50	51.3	103	0.310	1	70 - 130	Passed
1,2-Dichlorobenzene	50.3	50.3	49.0	50.0	50	49.9	100	0.602	1	70 - 130	Passed
1,3-Dichlorobenzene	50.6	50.0	50.0	50.8	50	50.3	101	0.429	1	70 - 130	Passed
trans-1,4-Dichloro-2-Butene	48.8	47.7	53.8	52.2	50	50.6	101	2.848	6	60 - 140	Passed
1,4-Dichlorobenzene	51.7	51.0	49.8	50.8	50	50.8	102	0.775	2	70 - 130	Passed
Dichlorodifluoromethane	66.9	67.2	58.9	59.2	50	63.1	126	4.620	7	60 - 130	Passed
1,1-Dichloroethene	51.9	53.0	52.1	54.3	50	52.8	106	1.104	2	60 - 130	Passed
cis-1,2-Dichloroethene	49.5	49.2	53.0	54.8	50	51.6	103	2.725	5	70 - 130	Passed
trans-1,2-Dichloroethene	53.2	52.2	54.2	55.1	50	53.7	107	1.267	2	70 - 130	Passed
Dichlorofluoromethane	49.3	51.4	53.2	56.7	50	52.6	105	3.134	6	70 - 130	Passed
1,1-Dichloropropene	51.5	49.7	50.8	50.5	50	50.6	101	0.753	1	70 - 130	Passed
1.2-Dichloropropane	50.5	49.7	52.0	51.8	50	51.0	102	1.108	2	70 - 130	Passed
1.3-Dichloropropane	47.6	47.9	50.9	51.5	50	49.5	99	2.010	4	70 - 130	Passed
2.2-Dichloropropane	56.3	55.0	54.4	55.9	50	55.4	111	0.857	2	60 - 140	Passed
cis-1.3-Dichloropropene	51.7	51.3	52.3	52.4	50	52.0	104	0.517	1	70 - 130	Passed

Appendix 4 (cont.):

DEMONSTRATION OF CAPABILITY for 5 g

Unit:	μg/Kg							Da	ate Anal	yzed: 03/2	0 & 03/21/12
Sample Amount(g):	5								Analyze	d by: C. M	endoza
Sample Puree(ml):	5										
Service engelinity.	RCP061	RCP062	RCP066	RCP087	Tau	Au e	Aur	5 m.d			
PARAMETER	V002C04L	V002C04C	VO02C06L	V002C06C	Value Conc. % Rec.		% Rec.	Dev.	RSD	QC Criteria	Comments
trans-1,3-Dichloropropene	52.6	52.3	53.1	53.7	50	52.9	106	0.623	1	70 - 130	Passed
1,4-Dioxane	878	878	947	958	1000	915	92	43.314	5	50 - 150	Passed
tert-Butyl ethyl ether (ETBE)	54.0	53.9	54.2	55.2	50	54.3	109	0.617	1	70 - 130	Passed
Ethyl Methacrylate	49.5	49.8	51.2	51.4	50	50.5	101	0.964	2	70 - 130	Passed
Ethylbenzene	50.5	50.8	50.7	51.3	50	50.8	102	0.355	1	70 - 130	Passed
2-Hexanone (MBK)	241	247	270	256	250	253	101	12.291	5	20 - 160	Passed
Hexachlorobutadiene	52.6	48.4	49.6	49.2	50	49.9	100	1.873	4	70 - 130	Passed
lodomethane	61.3	61.7	50.7	52.5	50	56.6	113	5.760	10	60 - 140	Passed
Isopropyl ether (DIPE)	53.2	53.2	54.7	55.5	50	54.2	108	1.156	2	70 - 130	Passed
Isopropylbenzene	55.9	53.8	51.7	50.4	50	52.9	106	2.417	5	70 - 130	Passed
p-Isopropyitoluene	53.6	52.7	51.5	51.5	50	52.3	105	1.040	2	70 - 130	Passed
Methylene Chloride	48.6	49.4	49.9	51.6	50	49.9	100	1.276	3	70 - 130	Passed
4-Methyl-2-pentanone (MIBK)	243	249	266	253	250	253	101	9.792	4	50 - 150	Passed
tert-Butyl methyl ether	51.2	51.8	52.3	53.4	50	52.2	104	0.957	2	70 - 130	Passed
Naphthalene	49.7	47.2	48.9	48.7	50	48.6	97	1.018	2	60 - 140	Passed
n-Propylbenzene	50.2	48.4	51.1	49.9	50	49.9	100	1.136	2	70 - 130	Passed
Styrene	52.6	53.1	51.7	53.0	50	52.6	105	0.637	1	70 - 130	Passed
tert-Amyl methyl ether (TAME)	51.9	52.9	52.4	53.9	50	52.8	106	0.850	2	70 - 130	Passed
1,1,1,2-Tetrachloroethane	50.7	51.8	50.8	52.0	50	51.3	103	0.670	1	70 - 130	Passed
1,1,2,2-Tetrachloroethane	48.3	48.6	50.5	49.7	50	49.3	99	1.013	2	70 - 130	Passed
Tetrachloroethene	52.5	50.5	50.0	50.2	50	50.8	102	1.184	2	70 - 130	Passed
Toluene	49.9	49.3	50.1	50.1	50	49.9	100	0.359	1	70 - 130	Passed
1,1,1-Trichloroethane	55.4	55.0	53.7	54.8	50	54.7	109	0.756	1	70 - 130	Passed
1,1,2-Trichloroethane	49.6	49.4	50.3	51.7	50	50.2	100	1.049	2	70 - 130	Passed
1,2,3-Trichlorobenzene	52.9	49.1	50.9	50.8	50	50.9	102	1.545	3	70 - 130	Passed
1,2,4-Trichlorobenzene	56.6	52.9	52.3	54.2	50	54.0	108	1.911	4	70 - 140	Passed
Trichloroethene	51.4	50.6	49.6	49.4	50	50.3	101	0.955	2	70 - 130	Passed
Trichlorofluoromethane	63.3	61.5	57.5	55.8	50	59.6	119	3.486	6	70 - 140	Passed
1,2,3-Trichloropropane	45.2	45.3	48.9	48.3	50	46.9	94	1.942	4	70 - 130	Passed
1,1,2-Trichloro1,2,2-trifluoroethane	57.2	58.5	50.7	54.4	50	55.2	110	3.450	6	70 - 140	Passed
1,2,4-Trimethylbenzene	52.6	51.3	51.3	51.4	50	51.7	103	0.647	1	70 - 130	Passed
1,3,5-Trimethylbenzene	50.7	49.9	51.0	51.1	50	50.7	101	0.516	1	70 - 130	Passed
Vinyl Acetate	50.9	47.8	59.8	57.1	50	53.9	106	5.524	10	20 - 160	Passed
Vinyl Chloride	55.2	57.3	51.7	52.9	50	54.3	109	2.495	5	60 - 140	Passed
m-Xylene & p-xylene	102	101	101	104	100	102.0	102	1.343	1	70 - 130	Passed
o-Xylene	49.9	50.3	51.3	52.6	50	51.0	102	1.217	2	70 - 130	Passed

Page 53 of 55 EMAX-8260 Rev. 10 Forms

8260FS:

SAMPLE PREPARATION LOG

EMAX PRESERVATION LOG FOR VOLATILES LABORATORIES, INC. PRESERVATION LOG FOR VOLATILES											
PrepBatchID	Lab Sample ID	W1 (g)	DateTime	Wf (g)	DateTime	ExpWs(g)	Ws(g)	Prep⊡Factor	Comments		
EMAX-5035 Rev.	EMAX-5035 Rev. Balance Calibration Check performed prior to use Surrogate ID:										
	Balan	reID 25451062	east performed phot		Surrogate ID:			Frepared By			
Encore+NaHSO ₄ •I					BlankSoil Lot#:		S	tandard Added By			
Frozen Sample	🔄 Balan	ein 25650/97			NaHSO4H2O:			Witnessed By			
Pre-weighed via	l				Expected Ws(g):		5	Extract Rcvd By			
Volumetric disper	nser was checked with 5-m	l volumetric flask						Sample Location			

W1=Weight of Vial + Stirrer+NaHSO4•H2O+Solvent Wf=W1 + Sample

ANALYSIS LOG FOR VOLATILES

50P 🛛 EMAX-8260 Rev.No. _ 🗋 EMAX-624 Rev.No. _ 📄 EMAX-82605IM Rev.No. _ 📄 EMAX-TCP5IM Rev.No. _ 📄 EMAX-M82605IM Rev.No. _ 📄 EMAX-8260C Rev. No. _

Start D	ate:		□ 5-mL Purge □ 10-mL Purge	🗆 25-mL	Purge						Boo	k # A06	-053
	Sample						Matrix				Instrument No.	0	6
	Prep	Data File Name	Lab Sample ID	Sample	DF	,	w	-	Notes		INITIAL CALIBRATION REFERENCE		
	ID	rile Name		Amount		рн < 2	Cl ₂	s		DATE			
	01									ICAL ID			
	02										STANDARDS		
	03									NAME	ID	Amount (µl)	Conc. (mg/L)
	04									DCC			
	05									DCC			
	06									DCC			
	07									DCC			
	08									BFB			
ΒA	09									IS/SURR.			
Б	10									ICV/LCS			
L.T.	11									ICV/LCS			
	12									ICV/LCS			
	13									ICV/LCS			
	14									Data File Folder			
	15										LOT #		
	16									pH strip			
	17									Chlorine strip			
	18									Methanol			
	19									NaHSO4			
	20									Reagent Water			
	21									Sand			
	22									Electro	nic Data Archival Location	Da	ite
	23									HPCHEM_VOA	V/T006		
	24									Comments:			
	25												
	26												
	27												
	28									🗆 Refer to samp	ole weight log		
	29									Analyzed By:			
	30									Date Disposed:	Disj	oosed By:	

Page 1

Page 1

INSTRUMENT MAINTENANCE LOG

LABOR	ATOR	IES.	INC.

Instrumen	t No: 05	Month:	Year: 201_		BOOK	# : MD3-005
	DATE					
Bake Trap (210	3°C-260°C)					
Column Head i	Pressure (2-60 psi)					
Injector Port T	emperature (160°C-220°C)					
Interface Temp	perature (250°C-280°C)					
Verify Comput	er Date and Time					
Check Gas Pres Check IS /Surro	ssure (Daily)					
(Daily)	gate acto injection viaras appropriate					
Check the fore	line pump oil level (Weekly)					
AutoTune the	MSD (As needed)					
Analyst's initia	1					
Trouble Shoot	ing					
Problem(s) End	countered					
Return-to-Con	trol (Analyst Initial)					
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	
Code	Problems Encou	intered	Code	Corrrecti	ve Action	

ANNUAL REVIEW FORM

VOLATILE ORGANIC COMPOUNDS BY GC/MS

SOP#: EMAX-8260

Re

.

Rev <u>10</u>

Effective Date: 06-Jun-14

COMMENTS	Reviewed Bv	Review Date
DRP(6415)	al	6/9/15
No revision needed	QA-Fm	652106
Nore	18	051217
None (DRS 04/03/18)	c Q	8/6/18
No update needed per DRF by DN guyen dtd 6/12/19	And	6/12/19
No update needed per DRF by DNguyen dated 6/2/20	regenty	6/2/20
No update needed per DRF by DNguyen dated 6/3/21	njest	6/3/21
SOP revision is being drafted to update MAX physical address.	-5 - 5	
No technical update necessary,	marcalon	06/06/22
SOP revision is being drafted	syest	5/5/23
	~ v	
	ļ	
	I	

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17
Prepared By:	Tyler Kosaka	Je the		Date:	10/11/17
Approved By:	Kenette Pimentel	Afrita		Date:	10.11.17
Approved By:	QA Manager Caspar Pang	6-7-		Date:	10-11-17
,	Laboratory Director	Control Numb	ber:	9060-04	,,,,

1.0 SCOPE AND APPLICATION

1.1. This method is used to determine total organic carbons (TOC) in an aqueous sample by combustion-infrared technique. This procedure is only applicable to homogenous samples. This SOP is an adaptation of SW846 Method 9060A.

2.0 SUMMARY OF METHOD

2.1. An aliquot of acidified sample is injected into the Analyzer, sparge with gas (compressed air or nitrogen) to remove IC content, and heated at 680°C to convert IC to Total Organic Compound.

2.2. Interference

- 2.2.1. Carbonate and bicarbonate carbon represents interference and must be removed or accounted for in the final calculation.
- 2.2.2. Suspended particles of a liquid sample or extract is known to alter results.

3.0 DETECTION LIMITS

3.1. Detection Limit (DL), Limit of Detection (LOD) & Limit of Quantitation (LOQ)

- 3.1.1. Refer to EMAX-QA04 for generation, validation and verification for DL, LOD and LOQ.
- 3.1.2. Established DI, LOD and LOQ are:

Matrix	DL	LOD	LOQ
Water (mg/L)	0.25	0.5	1.0

4.0 DYNAMIC RANGE

- 4.1. The highest quantifiable range requiring no dilution is equal to the concentration of the highest calibration point. All samples analyzed above this range shall be considered "over range" and shall require dilution to properly quantitate.
- 4.2. The lowest quantifiable range of diluted samples is equal to the concentration of the lowest calibration point. All diluted samples analyzed below this range shall be considered "under range" and shall require lower dilution factor to properly quantitate.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

5.0 SAMPLE HOLDING TIME & PRESERVATION

5.1. Sample Collection

5.1.1. Samples received in the laboratory are expected to be contained in HDPE or glass bottles and cooled to $\leq 6^{\circ}$ C without freezing.

5.2. Holding Time

5.2.1. Samples are expected to be stable for 28 days.

5.3. Preservation

- 5.3.1. Preserve samples at pH < 2 with either HCl or H_2SO_4 .
- 5.3.2. Store samples in plastic or glass containers that prevent any possible carbon contamination.
- 5.3.3. Store samples at $\leq 6^{\circ}$ C without freezing.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-DM01 Data Flow and Review
- 6.2. EMAX-QA04 Detection Limit (DL)
- 6.3. EMAX-QA05 Training
- 6.4. EMAX-QA08 Corrective Action
- 6.5. EMAX-QC02 Analytical Standard Preparation
- 6.6. EMAX-QC06 Volumetric Labware and Micropipette Verification
- 6.7. EMAX-QC07 Glassware Cleaning
- 6.8. EMAX-SM03 Waste Disposal
- 6.9. EMAX-SM04 Analytical and QC Sample Labeling

7.0 <u>SAFETY</u>

- 7.1. Read all SDS for chemicals listed in this SOP.
- 7.2. Treat all reagents, standards, and samples as potential hazards. Observe the standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, gloves at all times when performing this procedure.
- 7.3. If for any reason, solvent and/or other reagents get in contact with your skin or any other part of your body, rinse the affected body part thoroughly with copious amount of tap water. If irritations or any other discomfort related to the incident persist, inform your supervisor immediately so that proper action can be taken.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

8.0 INSTRUMENTS, CHEMICALS & REAGENTS

8.1. Instruments and Supplies

- 8.1.1. Total Organic Carbon Analyzer Model TOC-V_{CPN} or equivalent
- 8.1.2. Autosampler ASI-V
- 8.1.3. Filtering apparatus and 0.45-µm-pore diam filters, preferably HPLC syringe filters or similar.
- 8.1.4. Micropipettes 1 and 5 ml, 200 μl

8.2. Chemicals and Reagents

- 8.2.1. All reagents are reagent grade or better.
- 8.2.2. Hydrochloric Acid, 2M HCl
- 8.2.3. Sulfuric Acid, concentrated H₂SO₄
- 8.2.4. Reagent Water

9.0 STANDARDS

9.1. Standard Preparation

- 9.1.1. Refer to EMAX-QC02 for proper preparation of analytical standards.
- 9.1.2. Oven-dry Potassium Hydrogen Phthalate @ 105°C 120°C for 1- hour.
- 9.1.3. Oven-dry Sodium Hydrogen Carbonate @ 280°C 290°C for 1- hour.
- 9.1.4. All standards are cooled and stored in dessicator.
- 9.1.5. Other concentration levels may be prepared other than specified below as long as it is compliant to required acceptance criteria, and should be stored at $\leq 6^{\circ}$ C without freezing.

9.2. Stock Standards

9.2.1. <u>Primary Stock Standards</u> - are purchased commercially as certified standards. These standards are primarily used for calibration.

Standard Name	Source	Concentration (mg/L)
Total Organic Carbon	ERA or equivalent	1,000

9.2.2. <u>Secondary Stock Standards</u> - are purchased commercially from different sources. These standards are used for ICV and LCS.

Standard Name	Source	Concentration (mg/L)
Pottasium Phtalate, crystal	Mallinckrodt or equivalent	Assay

9.2.3. <u>Other Standards</u> - are purchased commercially and these standards are used to determine the removal of carbonate and bicarbonate by purging.

Standard Name Source Concentration (m

TOTAL ORGANIC CARBON

SOP No.: EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17
--------------------	--------------	---	-----------------	-----------

Sodium Bicarbonate	BDH or equivalent	Assay
Sodium Carbonate	Mallinckrodt or equivalent	Assay

9.3. Intermediate Standards

9.3.1. <u>Secondary Intermediate Standards</u> - are prepared using the secondary stock standard as follows:

Standard Name	Concentration	Amount	Final Conc.	Solvent	Final Volume
Potassium Phthalate	Assay	0.2128 g	1,000 mg/L	Reagent Water	100 ml

9.3.2. <u>Carbonate/Bicarbonate Intermediate Standards</u> - is prepared as follows:

Standard Name	Concentration	Amount	Final Conc.	Solvent	Final Volume
Sodium Carbonate	Assay	0.4418 g		Reagent	
Sodium Bicarbonate	Assay	0.3512	1,000 mg/L	Water	100 ml

9.4. ICAL Standards

9.4.1. A minimum of 5 point calibration standards are prepared using a clean 100 ml volumetric flask, in reagent water.

ICAL Pt.	Primary Stock Standard (1,000 mg/L) Aliquot (μl)	Final Volume (ml)	Concentration (mg/L)
SO	0	100	0
S1	0.1	100	1
S2	0.5	100	5
S3	1.0	100	10
S4	4.0	100	40
S5	8.0	100	80

9.5. Check Standards

- 9.5.1. Initial Calibration Verification (ICV)
 - 9.5.1..1. Prepare ICV standard by diluting 2.5 ml of secondary intermediate standard (1000 mg/L) solution to 100 ml reagent water. The expected value of this is 25 mg/L.
- 9.5.2. <u>Continuing Calibration Verification (CCV)</u>
 - 9.5.2..1. Prepare CCV standard by diluting 2.5 ml of primary stock standard solution to 100 ml reagent water. The final concentration of the check standard shall be 25 mg/L.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

9.5.3. Carbonate/Bicarbonate Standard

9.5.3..1. Prepare Carbonate/Bicarbonate standard by diluting 0.1 ml of Carbonate/Bicarbonate intermediate standard (1,000 mg/L) to 100 ml of reagent water. The expected value of this is 1 mg/L.

10.0 PROCEDURES

10.1. Sample Preparations

10.1.1. When Dissolved Organic Carbon (DOC) is to be determined, filter the sample prior to injection. Otherwise, aqueous sample is directly injected into the instrument.

10.2. Instrument Parameters

10.2.1.

TOC-V _{CPN}	
Catalyst Type	TOC High Sensitivity Catalyst
Furnace Temperature	680°C
Gas Flow Rate	150 ml/min
Tubing Diameter	0.5 min.
NDR Cell Length	Long
Range	X3
Replicate Injection	4

10.2.2. Autosampler : ASI-V

Tray Type	24 ml vial
Needle	Sample needle
Needle Wash/ flow Line Wash	2
Rack	1 - 93

10.3. Calibration

- 10.3.1. Analyze the ICAL standards. Refer to Section 9.4.
- 10.3.2. Generate the calibration curve after the multi-level ICAL analysis is completed.
- 10.3.3. Analyze ICV to verify the ICAL.
- 10.3.4. Refer to Appendix 1 for acceptance criteria.

10.4. Analysis

- 10.4.1. Place ICAL standards, check standards and samples in designated Auto Sampler positions.
- 10.4.2. Set up calibration(*.cal)\method(*.met)\template(*.tpl) parameters, refer to Shimadzu TOC-VCPN Sections 4.3 to 4.4.

TOTAL ORGANIC CARBON

SOP No.:		EMAX-9060 F	Revision No. <u>4</u>	Effective Date:11-Oct-17
		 If desired calibration\method\t Files\Shimadzu Corporation\7 respective folders, such tha injections) as TCI001.cal. 	emplate parameter OC3201, save and at, 80_9060.cal(4x i	already exists, in C:\Program rename the templates in their njections) and/or 80_415.cal(2x
		 Make sure the templates fulfill a opening a new file to include, Generate to program sample p 	all project requireme Calibration curve, Cor positions.	nts and generate a sequence by ntrol Calibration Checks and Auto-
	10.4.3.	Check background monitor in the instru should display green check marks.	iment menu before s	starting the analysis. All window
	10.4.4.	Set quantitation to average quadruple de of TOC results outlined in TOC-V manual S	etermination. Refer to Section 5.1.3 and 5.1.5	o NPOC/TOC Criteria Quantitation
	10.4.5.	Sparge the acidified sample (ph=2~3) w eliminate the IC component. Measure th Organic Carbon (NPOC).	ith zero grade air an ne TC remaining in the	d/or high purity nitrogen gas, to e sample and determine the Total
	10.4.6.	The ICAL, check standards and samples m	ust be injected four ti	mes.
	10.4.7.	Analytical Sequence		
		• ICAL – initial calibration		
		• ICV – initial calibration verification		
		• ICB – initial calibration blank		
		• MB – method blank		
		• LCS – lab control sample		
		• LCD – lab control sample duplicate	e (in the absence of M	S)
		• Samples – maximum of 10 field sa	mples	
		Sample Duplicate or Matrix Spike	(MS)	
		• CCV – continuing calibration verified	cation	
		• CCB – continuing calibration blank		
		• Samples – maximum of 10 field sa	mples	
		Sample Duplicate or Matrix Spike	(MS)	
		• ECC – ending calibration check		
		• ECB – ending calibration blank		
		•		
10.5.	Sample	Result Evaluation		
	10.5.1.	Evaluate QC results as soon as the data is	available.	
		,		

- \checkmark Check CCVs that they are within the acceptance criteria.
- \checkmark Check that the batch QC samples met the acceptance criteria.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17
		_			

- ✓ Check concentration of target analytes. If the response exceeds the calibration range, dilute and reanalyze the sample until the response falls within the calibration range.
- ✓ If any of the above checkpoints indicate a problem, check the specified corrective action in Appendix 1 to determine if re-analysis is necessary. If re-analysis results are the same as the initial result, consult the Supervisor for further action.

10.6. Calculations

10.6.1. Calculate for Percent Recovery of LCS

$$\% R = \left[\frac{C_f}{C_o}\right] 100$$
 Eq.-10.6.1

where:

%*R* - is the percent recovery

- C_f is the concentration found
- C_o is the known concentration of spiked solution
- 10.6.2. Calculate for Percent Recovery of MS

$$\% R = \left[\frac{(C_f - C_s)}{C_o}\right] 100$$
 Eq.-10.6.2

where:

%*R* - is the percent recovery

- C_f is the concentration found
- C_s is the concentration of the sample
- C_o is the known concentration of spiked solution
- 10.6.3. <u>Calculate for Precision</u>

$$RPD = \frac{\left|C_{1} - C_{2}\right|}{\left(\frac{C_{1} + C_{2}}{2}\right)} \times 100$$
 Eq.-10.6.3

where:

RPD – Relative Percent Difference

 C_l – Measured concentration of the first sample aliquot

 C_2 – Measured concentration of the second sample aliquot

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

10.6.4. Calculate for Standard Deviation

$$SD = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$
Eq.-10.6.4

where:

- $S\!D$ is the standard deviation
- x_i is the result at the ith measurement
- \overline{x} is the mean
- $N \quad$ is the number of measurements

$$\% RSD = \left[\frac{SD}{ACF}\right] 100$$
 Eq.-10.6.7

where:

%RSD - is the percent relative standard deviation

SD - is the standard deviation

ACF - is the average calibration factor

10.7. Data Reduction

- 10.7.1. Make a copy of the analytical run log.
- 10.7.2. Print a copy of the raw data and the QC report.
- 10.7.3. Highlight the data to be reported.
- 10.7.4. Collate the reportable data separating the QC results from the sample results.
- 10.7.5. Keep all other data generated with the analytical folder marked with "For record only".

10.8. Report Generation

- 10.8.1. Generate the method.txt file using WDB5N.exe
- 10.8.2. Generate sample results using MSRB6.exe
- 10.8.3. Generate the QC Summary using QCIC.exe
- 10.8.4. Generate the sample duplicate result file using CQ1N.exe
- 10.8.5. Generate the Case Narrative using CN00.exe
- 10.8.6. Arrange the analysis package in sequence as detailed below.
 - Case Narrative
 - Sample Results
 - LCS/LCD Summary

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

- MS/MSD Summary
- Sample Duplicate Result
- Callibration Summary
- Analytical Run Log
- Non-Conformance Report (If any)

10.9. Data Review

- 10.9.1. Perform a 100% data review in accordance to EMAX-DM01 and the PSR.
- 10.9.2. Review the generated reports for calculation accuracy and that dilution factors are properly applied.
- 10.9.3. Review the attached logs that they are properly filled.
- 10.9.4. Check the generated reports against the raw data. Check that the analytical data generated indicating positive results are qualitatively and quantitatively correct.
- 10.9.5. Review the case narrative and check that it accurately describes what transpired in the analytical process. Edit as necessary to reflect essential issues not captured by the case narrative generator program.
- 10.9.6. Submit the analytical folder for secondary review.

10.10. Preventive Maintenance

10.10.1. Perform daily instrument check prior to sample analysis. Refer to Form 9060FM – Instrument Maintenance Log.

Maintenance Activity	Description	Frequency
Documentation	Record all instrument maintenance performed in the instrument maintenance log.	Daily prior to analysis
System Cleaning	Remove dust from fans and vent covers	Every 6 months
Parts Maintenance	Replace worn out parts	Every 6 months
Lubrication	Lubricate mechanical parts	Every 6 months
Flow and Waste lines	Inspect flow and waste lines and replace	Every 6 moths or as necessary
Combustion Tube	Change combustion tube	Every 6 moths or as necessary
Absorber	Change CO2 absorber	Every 6 moths or as necessary
Scrubber	Change halogen scrubber	Every 6 moths or as necessary
Humidifier	Change humidifier water	Every 6 months
Inspection	Perform general inspection of the complete system	Once a year

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

10.10.2. Perform daily routine check and log it on the instrument maintenance log.

10.10.3. For troubleshooting refer to the TOC analyzer operations manual or go to <u>http://www.ssi.shimadzu.com/toc_virtualadvisor/</u> for virtual troubleshooting assistance.

11.0 QUALITY CONTROL

11.1. Acceptance criteria for each quality control procedure are summarized in Appendix 1.

11.2. Preparation Batch QC

- 11.2.1. A preparative batch includes a MB, LCS and a maximum of 20 field samples unless otherwise specified by the project.
- 11.2.2. MS is analyzed every 10 samples unless otherwise specified by the project.
- 11.2.3. In the absence of MS, a LCS duplicate (LCD) is prepared and analyzed.
- 11.2.4. Properly treat all labwares used in sample preparation as specified in EMAX-QC07.

11.3. Analytical Batch QC

- 11.3.1. Micropipettes must be calibrated prior to use. Refer to EMAX-QC06 for details.
- 11.3.2. Reagents are subjected to QC check prior to use. Refer to EMAX-QC01 for details.
- 11.3.3. All analytical standards are prepared fresh on the day the analysis is done. Follow the procedures for all analytical standard preparations as described in EMAX-QC02 and document in the analytical standard preparation log.

11.4. Method QC

- 11.4.1. A valid DL and LOD must exist prior to sample analysis. Refer to EMAX-QA04 for details.
- 11.4.2. All analysts conducting this analysis must have an established Demonstration of Capability (DOC) as described in EMAX-QA05.

12.0 CORRECTIVE ACTION

12.1. Corrective action for each Quality Control procedure is summarized in Appendix 1.

12.2. Calibration

- 12.2.1. When ICAL is not compliant, consider the following suggestions to correct the problem:
 - If the correlation coefficient (r) is out of acceptance criteria, review the results and identify presence of an outlier.
 - If one of the standards returns a bias-low or a bias-high on all of the analytes then that point is considered an outlier. Prepare a standard at that ICAL point and re-analyze.
 - If the highest ICAL point appears to be saturated, drop the highest point and analyze a lower concentration.
 - If the lowest point returns a bias low response or the peaks are not distinct and sharp, drop the point and analyze a higher concentration.

TOTAL ORGANIC CARBON

SOP No.:		EMAX-9060	Revision No. 4	Effective Date:	11-Oct-17
	12.2.2.	 Otherwise, optimize the instrume When ICV or CCV is not compliant, cor Rule out standard degradation. Pr If response is low check for leak or 	ent and repeat the ICA isider the following sug repare a fresh standarc r if gas pressure is low.	AL. ggestions to correct t l and re-analyzed.	he problem:
		 If response is high, run a blank to r the source of contamination and a analyze all associated samples tha 	rule out contamination apply necessary measu t had positive detectio	. If contamination ex res to correct the pro ns.	xists, determine oblem. Re-
		• Otherwise, inform the supervisor	for further instruction.		
12.3.	Prepara	tion / Analytical Batch QC			
	12.3.1.	For insufficient amount of sample, info	orm the supervisor imm	nediately for further	action.
	12.3.2.	Method Blank (MB) – When MB is not the problem:	compliant, consider th	e following suggesti	ons to correct
		Rule-out instrument contaminatio instrument contamination is observed	n by analyzing instrum rved perform the follo،	ent blank. In the eve wing:	ent that
		Replace CO2 absorber			
		Replace the Halogen absorbe	r		
		Clean the humidifier tubing			
		 Replace the content of the dil the wash line. 	lution bottle with a free	shly harvested reage	nt water. Purge
		Re-analyze the instrument bla	ank		
		 If problem persist, perform the d manual or go to <u>http://www.ssi.sh</u> 	econtamination proce	dure as described ir <u>aladvisor/</u> .	n the operations
		 If no apparent instrument conta freshly harvested from the reagen 	amination is observed t water purifier. If pro	, re-analyze anothe blem persist, inform	r method blank the Supervisor.
		 Re-analyze all samples with positi as described by the PSR and discuss 	ve results. Where re-ass in the case narrative	analysis is not possik	ole, flag the data
	12.3.3.	Lab Control Sample (LCS) – When LCS correct the problem:	in is not compliant, cor	nsider the following s	suggestions to
		• Rule out standard degradation. Pr	repare a fresh standarc	and re-analyze.	
		 If recovery is low check for leak or correct the problem and re-analyz flag the data as described by the P 	if gas pressure is low. a all associated sample SR and discuss in the c	Apply necessary me es. Where re-analysi ase narrative.	asures to s is not possible,
		 If response is high, run a blank to r the source of contamination and a analyze all associated samples pos 	ule out contamination apply necessary measu sitive results.	. If contamination extra the properties to correct the properties of the properties	xists, determine oblem. Re-

• Otherwise, inform the supervisor for further instruction.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17
-					

- 12.3.4. Matrix Spike/ Matrix Spike Duplicate (MS/MSD) When MS/MSD in is not compliant, consider the following suggestions to correct the problem:
 - Rule out procedural error, e.g., sample was properly spiked, calculations are correct, etc. If procedural error is apparent, re-analyze MS/MSD.
 - If matrix interference is suspected, discuss it in the case narrative.
- 12.4. A Non-Conformance Report (NCR) is required when the following circumstances occur:
 - Anomalies other than specified in Appendix 1 is observed.
 - Sample is out of technical holding time.
 - 12.4.2. Refer to EMAX-QA08 for NCR details.

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of solvent that may go to the wastewater drains.
- 13.2. Prepare all standards in fume hoods to prevent air pollution in the work area.

14.0 WASTE MANAGEMENT

- 14.1. No samples maybe dumped on the laboratory sink.
- 14.2. Separate and properly identify all unused and expired analytical standards for proper disposal.
- 14.3. Place all waste generated during the analytical process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired analytical standards and other waste generated during the analytical process in accordance to EMAX-SM03.

15.0 SUPPLEMENTARY NOTES

15.1. Definition of Terms

- 15.1.1. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents.
 - **Preparation batch** is composed of one to 20 samples of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate.
 - Analytical batch is compose of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices; preparation batches, and can exceed 20 samples.
- 15.1.2. <u>Detection Limit (DL)</u> The lowest concentration or amount of the target analyte that can be identified, measured and reported with confidence that the analyte concentration is not a false positive.

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No	4 Ef	ffective Date:	11-Oct-17
15.1.3.	<u>Limit of Detection (LOD)</u> – An estima analytical process can reliably detect	te of the minimum	n amount	t of substance th	nat an
15.1.4.	Limit of Quantitation (LOQ) – The mi variable (e.g., target analyte) that ca	<u>Limit of Quantitation (LOQ)</u> – The minimum levels, concentrations or quantities of target variable (e.g., target analyte) that can be reported with a specified degree of confidence.			
15.1.5.	<u>Safety Data Sheet (SDS)</u> – is where th certain substance is listed.	ne physical data, to	oxicology	and safety prec	aution of a
15.1.6.	<u>Calibration</u> – is a determinant measu instrument output.	ired from a standa	rd to obt	ain the correct	value of an
15.1.7.	<u>Calibration Blank</u> – is a target-analyte to establish zero baseline or backgro	e-free solvent subj ound value.	jected to	the entire analy	rtical process
15.1.8.	Instrument Method – is a file genera parameter settings for a particular a	Instrument Method – is a file generated to contain the instrument calibration and instrument parameter settings for a particular analysis.			
15.1.9.	<u>Method Blank</u> – is a target-analyte-fr and/or analytical to monitor contam	ree sample subject ination.	ted to the	e entire sample	preparation
15.1.10	 <u>Lab Control Sample (LCS)</u> – is a target amount of target analyte(s) or a refe the entire sample preparation and/o accuracy of the analytical system. 	t-analyte-free sam rence material wit r analytical proces	nple spike th a certif ss. LCS is a	ed with a verified fied known valu analyze to moni	d known e subjected to tor the
15.1.11	<u>Lab Control Sample Duplicate (LCD)</u> - absence of MS/MSD sample.	 is a replicate of L 	.CS analyz	zed to monitor p	precision in the
15.1.12	 <u>Sample</u> – is a specimen received in the accompanying COC. Samples collected are considered the same and therefore specified by the project. 	he laboratory bear ed in different cont ore labeled with th	ring a san tainers ha ne same la	nple label tracea aving the same ab sample ID un	able to the field sample ID less otherwise
15.1.13	 <u>Sample Duplicate</u> – is a replicate of a analyzed within the same preparatio homogeneity and precision of methor 	n sub-sample taken on batch. This sam od in a given matrix	n from on ple is ana x.	ie sample, prepa alyzed to check	ared and matrix
15.1.14	 <u>Sub-sample</u> – is an aliquot taken fror identified by the sample preparation 	n a sample for ana ID.	alysis. Ead	ch sub-sample is	uniquely
15.1.15	5. <u>Matrix</u> – is a component or form of a	i sample.			
15.1.16	 <u>Matrix Spike (MS)</u> – is a sample spike subjected to the entire sample prepa monitor matrix effect on a method's 	ed with a verified k aration and/or ana recovery efficienc	known an Alytical pr Cy.	nount of target a ocess. MS is and	analyte(s) alyze to
15.1.17	 <u>Matrix Spike Duplicate (MSD)</u> – is a reader 	eplicate of MS ana	alyzed to	monitor precision	on or recovery.
15.1.18	 <u>Reagent Water</u> – is purified water free may interfere with the analytical pro 	ee from any target ocess.	analyte	or any other sul	ostance that

TOTAL ORGANIC CARBON

SOP No.:	EMAX-9060	Revision No.	4	Effective Date:	11-Oct-17

15.2. Application of EMAX QC Procedures

15.2.1. The procedures and QC criteria summarized in this SOP shall be applied to all projects when performing Ion Chromatography analysis unless otherwise other directive is specified by the project requirements.

15.3. Department of Defense (DoD) and Department of Energy (DOE)Projects

15.3.1. Samples from DoD and DOE sponsored projects shall follow the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD Quality Systems Manual (QSM), latest update, shall be applied.

16.0 <u>REFERENCES</u>

- 16.1. SW846 Method 9060A
- 16.2. Standard Methods for Examination of Water and Wastewater, 21st and 22nd Editions
- 16.3. Methods of Chemical Analysis of Water and Wastes (EPA/600/4-79/020), Method 415.1, 1974
- 16.4. Title 40 Code of Federal Regulations, Part 136 Guidelines Establishing Test Procedures for the Analysis of Pollutants, latest edition.
- 16.5. Instructional Manual TOC-VCSH/CSN & TOC-Control V Software TOC-VCPH/CPN
- 16.6. EMAX Quality Systems Manual, as updated

17.0 APPENDICES

17.1. Figures

17.1.1.	Figure 1	Typical Raw Data
17.1.2.	Figure 2	Typical Sample Result Summary
17.1.3.	Figure 3	Typical LCS/LCSD Summary
17.1.4.	Figure 4	Typical MS Summary
17.1.5.	Figure 5	Typical Sample Duplicate Result Summary
17.1.6.	Figure 6	Typical Case Narrative

17.2. Appendices

17.2.1.	Appendix 1	Summary of Quality Control Procedures
---------	------------	---------------------------------------

17.2.2. Appendix 2 Demonstration of Capability

17.3. Forms

17.3.1.	9060FA	Analytical Run Log

17.3.2. 9060FM Instrument Maintenance Log
Figure 1:

CZhao		07/13/17 01:25:59 PM			TCC006.632
Sample Sample Naime: Sample ID: Origin: Chik. Result		C778-01 TCC006-36 TCC006.cal			
Type Ana	L Dil.	1	Result		
Unknown NPDC	1.00	0		NPOC:6.006 mg/L	
1. Det					
Anal.: NPOC					
No. Area Conc.	inj. Vol. Aut. Ex. Dil	Cal. Curve	Date / Time		
1 23.28 5.941m	/L 50uL 1	TCC006.2017_03_21_12_17_49.cal	03/21/17 11:25:04 PM		
2 23.44 5.982mg	/L 50uL 1	TCC006.2017_03_21_12_17_49.cal	03/21/17 11:26:37 PM		
4 23.62 6.028ms	/U 50uU 1	TCC006.2017_03_21_12_17_49.cal	03/21/17 11:28:16 PM 03/21/17 11:29:52 PM		
Mean Area 2: Mean Conc. 6.	.53 306mg/L	Signal[mV] 20 14 7 -2 0 2 4 6	8 10 12 1	4 16 18 20	Time(min)

Page 16 of 24 EMAX-9060 Rev. 4 Figures

TYPICAL SAMPLE RESULT SUMMARY

						М	ETHOD 9 TOC	060A						
Client : XYZ, I Project : CLEAN Batch No. : 17C000	NC. WATER											Mat Ins	rix : trument ID :	WATER 162
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	LOQ (mg/L)	DL (mg/L)	LOD (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	CO]] DATETIME	Rec DATE
MBLK1W LCS1W LCD1W AAABBBCCCDDDEEE	TCC001WB TCC001WL TCC001WC C000-01 C000-01D	ND 25.0 25.1 13.0 13.6	1 1 1 1	NA NA NA NA	1.00 1.00 1.00 1.00	0.250 0.250 0.250 0.250 0.250	0.500 0.500 0.500 0.500 0.500	03/03/1713:14 03/03/1713:30 03/03/1713:45 03/03/1713:59 03/03/1714:15	NA NA NA NA NA	TCC001-05 TCC001-06 TCC001-07 TCC001-08	TCC001-02 TCC001-02 TCC001-02 TCC001-02 TCC001-02	TCC001W TCC001W TCC001W TCC001W TCC001W	NA NA NA 02/23/1713:05 02/23/1713:05	NA NA 02/24/17 02/24/17
AAABBBCCCDDDEEEDOF	C000-01D	39.5	1	NA	1.00	0.250	0.500	03/03/1714:31	NA	TCC001-09	TCC001-02	TCC001W	02/23/1713:05	02/24/17

TYPICAL LCS/LCSD SUMMARY

			EMA	LCS/LCD AN	NTROL DAT ALYSIS	ΓA					
CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ, INC. CLEAN WATER 17C000 METHOD 9060A										-
MATRIX: DILUTION FACTOR: SAMPLE ID:	WATER 1 MBLK1W	1	1		% MOI	STURE:	NA				
LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	TCC001WB TCC001-05 NA 03/03/1713:1 TCC001W TCC001-02	TCC001WL TCC001-0 NA 4 03/03/17 TCC001W TCC001-0	6 TCC 6 TCC NA 13:30 03/ TCC 2 TCC	:001wC :001-07 /03/1713:45 :001w :001-02	DATE (DATE F	COLLECTED: RECEIVED:	NA NA				
ACCESSION:											
PARAMETER		BLNK RSLT (mg/L)	SPIKE AMT (mg/L)	BS RSLT (mg/L)	BS % REC	SPIKE AMT (mg/L)	BSD RSLT (mg/L)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
тос		ND	25	25	100	25	25.1	101	1	80-120	20

Figure 3:

TYPICAL MS SUMMARY

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ, INC. CLEAN WATER 17C000 METHOD 9060A							
MATRIX: DILUTION FACTOR:	WATER 1		1			% MOI:	STURE:	NA
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	AAABBBCCCDDD C000-01 TCC001-08 NA 03/03/1713:5 TCC001w TCC001-02	9	AAABBB C000-0: TCC001 NA 03/03/: TCC001 TCC001	CCCDDDEEEM 1M -10 1714:31 W -02	DATE COLL DATE RECE	ECTED: IVED:	02/23/17 02/24/17	13:05
ACCESSION:								
PARAMETER		SMPL (mg	RSLT g/L)	SPIKE AMT (mg/L)	MS RSLT (mg/L)	MS % REC	QC LIMIT (%)	г
тос			13	25	39.5	106	80-120	

Page 19 of 24 EMAX-9060 Rev. 4 Figures

Figure 5:

TYPICAL DUPLICATE SAMPLE RESULT SUMMARY

EMAX QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ, INC. CLEAN WATER 17C000 METHOD 9060A				
MATRIX: DILUTION FACTOR:	WATER 1	1	% MOI	STURE: N	IA
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	AAABBBCCCDDDEEE C000-01 TCC001-08 NA 03/03/1713:59 TCC001W TCC001-02	AAABBBCCCDDDEEEDUP C000-01D TCC001-09 NA 03/03/1714:15 TCC001W TCC001-02	DATE COLLECTED: DATE RECEIVED:	02/23/17 13: 02/24/17	05
ACCESSION:					
PARAMETER TOC	SMPL (m	RSLT DUPL RSLT g/L) (mg/L) 13 13.6	RPD RSLT QC LIM (%) (%) 4 20	IT) -	

CASE NARRATIVE

Client : XYZ, INC.

Project: CLEAN WATER

SDG : 17C000

METHOD 9060A TOC

One (1) water sample was received on 02/24/17 for Total Organic Carbon analysis, Method 9060A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical and Chemical Methods.

Holding Time Sample was analyzed within the prescribed holding time.

Calibration Calibration was performed as prescribed by the method and was verified using a secondary source (ICV). All calibration requirements were within acceptance criteria.

Method Blank Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. TOC was not detected in TCC001WB. Refer to sample result summary form for details.

Lab Control Sample Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) set of LCS/LCD was analyzed. TCC001WL/TCC001WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) MS was analyzed. TOC was within MS QC limits in C000-01M. Refer to Matrix QC summary form for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

SUMMARY OF QUALITY CONTROL PROCEDURES

QC PROCEDURE	FREQUENCY	ACCEPTANCE CRITERIA	CORRECTIVE ACTION		1st Rvw	2nd Rvw
ICAL - Minimum of 5- point calibration	Prior to sample analysis	Correlation coefficient (r) \geq 0.995	Correct the problem then repeat initial calibration			
Initial Calibration Verification (ICV)	Every after ICAL	%Recovery: \pm 10% of expected value	Re-analyze ICV to rule out bad injection and/or standard degradation. Otherwise, repeat calibration			
Calibration verification	Every 15 samples and at the end of analysis sequence	%Recovery: \pm 10% of expected value	Re-analyze CCV to rule out bad injection and/or standard degradation. Otherwise, repeat calibration and re-analyze all samples since last successful calibration verification.			
Method Blank	One per preparation batch	No analytes detected > ½ LOQ	If instrument blank is clean, re-analyze MB and all samples with positive results.			
LCS	Refer to PSR	%Rec: 80-120%	Re-prep and re-analyze the LCS and all asso	ociated samples		
Dup/MS	Refer to PSR otherwise, one set every 10 samples	%Rec: 80-120% %D ≤ 20%	If no procedural error is observed, matrix interference is suspected. Discuss finding in case narrative.			
Comments: Refer to PSR fo	r flagging criteria.			Reviewed By:		
				Date:		

DEMONSTRATION OF CAPABILITY

DEMONSTRATION OF CAPABILITY TOTAL ORGANIC CARBON EPA 9060A

SOP: <u>EMAX-9060 Rev. 3</u> Conc Unit: <u>mg/L</u> Analysis date: 1/6/2017 Analyzed by: W. Zhao

	TCA002WL	TCA002WC	TCA002WX	TCA002WY		Ave.	Ave.		RSD		
PARAMETER	TCA002-06	TCA002-07	TCA002-08	TCA002-09	TV	Conc.	%Rec	SD	(%)	QC Criteria	COMMENTS
TOC	23.3	23.4	23.2	23.3	25	23.31	93	0.053	0.2	80 - 120	PASSED

ANALYTICAL RUN LOG

E MAX LABORATORIES, INC.		ANALYSIS RUN for TOC	ILOG	Ра	ge 1
	Date	Time	Book #*	A62-025	
Start			Instrument No.:	62	
End			Pipette ID:	039380025	
Note: For sample	s and relevant QCs/S	Standards		SW3-01-33	
analyzed, refe	r to attached analyti	cal sequence.	-	SI1A-01-4	
Comments:			Balance ID:	40706360	
			Analytical Sequence:		
			Method File:		
			Analytical Batch:		
			SOP #	Rev. #	
			EMAX-415.1		
			□ EMAX-5310B		
			□ EMAX-9060		
			EMAX-		
			STANDA	ARDS ID	CONC. (mg/L)
			50		
			51		
			52		
			53		
			54		
			55		
			56		
			ICV/LCS		
			ccv		
					
			ELECTRO	NIC DATA ARCHIVAL	
			Location	Date	
			🗆 тос		
Reagent Water ID #:					
pH Strips Lot #:			Analyzed By:		
2 M HCI			Date:		

Page 1

E MAX

INSTRUMENT MAINTENANCE LOG

Instrument No: 62	rument No: 62 Month:				Year: 201_ Book # M			
	Date							
Air Tank								
Air Pressure (150n	nl/min)							
Humidifier Water	Level							
Pure Water Trap L	evel							
Rinse Bottle								
Dilution Water Bo	ttle							
External Acid Bott	ie							
Halogen Scrubber								
CO ₂ Absorber								
Background Monit	tor:							
	1) Furnace: 680 ⁰ C							
	2) NDIR: Baseline Position							
	Baseline Fluctuation							
	Baseline Noise							
	3) Dehumidifier: 1.000 reading							
Printer Paper								
Sampler Needle								
Computer Clock								
Analyst Initial								
Trouble Shoot	ing							
Problem(s) Encour	ntered							
Return To Specs (A	Analyst Initials)							
Code	Problems Enco	untered		Code		Correcti	ve Action	

ANNUAL REVIEW FORM

TOTAL ORGANIC CARBON

SOP#: EMAX-9060

Rev 4

Effective Date: 11-Oct-17

COMMENTS	Reviewed By	Review Date
No update needed per DRF by TKosaka dtd 10/2/18	Junal	10/2/18
No update needed per Y. Aquino 11/19/2019	for	11/19/2019
No update needed per DRF by T. Kosaka 10/26/2020.	for	10/26/2020
No technical update needed. Update standard sources, MAX address.	Anadela	11/5/21
Revise SOP to update Sec. 3.0 (detection limits to the browser)	0	
and update (MAX physical location. No technical update needed.	madale	11/2/22
No technical update needed per DRF by T. Kosaka 1/10/2024. Need to update Sec. 3.0 and EMAX address	for	1/10/2024
	U	

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No	5 Effective	Date: 28-Sep-22
Prepared By:	Larisa Ermolova	LErmolor	_	Date: 9/28/22
Approved By:	Farina Madamba	Jondan		Date: 09/28/2
Approved By:	Caspar Pang	an		Date: 9/28/22
	Laboratory Director	Control Numb	er: RSK175-0	15-

1.0 SCOPE AND APPLICATION

- 1.1. This method is used to determine dissolved methane, ethane, ethane, propane and acetylene in aqueous samples. This SOP is an adaptation of Dissolved Oxygen and Methane in Water by GC Headspace Equilibrium Technique published by R.S. Kerr Research Laboratory, commonly known as RSK 175.
- 1.2. This method is also used for carbon dioxide determination using an unpreserved sample and a Thermal Conductivity Detector (TCD).
- 1.3. This method is also amenable to propene, isobutene and any other gases of similar structure, upon meeting all quality control criteria.

2.0 SUMMARY OF METHOD

2.1. A known volume of inert gas is injected into the sample contained in a septum cap vial, which subsequently displaces the same volume of sample into an injected empty disposable syringe. The injected gas is allowed to equilibrate with the sample by wrist mixing. Subsequently, a known amount of gas is aspirated from the headspace by a tight syringe with a locking device is analyzed for the target gases by GC with FID detector.

2.2. Interferences

- 2.2.1. Glassware must be cleaned scrupulously as these can be a potential source of contamination.
- 2.2.2. Carry-over from a highly concentrated sample can be a potential source of contamination. Instrument performance must be observed keenly for possible carry-over. If this is apparent, inject solvent blank until no trace of carry-over is observed.
- 2.2.3. Deposits may adhere in the injection port/glass liner over a period of time and can cause interference. The injection port and glass liner must be routinely cleaned.

3.0 DETECTION LIMITS

- 3.1. Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ)
 - 3.1.1. Refer to EMAX-QA04 for generation, validation and verification of DL, LOD and LOQ.
 - 3.1.2. Refer to EMAX Browser for established DL, LOD and LOQ.

4.0 DYNAMIC RANGE

4.1. The highest quantifiable range requiring no dilution is equal to the concentration of the highest calibration point (See Sec. 9.2). Samples analyzed above this concentration are considered "over-range" and shall require dilution for proper quantitation.

3051 Fujita Street, Torrance, CA 90505 Tel: (310) 618-8889

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22

4.2. The lowest quantifiable range of diluted samples is equal to the lowest calibration point (See Sec. 9.2). Samples analyzed below this concentration are considered "under-range" and shall require a lower dilution factor for proper quantitation.

5.0 SAMPLE HOLDING TIME AND PRESERVATION

5.1. Preservation

- 5.1.1. Water samples are received in 40 mL vials with teflon-lined septa with zero headspace. The size of bubble caused by degassing upon cooling the sample should not exceed 6 mm.
- 5.1.2. Except for samples requiring carbon dioxide analysis, samples are preserved with concentrated HCl to pH < 2. Samples for carbon dioxide analysis must be analyzed from a sample with no chemical preservative.

FNTIAL

5.1.3. All samples are stored at $\leq 6^{\circ}$ C without freezing.

5.2. Holding Time

- 5.2.1. Holding time is 14 days from the time of collection.
- 5.2.2. For unpreserved water samples, the holding time is 7 days from collection date.

6.0 ASSOCIATED SOPs

- 6.1. EMAX-QA04 Detection Limit (DL)
- 6.2. EMAX-QA08 Corrective Action
- 6.3. EMAX-QC02 Analytical Standard Preparation
- 6.4. EMAX-QC05 Calibration of Thermometers
- 6.5. EMAX-QC06 Volumetric Labware and Micropipette Verification
- 6.6. EMAX-DM01 Data Flow and Review
- 6.7. EMAX-SM02 Sample Receiving
- 6.8. EMAX-SM03 Waste Disposal
- 6.9. EMAX-SM04 Analytical and QC Sample Labeling

7.0 <u>SAFETY</u>

- 7.1. Read all SDS for chemicals listed in this SOP.
- 7.2. Treat all reagents, standards, and samples as potential hazards. Observe the standard laboratory safety procedures. Wear protective gear, i.e., lab coat, safety glasses, gloves, at all times when performing this procedure. Perform all sample and standard handling in the fume hood.
- 7.3. If for any reason, solvent and/or other reagents get in contact with the skin or any other part of the body, rinse the affected body part thoroughly with copious amount of water. If irritations persist, inform your supervisor immediately so that proper action can be taken.

DISSOLVED GASES

SOP	No.:		EMAX-RSK	175	Revision No.	5	Effective Date:	28-Sep-22		
8.0	INSTR	UMENTS, (CHEMICALS	AND REAGENTS						
	8.1.	Instrume	nts and Su	pplies						
		8.1.1.	Gas Chror equivalen	natography – HP 5890 with I t.	FID or equivalent.	. For C	O ₂ , HP HP 5890 Ser	ies II w/ TCD or		
		8.1.2.	Column –	Rt-QS-Bond 30 m x 0.53 mr	n ID, 20 μm thickr	ness (Re	estek) or equivalent	,		
		8.1.3.	Data Syst	em - EZ-Chrom, HP Chem Sta	ation, or equivaler	nt				
		8.1.4.	Syringes							
			8.1.4.1. Standard Syringes – 25 μL, 100 μL, 250 [®] L, 500 μL, 5 mL Luerlock gas tight syringe with shut-off valve, or equivalent							
			8.1.4.2.	Helium Syringes – 3 mL a equivalent	nd 5 mL Luerlocl	k gas ti	ght syringe with sh	ut-off valve, or		
			8.1.4.3.	Displacement Syringe – 5 m	nL Luerlock dispos	sable sy	vringe			
		8.1.5.	Microsyri equivaler	nges - 25, 100, 250 🛛 and and the and	500 μL with a	0.006 ı	mm ID needle (Hai	nilton 702N or		
		8.1.6.	Tedlar Ba	gs - 1 Liter (7" x 7"), with pol	ypropylene 2-N-1	combi	nation fitting			
		8.1.7.	pH strips	- pH 0-14						
		8.1.8.	Thermom	neter - 0-100°C						
	8.2.	Chemical	s and Reag	ents						
		8.2.1.	Solvent: 0	Organic-free water						
		8.2.2.	Gas - Ulti	ra-high purity helium; ultra-h	iigh purity hydrog	gen				

9.0 <u>STANDARDS</u>

9.1. Stock Standard

9.1.1. Purchase Stock Standards as certified solutions as suggested below (or equivalent).

Standard Name	Source	Concentration	Intended Use
Gas mixture of ethane, ethylene and methane, propane, acetylene and CO_2 in Helium	Scotty Gases	500 mg/L, 10% CO₂ (v/v)	ICAL, DCC*
Propylene in Helium	Scotty Gases	500 mg/L	ICAL, DCC*
Gas mixture of ethane, ethylene and methane, propane, acetylene and CO ₂ in Helium	Matheson	500 mg/L, 10% CO2 (v/v)	ICV, LCS, MS*
Propylene in Helium	Matheson	500 mg/L	ICV, LCS, MS*

Note: * Stock standards may be interchanged to meet the intended use during calibration.

9.2. Initial Calibration Standard (ICAL)

9.2.1. Prepare the ICAL points at suggested concentration levels with helium to a final volume of 4 mL, as shown below.

DISSOLVED GASES

SOP No.: EMAX-RSK175			Revisi	ion No	5 E	ffective Dat	te:28	-Sep-22
	Standard		1	2	3	4	5	6
	Preparation of	of ICAL Standards	1					
	Primary Sto Aliquot (r	Primary Stock Std. (500 mg/L) Aliquot (mL) Solvent Final Volume (mL)		0.4	1.0	1.6	3.0	4.0
	Solvent			Helium	Helium	Helium	Helium	-
	Final Volum			4	4	4	4	4
	Final Concent	Final Concentrations						
	CU	(µL/L)	10	50	125	200	375	500
	CH4	(µg/L)*	0.6800	3.402	8.504	13.60	25.51	34.01
	C II	(µL/L)	10	50	125	200	375	500
	C2H2	(µg/L)*	1.105	5.528	13.82	22.11	41.45	55.27
	C II	(µL/L)	10	50	125	200	375	500
	C2П4	(µg/L)*	1.190	5.953	14.88	23.81	44.64	59.52
		(µL/L)	10	50	125	200	375	500
	C2Π6	(µg/ml)*	1.275	6.378	15.95	25.51	47.83	63.77
	C-H	(µL/L)	10	50	125	200	375	500
		(µg/L)*	1.870	9.350	23.39	37.41	70.15	93.53

Note: Conversion of concentration from $\mu L/L$ to $\mu g/L$ is shown in Eq.- 10.5.1.1 with $V_h/V_w = 4/39$ and $T = 21 \,^{\circ}C$.

9.2.2.

For propylene calibration, prepare the ICAL points at suggested concentration levels with Helium to a final volume of 4 mL, as shown below.

Standard		1	2	3	4	5	6
Preparation of ICAL Standards							
Primary Stock Std (500 mg/L), Aliquot (mL)		0.08	0.4	1.0	1.6	3.0	4.0
Solvent		Helium	Helium	Helium	Helium	Helium	-
Final Volume (mL)		4	4	4	4	4	4
Final Concentr	ation						
Calle	(µL/L)	10	50	125	200	375	500
C3116	(µg/L)*	1.785	8.929	22.32	35.71	66.96	89.28

Note: Conversion of concentration from μ L/Lto μ g/L is shown in Eq. 10.5.1.1 with V_h/V_w = 4/39 and T = 21°C.

9.2.3. For carbon dioxide calibration, prepare the ICAL points at suggested levels with Helium to a final volume of 4 mL, as shown below.

DISSOLVED GASES

SOP No.:	EMAX-RSK175		Revision No. 5		Effective Date:		28-Sep-22	
	Standard	1	2	3	4	5	6	
	Preparation of ICAL Standard	s						
	Primary Stock Std (10%) Aliquot (mL)	0.25	0.5	1.0	2.0	3.0	4.0	

Aliquot (m	iL)	0.25	0.5	1.0	2.0	5.0	1.0
Solvent		Helium	Helium	Helium	Helium	Helium	-
Final Volume (mL)		4	4	4	4	4	4
Final Concentr	ation	·					
<u></u>	(µL/L)	6250	12500	25000	50000	75000	100000
CO ₂ (μg/L)*		1200	2300	4700	9300	14000	19000

Note: Conversion of concentration from $\mu L/L$ to $\mu g/L$ is shown in Eq. 10.5.1.1 with $V_h/V_w = 4/39$ and $T = 21^{\circ}C$.

9.3. Initial Calibration Verification Standard (ICV) & LCS/MS Spike Standard

9.3.1. Using secondary stock standard, prepare ICV standard to final volume of 4 mL as suggested below.

Prepar		Final Concentration					
Secondary Stock Std (500 mg/L), Aliquot (mL)	Solvent	Final Vol. (mL)	CH₄	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈
			200 µL/L	200 µL/L	200 µL/L	200 µL/L	200 µL/L
1.6	Helium	4	13.60 μg/L	22.11 μg/L	23.81 μg/L	25.51 μg/L	37.41 μg/L

9.3.2. For propylene, prepare as suggested below.

Pre	Final Concentration		
Secondary Stock Std (500 mg/L), Aliquot (mLl)	Solvent	Final Vol. (mL)	C3H6
			200 μL/L
1.6	Helium	4	35.71 μg/L

9.3.3. For carbon dioxide, prepare as suggested below.

Pre	Final Concentration		
Secondary Stock Std (10%), Aliquot (mL)	Solvent	Final Vol. (mL)	CO ₂
2	Holium	4	50000 μL/L
2	Hellulli	4	9300 μg/L

9.4. Continuing Calibration Standard (DCC)

9.4.1. Using primary stock standard, prepare DCC to final volume of 4 mL as suggested below.

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22

Preparation			Final Concentration				
Primary Stock Std (500 mg/L), Aliquot (mL)	Solvent	Final Vol. (ml)	CH4	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C₃H8
1.5	Lielium	4	200 μL/L	200 μL/L	200 µL/L	200 µL/L	200 μL/L
1.0	Heilum	4	13.60 µg/L	22.11 μg/L	23.81 μg/L	25.51 μg/L	37.41 μg/L

9.4.2. For propylene, prepare as suggested below.

Pre	Final Concentration		
Primary Stock Std (500 mg/L), Aliquot (mLl)	Solvent	Final Vol. (mL)	C₃H₀
4.5			200 μL/L
1.6	Helium 4	35.71 μg/L	

9.4.3. For carbon dioxide, prepare as suggested below.

			00	
	Pre	Final Concentration		
	Primary Stock Std (10%), Aliquot (mL)	Solvent	Final Vol. (mL)	CO ₂
,U	2	Hel <mark>ium</mark>	4	50000 μL/L 9300 μg/L

10.0 PROCEDURES

10.1. Sample Preparation

- 10.1.1. Let the samples sit on a water bath (maintained in room temperature at 21 ± 2 °C) for at least an hour. For LCS, prepare reagent water in 4 mL vial. If MS is required, prepare an extra vial of designated sample.
 - 10.1.1.1. Check that the thermometer has a valid calibration. Record the thermometer ID and temperature of the water bath in the sample preparation log.
- 10.1.2. Place the sample vial upside down and secure with a three finger clamp. Insert the sample displacement syringe, set for dead volume, into the sample by penetrating the septum to expose about one centimeter of the syringe needle into the sample.
- 10.1.3. From a freshly helium-filled tedlar bag, using the helium syringe, measure 4mL of helium into a gas tight Luerlock syringe, lock then insert into the vial septum. For LCS and MS, spike LCS/MS standard as suggested in Sec. 9.3.
- 10.1.4. Open the syringe lock and inject the helium into the sample. As the helium is injected, sample is displaced from the vial into the empty syringe, creating a headspace equivalent to the volume of helium injected.
- 10.1.5. Check the pH of the discarded sample. Record the pH and pH lot # in the sample preparation log.

DISSOLVED GASES

SOP No.:		EMAX-RSK175	R	evision	No.	5	Effe	ctive Date:	28-Sep-22	
	10.1.6.	Shake the vial for five mir liquid and gas phases.	Shake the vial for five minutes by quick wrist motion to allow gas to equilibrate be iquid and gas phases.							
	10.1.7.	The gas contained in the v upon completion of a prep	he gas contained in the vial headspace is ready for analysis. Perform the analysis in pon completion of a preparative batch.							
10.2.	Instrumer	nt Parameters								
	10.2.1.	Gas Chromatography Cond	Gas Chromatography Condition (FID)							
		Gases Setting:								
		H ₂				3	0 psi			
		Helium				3	0 psi			
		Air				12	20 psi			
		GC Setting								
		Signal		90-110 mV						
		Injection Temperature		240 °C						
		Detector Temperature		240 °C						
		Injection Volume		100 μL						
		Head Pressure				1	6 psi			
		Carrier & Make-up gases	+ Air			300	mL/mi	n		
		Temperature Program	Temperatur	e (°C)	Rat	e/min (C)	Time (min)		
		Column	50			25		1		
			200			0		0		
	10.2.2. Gas Chromatography Condition CO ₂ (TCD)									
		Gases Setting:								
		H ₂				3	0 psi			
		Helium				3	0 psi			
		Air			120psi					
		GC Setting								
		Injection Temperature				2	30°C			

Temperature Program	Temperature (°C)	Rate/min (°C)	Time (min)
Column	80	0	1
Column	225	24	1

230°C

100 μ L

12 psi

UNCONTROLLED

Detector Temperature

Injection Volume Head Pressure

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No	5	Effective Date: _	28-Sep-22

- 10.2.3. Instrument parameters setup stipulated in this SOP are instrument suggested parameters. Fine tune the instrument to obtain optimum instrument condition.
- 10.2.4. Print and staple a copy of the current instrument parameter on the instrument log for easy access when performing daily instrument routine check.
- 10.2.5. In the event that instrument parameters necessitate a change, replace the instrument parameter printout with the new parameter setup. Archive the previous instrument parameters at the back of the instrument maintenance log.

10.3. Calibration

- 10.3.1. Initial Calibration
 - 10.3.1.1. Carefully fill a 40 mL VOA vial with purged HPLC grade. Care should be taken to avoid any trapped bubbles.
 - 10.3.1.2. Setup the vial as described in Sec. 10.1.2.
 - 10.3.1.3. Using a Luerlock gas tight syringe measure the desired amount of standard (refer to Sec. 9.2) and lock it. Using the helium syringe, measure the corresponding amount of helium to make a total of 4mL final volume of gas (standard plus helium) and lock it.
 - 10.3.1.4. Insert the standard syringe and the helium syringe into the vial septum. Simultaneously inject the standard and helium (as described in Sec. 10.1.4) into the vial to displace 4mL of reagent water into the displacement syringe. Lock the syringe after injection was completed to prevent sample backflow.
 - 10.3.1.5. Remove the syringes and shake the vial for five minutes by quick wrist motion to allow gas to equilibrate between the liquid and gas phases.
 - 10.3.1.6. With the vial positioned upright, withdraw 100 μ L gas from the headspace and analyze by GC.
 - 10.3.1.7. Calculate the mean calibration factor and the relative standard deviation (%RSD) according to Eq.- 10.5.1.3 and Eq.- 10.5.1.5.
 - 10.3.1.8. Refer to Appendix 1 for acceptance criteria. If results are non-compliant, refer to Sec. 12 for corrective action.

10.3.2. Initial Calibration Verification

- 10.3.2.1. Prepare and analyze an ICV standard (refer to Sec.9.3) applying the same procedure as described in Sec.10.3.1.
- 10.3.2.2. Refer to Appendix 1 for acceptance criteria. If results are non-compliant, refer to Sec. 12 for corrective action.
- 10.3.3. Daily Continuing Calibration (DCC)
 - 10.3.3.1. Analyze a continuing calibration standard (refer to Sec. 9.4) to check the validity of the ICAL, at the beginning of the batch, every 12 hours thereafter and at the end of the batch.
 - 10.3.3.2. Calculate the percent difference using Eq.- 10.5.1.6.
 - 10.3.3.3. Refer to Appendix 1 for acceptance criteria. If results are non-compliant, refer to Sec. 12 for corrective action.

DISSOLVED GASES

SOP No.:	EMAX-RSK175		Revision No.	5	Effective Date:	28-Sep-22		
10.4.	Analysis							
	10.4.1.	Prepare a	nalytical sequ	ience as sugge	ested below.			
		10.4.1.1.	Instrument the system a	blank – inject and the heliun	100 μL of helium n to be used for a	to confi inalysis.	rm absence of cont	tamination from
		10.4.1.2.	DCC – to che	eck the validit	y of the ICAL prio	r to sam	ple analysis.	
		10.4.1.3.	Method Bla for the star atmosphere	nk — to confiı ndard prepar 	rm absence of co ation as well as	ontamina s the na	ation from the reag aturally occurring	gent water used gases from the
		10.4.1.4.	LCS – to con	firm the accu	racy of the prepa	ration pr	ocess	
		10.4.1.5.	Samples not	t to exceed 12	hours			
		10.4.1.6.	MS/MSD – a	as required by	the project.			
		10.4.1.7.	DCC – after	12 hours and	at the end of the	batch		
	10.4.2.	Sample R	esult Evaluation					
		10.4.2.1.	Check QC pa	arameters as	soon as the data	is availa	ble.	
С		10.4.2.2. 10.4.2.3.	When a chr analyte, it according to Check the c calibration r within the c If less analyse Otherw	omatographic is considered Eq 10.5.2. concentration range, re-anal calibration ran than 10% of es, a smaller in vise, a new sat	peak falls in the as qualitatively of identified tar yze the sample t ge guided by the the original san njection from the mple is prepared	get ana o bring o pring nple hea same h at an ap	on time window (Se fied. Calculate the lytes. If the respon- the response of the s below. adspace was used eadspace can be mopropriate dilution	ec. 10.4.4) of an e concentration use exceeds the e target analyte in the sample nade.
		10.4.2.4.	Rule out car	ryover. Refer	to Sec. 10.4.5.			
	10.4.3.	<u>Manual Ir</u>	ntegration					
		10.4.3.1.	When manu DM01.	ual integratio	n is necessary, fo	ollow th	e procedures desc	ribed in EMAX-
	10.4.4.	Retention	Time Windo	ws				
		10.4.4.1.	Establishing	g RTW				
			10.4.4.1.1.	Run RTW st	andard over a pe	eriod of 7	72 hours.	
			10.4.4.1.2.	Calculate th for each and	ne standard devia alyte according to	ation (SI o Eq10.	D) of the obtained 5.1.4.	retention time
			10.4.4.1.3.	The width o	f RTW is defined l	by ± 3xSl	D.	
		10.4.4.2.	Evaluating F	TW				
			10.4.4.2.1.	If the SD is data is obta	equal to 0.0, de ined to define the	fault to e RTW of	the previous study the current instru	/ until historical ment.
			104422	For new in	struments use t	he estal	hished retention t	ime of another

10.4.4.2.2. For new instruments, use the established retention time of another instrument having the same instrument parameters (e.g., detector, temperature program and column). If there are no instruments with

DISSOLVED GASES

SOP No.:	EMAX-RSK	175	Revision No. 5 Effective Date: 28-Sep-22
			the same instrument parameter, use 0.03 minutes as the default RTW until historical data is obtained to define the RTW for the current instrument parameters condition.
	10.4.4.3.	Application	of RTW
		10.4.4.3.1.	Establish the center of the absolute retention time for each analyte from the daily calibration check at the beginning of the analytical shift then apply the established RTW.
		10.4.4.3.2.	Whenever the observed retention time is outside the established RTW, the analyst is advised to determine the cause and perform necessary corrective action before continuing analysis.
	10.4.4.4.	Updating R	ſW
		10.4.4.4.1.	Re-establish the RTW as described in Sec. 10.4.4.1 when the following conditions occur:
			Yearly RTW update
			• Significant shifting is observed (e.g., succeeding calibration checks or LCS are out of the RTW)
CO	N	10.4.4.4.2.	 Major instrument maintenance (e.g., replacements of detector or column, temperature program change, etc.) If the calculated new RTW is significantly narrower than the previously established RTW, default to the previously established RTW.
10.4.5.	Dealing w	vith Carryover	
	10.4.5.1.	Check the exceeding t	sample analyzed after a sample having target analyte concentrations he calibration range.
	10.4.5.2.	If there is n sample, pro	o target analyte detected as found in the preceding high-concentration beeed with data reduction.
	10.4.5.3.	If there is and sample, re- proceed wit	ny target analyte detected as found in the preceding high-concentration analyze the sample to rule-out carryover. If carryover is confirmed, th data reduction and report the data from re-analysis.
10.5. Calculat	ions		
10.5.1.	<u>Calibratio</u>	n	
	10.5.1.1.	Standard Co	procentration from μ L/L to μ g/L

$$C = \frac{V_H}{V_W} \times C_V \left(\frac{273}{273 + T_C}\right) \times \frac{1}{22.4} M_{wt}$$
 Eq.- 10.5.1.1

where:

- C Concentration of gas in water in μ g/L
- V_H Head space volume (4mL)
- V_w Sample volume (39 mL)
- $C_V \quad \quad Concentration \ of \ gas \ in \ \mu L/L$
- T_c Room temperature (21°C <u>+</u>2°C)

DISSOLVED GASES

DISSOLVED GASES

DISSOLVED GASES

SOP No.:		EMAX-RSK175	Revision No. 5 Effective Date: 28-Sep-22
		where:	
		<i>C</i> ₁	 Measured concentration of the first aliquot
		<i>C</i> ₂	 Measured concentration of the second aliquot
10.6. I	Data Redu	uction	
1	10.6.1.	Make a copy of the anal	ytical run log.
1	10.6.2.	Make a copy of the sam	ple preparation log.
1	10.6.3.	Print a copy of the raw c	lata and the QC report.
1	10.6.4.	Highlight the data to be	reported.
2	10.6.5.	Collate the reportable ra	aw data separating the QC results from the sample results.
1	10.6.6.	Keep all other data gene	rated with the analytical folder marked with "For record only".
10.7. I	Report Ge	eneration	
2	10.7.1.	Generate the method.tx	xt file using METXT.exe.
-	10.7.2.	Generate the sample re	sults using F1NV3C.exe or F1NV3C4.exe.
-	10.7.3.	Generate the QC summ	ary using QCV3CN.exe or QCV3CN4.exe.
	10.7.4.	Generate Lab Chronicle	using LABCHRN1.exe
:	10.7.5.	Generate case narrative	e using CN00.exe
10.8.	Data Revi	ew	
1	10.8.1.	Arrange the analysis pa all raw data to every for	ickage in sequence as detailed below using section separators. Attach rm generated, to include manual integration and re-analyses.
		Case Narrative	
		• Lab Chronicle	
		Sample Results	
		Method Blank F	Results
		LCS/ LCSD Sumr	mary
		MS/MSD Summ	ary
		ICAL Summary	
		ICV Summary	
		 ICV Summary DCC Summary 	
		 ICV Summary DCC Summary Analytical Run L 	.og
		 ICV Summary ICV Summary DCC Summary Analytical Run L Sample Prepara 	.og Ition Log

10.8.2. Perform a 100% data review in accordance to EMAX-DM01and the PSR.

10.8.2.1. If any of the checkpoints below indicate a problem, re-analysis is required.

• Check the qualitative identification is done properly.

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No. 5 Effective Date: 28-Sep-22					
	•	Check calibrations for accuracy, completeness and compliance to requirements.					
	•	Check that sample results are integrated properly and results above calibration range are diluted and re-analyzed within the calibration range.					
	•	Where manual integration was performed, check that it was done properly and documentation was retained in accordance to EMAX-DM01 (Manual Integration Section).					
	•	Check that saturated peaks are diluted and quantitated properly.					
	•	Check that suspected carry-overs are re-analyzed and results are reported accordingly.					
	•	Check that method blank is compliant to PSR.					
	•	Check that LCS and LCSD are within the project QC limits.					
	•	Check that MS and MSD are within the project QC limits.					
	10.8.2.2. Rev	view that the attached logs are properly filled.					
	10.8.2.3. Che ind	eck the generated reports against raw data. Check that the analytical data that icate positive results are qualitatively and quantitatively correct.					
CO	10.8.2.4. Rev the	view the case narrative and check that it accurately describes what transpired in analytical process. Edit as necessary to case narrative generator program.					
10.8.3.	Submit the an	alysis package for secondary review.					
10.9. Prevent	ive Maintenance	2					
10.9.1.	Perform routi maintenance are operating	ine instrument preventive maintenance and record on the instrument-specific log (Refer to Form RSK175FM). Routine maintenance ensures that all Instruments under optimum condition, thus reducing the possibility of instrument malfunction					

10.9.2. The table below lists suggested routine maintenance schedule.

that may affect data quality.

Maintenance Activity	Description	Frequency
	Inspect and clean syringe. Check instrument parameters to ensure normal	
GC Verification	operating conditions. Change liner as necessary.	Daily prior to analysis.
	Clean injection port as necessary. Check instrument performance (e.g., Daily calibration check, instrument blank)	
System Cleaning	Remove dust from fans and vent covers, inspect and clean inlet and detector. Check septa and replace as necessary.	Every 6 months or as necessary
Check Flow Path Components	Check and replace the following as necessary: tubing assembly, union, column	Once a year as necessary
Complete Inspection	Perform general inspection of the complete system. Inspect autosampler cabling and configuration setting.	Once a year

Page 15 of 36

STANDARD OPERATING PROCEDURES

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22

Maintenance Activity Description		Frequency	
Decumentation	Record all instrument maintenance performed	Daily prior to analysis	
Documentation	in the instrument maintenance log.		

11.0 QUALITY CONTROL

11.1. Method QC

- 11.1.1. Establish DL, LOD and LOQ prior to using this method. Refer to EMAX-QA04 for evaluation and verification.
- 11.1.2. All analysts performing the method should have a valid Demonstration of Capability (DOC).

11.2. Analytical Batch

- 11.2.1. Perform sample analysis with a valid ICAL. Analyze ICV to verify the concentration of the ICAL standards.
- 11.2.2. An instrument blank shall be performed prior to the first daily continuing calibration. The acceptance criteria shall be the same as the method blank.
- 11.2.3. Analyze DCC at a frequency and acceptance criteria as described in Appendix 1 to validate the ICAL.

11.2.4. Update the Retention Time Window at least once a year or when a major instrument repair is done.

11.3. Sample Preparation

- 11.3.1. All samples must be analyzed within the holding time.
- 11.3.2. The maximum number of original field samples in a preparation batch shall be 20 unless otherwise specified by the project.
- 11.3.3. Prepare and analyze method blank, LCS (when required by the project), and MS/MSD (when designated by the project) for each every analytical batch applying the same analytical process as the field samples (Section 10.0).
- 11.3.4. Use organic-free water for method blank and LCS.
- 11.3.5. In the absence of any project designation, a sample duplicate with detected analytes or a LCS duplicate may be analyzed to establish precision.
- 11.3.6. Clean the purge needles thoroughly with high purity helium, after every use to ensure that there are no particulates adhering to it.
- 11.3.7. Check the Tedlar bags (by lot) are free of any contamination.
- 11.4. Refer to Appendix 1 for all related Quality Control parameters, frequency and acceptance criteria.

12.0 CORRECTIVE ACTION

- 12.1. Corrective action for each Quality Control procedure is summarized in Appendix 1.
- 12.2. Calibration
 - 12.2.1. If the % RSD is out of acceptance criteria, review the results and identify presence of an outlier.

DISSOLVED GASES									
SOP No.:	EMAX-RSK175	Revision No Effective Date:28-Sep-22							
	 If one of the standard point is considered an 	s returns bias low or bias high response on all of the analytes, the outlier. Prepare a standard at that ICAL point and re-analyze.							
	• If the highest ICAL point appears to be saturated, drop the highest point.								
	 If the lowest point returns a bias low response or the peaks are not distinct and sha drop the point. 								
	Note: The lowest calibration that the LOQ is in conf	point identifies the limit of quantitation (LOQ). Therefore, check ormance to the current projects where the ICAL will be used.							
	12.2.2. If ICV is non-compliant, conside	er the following to correct the problem:							
	 If all analytes are bia inaccurate. Prepare a 	is low or bias high, the amount of standard injected could be another standard and re-analyze the ICV.							
	 If standard degradation the ICV. 	on is observed, prepare from a new standard lot and re-analyze							
	 If the problem persis flow rates and refer t initial calibration and 	ts, perform instrument troubleshooting. Check leaks, check gas o GC troubleshooting manual to correct the problem. Repeat the CV.							
	12.2.3. If DCC is non-compliant, consid	ler the suggestions in Sec. 12.3.2 to correct the problem:							
C	12.2.4. If suggested corrective action further advise prior to perform	s do not correct the problem, consult with the Supervisor for ing a new ICAL.							
12.3.	Instrument Blank								
	12.3.1. When instrument blank is nor syringe and analyze the helium port is contaminated or the helium to correct the problem.	n-compliant, fill a new tedlar bag with helium, clean the injection m by direct injection. If the problem persists, either the injection elium source is contaminated. Consider the following suggestions							
	Check the helium sour	ce to make sure that the helium grade is ultra-high purity.							
	Change the GC injector	r septa.							
	• Cut the column.								
12.4.	Method Blank								
	12.4.1. If method blank is non-complia of the problem.	ant, consider the following suggestions to investigate the source							
	 Check for possible contained on the contained of the containe	amination from the reagent water. If contamination is due to ne filter at the source.							
	Check for possible conta	mination from the vial.							

- Analyze the vial septa. Cut the septa in half and place in a new vial. Add 2 drops of HCl and fill the vial with reagent water. Let it stand for at least 1 hour. Analyze like a regular sample.
- > If contamination is from the vial, use another lot or vial manufacturer.
- If the analyte found in the method blank is not detected in any of the field samples, consult the Supervisor and the PM if the result can be reported. Otherwise, re-extract and re-analyze the method blank prior to sample analysis.

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22

12.5. Laboratory Control Sample

12.5.1. If LCS/LCSD recovery fails, check that spike amount is correct and proper injection was achieved. Correct the problem and then re-extract and reanalyze the LCS and all associated samples.

12.6. Matrix Spike

- 12.6.1. If MS/MSD recovery fails, consider the following suggestions:
 - Review the chromatogram and check if matrix interference is observed. Discuss in the case narrative.
 - Check that the spike amount is correct and proper injection was achieved. Correct the problem, re-extract and reanalyze.
- 12.7. For insufficient amount of sample, note it in the sample preparation log and inform the PM immediately and discuss it in the case narrative.
 - 12.7.1. When sample chemical preservation is insufficient (samples labeled preserved but the pH is >2), note it in the analytical run log comment section and discuss it in the case narrative.

12.8. Method QC

- 12.8.1. If LOD and LOQ verifications failed to meet the acceptance criteria, consider instrument maintenance prior to re-analyzing LOD/LOQ verification. Otherwise, perform new detection limit study.
- 12.8.2. If retention time has significantly shifted, check the carrier gas flow or check for leaks. Perform RTW study and apply as necessary.

12.9. Non-Conformance Report (NCR)

- 12.9.1. A Non-Conformance Report (NCR) is required when the following circumstances occur:
 - Anomalies other than specified in Appendix 1 are observed.
 - Sample is out of technical holding time.
- 12.9.2. Refer to EMAX-QA08.

13.0 POLLUTION PREVENTION

- 13.1. Observe all necessary precautions to avoid spillage of solvent that may go to the wastewater drains.
- 13.2. Prepare all the standards in the fume hood.

14.0 WASTE MANAGEMENT

- 14.1. No samples should be dumped into the laboratory sink.
- 14.2. Separate and properly identify all unused and expired analytical standards for proper disposal.
- 14.3. Place all wastes generated during the analytical process in properly labeled satellite waste containers for proper collection.
- 14.4. Dispose all unused samples, expired analytical standards and other wastes generated during the analytical process in accordance to EMAX-SM03.

Page 18 of 36

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22
-					

15.0 SUPPLEMENTARY NOTES

15.1. A study of 40mL vials supplied by VWR International was conducted to establish the sample amount used for analysis. It was established that the sample amount is 39 mL. In the event that vials are purchased from another supplier, a similar study shall be conducted to establish the sample amount used in this analysis.

15.2. Definition of Terms

- 15.2.1. <u>Batch</u> is a group of samples that are prepared and/or analyzed at the same time using the same lot of reagents. Preparation batch is composed of one to 20 sample of the same matrix, a method blank, a lab control sample and matrix spike/matrix spike duplicate. Analytical batch is composed of prepared samples (extracts, digestates, or concentrates), which are analyzed together as a group using an instrument in conformance to the analytical requirement. An analytical batch can include samples originating from various matrices, preparation batches and can exceed 20 samples.
- 15.2.2. <u>Calibration</u> is a determinant measured from a standard to obtain the correct value of an instrument output.
- 15.2.3. <u>Instrument Method</u> is a file generated to contain the instrument calibration and instrument parameter settings for a particular analysis.
- 15.2.4. <u>Instrument Blank</u> is target-free solvent subjected to the entire analytical process to establish zero baseline or background value.
- 15.2.5. <u>Lab Control Sample (LCS)</u> is a target-analyte-free sample spiked with a verified known amount of target analyte(s) or a reference material with a certified known value subjected to the entire sample preparation and/or analytical process. LCS is analyzed to monitor the accuracy of the analytical system
- 15.2.6. <u>Lab Control Duplicate Sample (LCD)</u> is a replicate of LCS analyzed to monitor precision when MS/MSD sample is not analyzed.
- 15.2.7. <u>Matrix</u> is a component or form of a sample.
- 15.2.8. <u>Matrix Spike (MS)</u> is a sample spiked with a verified known amount of target analyte(s) subjected to the entire sample preparation and/or analytical process. MS is analyzed to monitor matrix effect on a method's recovery efficiency.
- 15.2.9. <u>Matrix Spike Duplicate</u> is a replicate of MS analyzed to monitor precision or recovery.
- 15.2.10. <u>Method Blank</u> is a target-analyte-free sample subjected tot he entire sample preparation and/or analytical to monitor contamination.
- 15.2.11. <u>Sample</u> is a specimen received in the laboratory bearing a sample label traceable to the accompanying COC. Samples collected in different containers having the same field sample ID are considered the same and therefore labeled with the same lab sample ID unless otherwise specified by the project.
- 15.2.12. <u>Sample Duplicate</u> is a replicate of a sub-sample taken from one sample, prepared and analyzed within the same preparation batch.
- 15.2.13. <u>Sub-sample</u> is an aliquot taken from a sample for analysis. Each sub-sample is uniquely identified by the sample preparation ID.

DISSOLVED GASES

SOP No.:	EMAX-RSK175	Revision No.	5	Effective Date:	28-Sep-22

15.3. Application of EMAX QC Procedures

15.3.1. The procedures and QC criteria summarized in this SOP applies to all projects requiring Dissolved Gases. In instances where there is a project or program QAPP, the requirements given in the project takes precedence over this SOP.

15.4. Department of Defense (DoD) and Department of Energy (DOE) Projects

15.4.1. Samples from DoD and/or DOE sponsored projects follows the Quality Assurance Project Plan (QAPP), Statement of Work (SOW) and/or client's quality control directive. In the absence of QAPP, the DoD and DOE Consolidated Quality Systems Manual (QSM), latest update, is applied.

16.0 <u>REFERENCES</u>

- 16.1. DH Kampbell, JJ Wilson and S.A. Vandegrift. "Dissolved Oxygen and Methane in Water by a GC Head space Equilibration Technique". International Journal Environ Analytical Chem., Vol. 30, pp. 249-257, 1989
- 16.2. EMAX Quality Systems Manual, as updated.

17.0 <u>APPENDICES</u>

17.1.	Figures							
	17.1.1.	Figure 1	Peak Evaluation Technique					
	17.1.2.	Figure 2	Typical Chromatograms					
	17.1.3.	Figure 3	Typical ICAL Summary					
	17.1.4.	Figure 4	Typical Calibration Verification Summary					
	17.1.5.	Figure 5	Typical Sample Result Summary					
	17.1.6.	Figure 6	Typical LCS/LCSD Summary					
	17.1.7.	Figure 7	Typical Matrix Spike Summary					
	17.1.8.	Figure 8	Typical Case Narrative					
17.2.	Appendic	ces						
	17.2.1.	Appendix 1	Summary of Quality Control Procedures					
	17.2.2.	Appendix 2	Demonstration of Capability					
17.3.	Forms							
	17.3.1.	RSK175FS	Sample Preparation Log					
	17.3.2.	RSK175FA	Analysis Run Log					
	17.3.3.	RSK175FM	Instrument Maintenance Log					

Figure 2:

TYPICAL CHROMATOGRAMS

METHOD EPA DGAS by GC/FID EMAX Analytical Laboratories, Inc.

File	:	c:\ezchrom\chrom\bm27\bm27008
Method	:	c:\ezchrom\methods\dg72m27.met
Sample ID	:	IDG72M27001
Acquired	:	Mon dd,yyyy hh:mm:ss
Printed	:	Mon dd,yyyy hh:mm:ss
User	:	JDoe

Channel A Results

÷	Peak Name	Ret.Time(Min)	Area	Ave. CF	ESTD Conc.(ppb)
2	Methane	0.508	37939	3056.74	12.412
- 3	Ethylene	0.758	42227	1929.26	21.888
4	Acetylene	0.833	10663	492.10	21.668
5	Ethane	0.892	63672	2674.68	23,805
б	Propane	2.417	93886	2786.10	33.698

CONFIDENTIAL

Figure 2:

TYPICAL CHROMATOGRAMS

METHOD EPA DGAS by GC/FID EMAX Analytical Laboratories, Inc.

File	:	c:\ezchrom\chrom\ bml6\bml6.008
Method	:	c:\ezchrom\methods\dg72m16p.met
Sample ID	:	TDC72M16D01
Acquired	:	Mon dd, yyyy hh:mm:ss
Printed	:	Mon dd, yyyy hh:mm:ss
User	:	JDoe

Channel A Results

ŧ	Peak Name	Ret.Time(Min)	Area	Ave. CF	ESTD Conc.(ppb)
3	Propylene	2.283	60710	1709.26	35.518

CONFIDENTIAL

c:\ezchrom\chrom\ bml6\bml6.008 Channel A

Figure 2:

Quantitation Report

TYPICAL ICAL SUMMARY

Lab Name :	EMAX Inc
Instrument ID :	GCT072
GC COlumm :	RT-QS-BOND
Column size ID :	30M×0.53MM
LFID & Datetime:	BM27002A MM/DD/YY HH:MM
LFID & Datetime:	BM27003A MM/DD/YY HH:MM
LFID & Datetime:	BM27004A MM/DD/YY HH:MM
LFID & Datetime:	BM27005A MM/DD/YY HH:MM
LFID & Datetime:	BM27006A MM/DD/YY HH:MM
LFID & Datetime:	BM27007A MM/DD/YY HH:MM
CONC UNIT:	ppb

	CONC		CALIBRATI	ON FACTOR	۱S	(ARE/	A)/UNIT		
COMPOUND	×	2.00×	10.00×	25.00×	40.00×	75.00×	100.00×	MEAN	%RSD
	=======	=======	=======	=======			=======	=========	====
Methane	0.34	3604	3456	3034	2776	2700	2770	3056.7	12.7
Acetylene	0.55	528	510	485	478	468	484	492.1	4.5
Ethylene	0.60	2166	2050	1885	1820	1796	1857	1929.3	7.6
Ethane	0.64	2995	2841	2596	2532	2508	2576	2674.7	7.4
Propane	0.94	3202	2923	2698	2601	2599	2694	2786.1	8.5
i '	ĺ						ĺ	ĺ	i

DG72M27.MET

	INITIAL	CALIBRATION	
	DISSO	LVED GASES	
Lab Na <mark>me</mark> :	EMAX Inc		
Instru <mark>me</mark> nt ID 🛛 :	GCT072		
GC COlumm	RT-QS-BOND		
Column size ID :	30M×0.53MM		
LFID & Datetime:	BM27002A MM/DD/YY	HH:MM	
LFID & Datetime:	BM27003A MM/DD/YY	HH:MM	
LFID & Datetime:	BM27004A MM/DD/YY	HH:MM	
LFID & Datetime:	BM27005A MM/DD/YY	HH:MM	
LFID & Datetime:	BM27006A MM/DD/YY	HH:MM	
LFID & Datetime:	BM27007A MM/DD/YY	HH:MM	

	RT OF STANDARDS (MIN)					MEAN	RT WINDOW		RTWINDOW	
COMPOUND	2.0X	10.0×	25.0X	40.0X	75.0X	100.0×	RT	FROM	то	WIDTH
=======================================	======	======	=====	=====	=====	======	======	======	======	=======
Methane	0.500	0.508	0.508	0.508	0.508	0.517	0.508	0.465	0.551	0.043
Acetylene	0.825	0.833	0.833	0.833	0.833	0.842	0.833	0.718	0.948	0.115
Ethylene	0.750	0.758	0.758	0.758	0.758	0.758	0.757	0.642	0.872	0.115
Ethane	0.883	0.892	0.892	0.892	0.892	0.892	0.891	0.787	0.995	0.104
Propane	2.417	2.417	2.417	2.417	2.417	2.417	2.417	2.247	2.587	0.170
· · · · · · · · · · · · · · · · · · ·										

DG72M27.MET

Figure 3:

INITIAL CALIBRATION PROPYLENE

Lab N Instr GC CO Colum	ame ument ID Jumm n size TF		EMAX Inc GCT072 RT-QS-BON ROMX0 53M	ID M	
LFID LFID LFID	& Dateti & Dateti & Dateti & Dateti	me: I me: I me: I	SOMAO.JSM BM16002A BM16003A BM16004A	MM/DD/YY MM/DD/YY MM/DD/YY MM/DD/YY	HH:MM HH:MM HH:MM
LFID LFID LFID CONC	& Dateti & Dateti & Dateti UNIT:	me: I me: I me: I	BM16005A BM16006A BM16007A	MM/DD/YY MM/DD/YY MM/DD/YY	HH:MM HH:MM

	CONC		CALIBRATI	A)/UNIT		<u> </u>			
COMPOUND	×	2.00×	10.00×	25.00×	40.00×	75.00×	100.00×	MEAN	%RSD
	=======								====
Propylene	0.89	1775	1816	1627	1632	1748	1658	1709.3	4.7

DG72M16P.MET

INITIAL CALIBRATION PROPYLENE

Lab Name : EMAX Inc Instrument ID : GCT072 GC Columm : RT-QS-BOND Column size ID : 30M×0.53MM LFID & Datetime: BM16003A MM/DD/YY LFID & Datetime: BM16003A MM/DD/YY LFID & Datetime: BM16005A MM/DD/YY LFID & Datetime: BM16007A MM/DD/YY LFID & Datetime: BM16007A MM/DD/YY	HH:MM HH:MM HH:MM HH:MM HH:MM
--	---

	RT OF STANDARDS (MIN)						MEAN	RT W	RTWINDOW	
COMPOUND	2.0X	10.0×	25.0X	40.0×	75.0×	100.0×	RT	FROM	то	WIDTH
	======	======	======	======	======	======	======	======	======	========
Propylene	2.283	2.275	2.275	2.275	2.283	2.275	2.278	2.262	2.294	0.016

DG72M16P.MET
Figure 3:

TYPICAL ICAL SUMMARY

INITIAL CALIBRATION SUMMARY DISSOLVED GASES

		ALIBRATIC	ON FACTORS	5 (Area/IC	AL Conc.)	AVERAGE	
PARAMETER	1200	2300	4700	9300	14000	19000	CF	RSD
=====================================	========			=======	=======		========	======
Carbon Dioxide	38.37	40.42	42.16	47.36	47.65	45.07	43.51	8.73

		RETENTIO	ON TIME OF	F ICAL ST	DS (MIN)		AVERAGE	RT W	ENDOW .	RT
PARAMETER	1200	2300	4700	9300	14000	19000	RT	FROM	то	WIDTH
= = = = = = = = = = = = = = = = = = =	=======		=======	=======	=======		=======	========	=======	=======
Carbon Dioxide	4.43	4.41	4.41	4.40	4.39	4.39	4.41	4.36	4.45	0.0455

CA13M19.MET

CONFIDENTIAL

Figure 4:

TYPICAL CALIBRATION VERIFICATION SUMMARY

INITIAL CALIBRATION VERIFICATION DISSOLVED GASES

Lab Name Instrument ID GC Columm Column size ID Mid Conc Init LFID & Datetime Conc Cont LFID & Datetime		EMAX Inc GCT072 RT-QS-BOND 30MX0.53MM BM27005A MM/DD/YYYY BM27008A MM/DD/YYYY	НН:ММ НН:ММ
CONC UNIT	:	ppb	

	RT	RT W	ENDOW	TRUE	AVERAGE	RESU	JLT			%D
COMPOUND	MINUTES	FROM	ТО	CONC	CF	AREA	CONC	%D	QL.	LIMITS
=======================================	=======	=======	======	======	========	=======	=======	======	==	======
Methane	0.508	0.465	0.551	13.6	3056.7	37939	12.41	j -9	ĺ	j 15
Acetylene	0.833	0.718	0.948	22.1	492.100	10663	21.67	j -2	ĺ	j 15
Ethylene	0.758	0.643	0.873	23.8	1929.3	42227	21.89	j –8	ĺ	j 15
Ethane	0.892	0.788	0.996	25.5	2674.7	63672	23.81	-7		15
Propane	2.417	2.247	2.587	37.4	2786.1	93886	33.70	-10		15
	1	1			ĺ		ĺ	ĺ	ĺ	ĺ

DG72M27.MET

INITIAL CALIBRATION VERIFICATION PROPYLENE

DG72M16P.MET

INITIAL CALIBRATION VERIFICATION

Lab Name Instrument ID	: EMAX Laboratories, Inc. : TO13	
GC Column GC Column Size ICV LFID & DateTime	: Carboxen 1006 PLOT : 30mx0.53mmICAL MID LFID & DateTime: CSM038 MM/DD/YY HH:MM : CSM041 MM/DD/YY HH:MM	

	RT	RT W	INDOW	EXPECTED	AVERAGE	RESI	JLT			%D
PARAMETER	MINUTES	FROM	то	CONC	CF	AREA	CONC	%D	QL	LIMITS
	========	========	========	=======	=======	=======	========	======	====	======
Carbon Dioxide	4.41	4.36	4.45	9300	43.51	396353	j 9110	į 2	ĺ	15
										I

CA13M19.MET

Figure 5:

TYPICAL SAMPLE RESULT SUMMARY

METHOD RSK-175 DISSOLVED GASES

						=====
Client :	XYZ, INC.		Date	Collected:	MM/DD/YY	
Project :	CLEAN WATERROJECT		Date	Received:	MM/DD/YY	
Batch No. :	YYM163		Date	Extracted:	MM/DD/YY	HH:MM
Sample ID:	ABCD-01		Date	Analyzed:	MM/DD/YY	HH:MM
Lab Samp ID:	⊂163-04		Diluti	on Factor:	1	
Lab File ID:	BM16017A		Matrix	:	WATER	
Ext Btch ID:	DGM008W		% Mois	ture :	NA	
Calib. Ret.:	BM16013A		Instru	ment ID :	GCT072	
						=====
			1.0	0	DI	
DADAMETEDS			fug/i) fue	45 - C	ua/L)
PARAMETERS		(ug/L)	(ug/c	/ (ug/		.ug/L/
ACETYLENE		ND	2.	o o.	.28	0.55
ETHANE		ND	2.	ō ō.	.32	0.64
ETHENE		ND	2.	o ō.	.30	0.60
METHANE		14	2.	ο ο.	.17	0.34

CONFIDENTIAL

Page 28 of 36 EMAX-RSK175 Rev. 5 Figures

Page 29 of 36 EMAX-RSK175 Rev. 5 Figures

Figure 6:

TYPICAL LCS/LCSD SUMMARY

			EMAX	QUALITY CON LCS/LCD ANA	ITROL DAT	A					
CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ, INC. Clean water pr YYM163 RSK-175	OJECT									
MATRIX: DILUTION FACTOR: SAMPLE TD:	WATER 1 MBLK1W	1	1		% MOIS	TURE:	NA				
LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	DGM008WB BM16003A MM/DD/YYHH:MM MM/DD/YYHH:MM DGM008W BM16002A	DGM008WL BM16004A MM/DD/YYHF MM/DD/YYHF DGM008W BM16002A	DGM00 BM160 H:MM MM/DD H:MM MM/DD DGM00 BM160	8WC 05A /YYHH:MM /YYHH:MM 8W 02A	DATE C DATE R	OLLECTED: ECEIVED:	NA MM/DD/YY				
ACCESSION: PARAMETER	BL	.NK RSLT S	PIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
Acetylene Ethane Ethene Methane		ND ND ND ND	22.1 25.5 23.8 13.6	23.2 25.8 23.8 13.3	105 101 100 98	22.1 25.5 23.8 13.6	23.4 25.5 23.6 13.2	106 100 99 97	1 1 1 1	 70-129 74-131 72-133 73-125	30 30 30 30 30

Figure 7:

TYPICAL MATRIX SPIKE SUMMARY

			EMAX QU/ MS,	ALITY CONT /MSD ANALY	ROL DATA SIS						
CLIENT: PROJECT: BATCH NO.: METHOD:	XYZ, INC. CLEAN WATER PR YYM163 RSK-175	ојест									
MATRIX: DILUTION FACTOR:	WATER 1	1	1		% MOIST	URE:	NA				
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	ABCD-01 M163-04 BM16017A MM/DD/YYHH:MM MM/DD/YYHH:MM DGM008W BM16013A	M163-04M BM16018A MM/DD/YYHH:MM MM/DD/YYHH:MM DGM008W BM16013A	M163-043 BM16019/ MM/DD/Y MM/DD/Y DGM008W BM16013/	5 4 7 HH : MM 7 HH : MM	DATE CO DATE RE	LLECTED: CEIVED:	MM/DD/YY MM/DD/YY				
ACCESSION:	SM	PL RSLT SPIKI		S RSLT	MS % RFC	SPIKE AMT	MSD RSLT	MSD % PEC	RPD	QC LIMIT	MAX RPD
Acetylene Ethane Ethene Methane		ND ND ND 14.2	22.1 25.5 23.8 13.6	22.4 25.6 23.8 30.1	101 100 100 117	22.1 25.5 23.8 13.6	21.2 24.6 22.7 28.4	96 96 95 104	6 4 5 6	70–129 74–131 72–133 73–125	30 30 30 30 30

CASE NARRATIVE

Client : XYZ, INC.

Project: CLEAN WATER PROJECT

SDG : YYM163

METHOD RSK-175 DISSOLVED GASES

A total of six(6) water samples were received on MM/DD/YY to be analyzed for Dissolved Gases in accordance with Method RSK-175 and project specific requirements.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DGM008WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. DGM008WL/DGM008WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. M163-04M/M163-04S - all analytes were within MS QC limits. Refer to Matrix QC summary form for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Page 32 of 36 EMAX-RSK175 Rev. 5 Appendices

SUMMARY OF QUALITY CONTROL PROCEDURES

QC PROCEDURE	FREQUENCY	ACCEPTANCE CRITERIA		N	1st Rvw	2 nd Rvw
Five-point initial calibration for all analytes	Initially; as needed	% RSD for all analytes \leq 20%	Correct the problem then repeat i	nitial calibration		
Initial Calibration verification - ICV (Second-source)	After initial calibration	All analytes within ±25% of expected value	Correct the problem then repeat i	nitial calibration		
Calibration verification	Bracket every 12 hours and at the end of the analytical run.	All analytes within ±15% of expected value	Correct the problem then repeat i verification and reanalyze all samp successful calibration verification	nitial calibration ples since last		
Method blank	One per preparation batch (≤ 20 samples per matrix)	No analytes detected ≥ ½ LOQ	If sample results are ND or sample than the contamination level, con if results are reportable. Otherwis reanalyze method blank and all sa with the contaminated blank. If re analysis is not possible, apply B to analyte(s) on all associated.	result >10X sult with the PM e, re-extract and mples processed -extraction/re- specific		
LCS	As required by the project. One LCS per preparation batch (≤ 20 samples per matrix)	In the absence of project QC Limits use EMAX QC limits	Re-extract and reanalyze the LCS a associated samples	and all		
MS/MSD	As required by the project.	In the absence of project QC Limits use EMAX QC limits	If chromatogram exhibits matrix in narrate observation in the case na Otherwise, check that spike value appropriately accounted. If anoma re-extract and re-analyze the matu samples.	nterference rrative. added is aly is suspected, rix spike		
Comments: Refer to PSR f	or Flagging Criteria.			Reviewed by:		
				Date:		

Appendix 2:

DEMONSTRATION OF CAPABILITY

DEMONSTRATION OF CAPABILITY

METHOD RSK175

Conc Unit: µg/L Sample Amount(ml): 39 Extract Amount (mL): 4

PARAMETER	BM04004A	BM04005A	BM04006A	BM04007A	τv	Ave.	Ave.	SD	RSD	Accuracy Acceptance	RSD	(%)	COMMENTS
	DGM001WL	DGM001WC	DGM001WX	DGM001WY	10	Conc.	%Rec	50	(%)	Limits (%	Criteria		COMMENTS
Methane	12.4	12.7	12.8	12.2	13.6	12.5	92	0.256	2	70 - 130	≤	20	Passed
Acetylene	21.9	22.5	23.3	22.2	22.1	22.5	102	0.613	3	70 - 130	≤	20	Passed
Ethylene	20.5	21.1	21.4	20.5	23.8	20.9	88	0.451	2	70 - 140	≤	20	Passed
Ethane	22.6	23.4	23.4	22.6	25.5	23.0	90	0.475	2	70 - 140	≤	20	Passed
Propane	32.7	33.6	33.8	32.6	37.4	33.2	89	0.620	2	70 - 130	≤	20	Passed
DEEEDENIOE				-									

REFERENCE:

A72-025, Page 11

Conc Unit <u>µg/L</u> Sample Amount(ml): <u>39</u> Volume Extracted(ml): <u>4</u>

PARAMETER	CSM004 CA13M01L	CSM005 CA13M01C	CSM022 CA13M02L	CSM023 CA13M02C	тv	Ave. Conc.	Ave. % Rec.	SD	RSD (%)	Accuracy Acceptance Limits (%	RSD (%) Criteria	Comments
Carb <mark>on</mark> Dioxide	9275	9230	9036	9176	9300	9179	99	104	1	60 - 130	≤ 20	Passed
REFERENCE:												

A13-015, Page 15

Conc Unit <u>µg/L</u> Sample Amount(ml): <u>39</u> Volume Extracted(ml): 4

PARAMETER	BM12004A	BM12005A	BM12006A	BM12007A	TV	Ave. Ave.		RSD	Accuracy RSD (%)		Commonte	
	DGM009WL	DGM009WC	DGM009WX	DGM009WY		Conc.	% Rec.	30	(%)	Limits (%	Criteria	comments
PROPENE	38.4	37.3	36.6	37.0	35.7	37.3	105	0.796	2	50 - 150	≤ 20	Passed

REFERENCE:

A72-025, Page 40

RSK175FA: ANALYTICAL RUN LOG ANALYSIS RUN LOG Page 1 A Xfor DISSOLVED GAS LABORATORIES, INC. A72-XXX Book #: For samples and relevant QCs/Standards Note: 72 Instrument No.: analyzed, refer to attached analytical sequence. Analytical Sequence: Comments: Method File: 10x : 400 μL of sample to 4000 μL final vol. (He) Analytical Batch: 20x : 200 µL of sample to 4000 µL final vol. (He) 40x : 100 μL of sample to 4000 μL final vol. (He) SOP # Rev. # EMAX-RSK175 C EMAX-D1945 EMAX-EMAX-STANDARDS ID Conc (µL/L) DCC Temperature (°C) Data File ELECTRONIC DATA ARCHIVAL Location Date SYRINGES Labbkup/Ezchrom/EZC_9_DGAS 100 μL - MSF-02-01-12 100 μL - MSF-03-01-01 Analyzed By: 50 μL - MSF-03-01-02

Date:

Disposed By:

Date Disposed:

UNCONTROLLED

100 µL - MSF-03-01-03

Π 10 μL - MSF-03-01-05

Page 35 of 36 EMAX-RSK175 Rev. 5 Forms

Page 1

RSK175FS:

SAMPLE PREPARATION LOG

EXTRACTION LOG FOR DISSOLVED GAS

SOP		K-RSK175 Rev Propylene				Room Temp. (°C):		Book #:	EDG-XXX
Start	Date:		Time:	En	d Date:		Time:		
	Sample Prep ID	Lab Sample ID	Sample Amount (ml)	Extract Volume (ml)	рН (<2)	Notes	Standards LCS/MS	ID	Amount Added (ul)
	01								
	02							I	I
	03						Reagent	Source	
	04						H ₂ O		
	05						He		
	06								
	07						Thermometer ID #:		
PRE	08						Tedlar Bag Lot#:		
PAI	09						pH Strips:		
AT	10						Vial Manufacturer:		
Ñ	11								
BA.	12						Syringes		
Ę	13)			10 mL - MSF-01-0	1-24	
1	14						5 mL - MSF-01-03	-06	
	15						5 mL - MSF-01-01-	-12	
	16						1 mL - MSF-01-03	-14	
	17						1 mL - MSF-01-02-	-24	
	18								
	19						Comments:		
	20								
	21								
	22								
	23								
	24								
	25								
	26								
	27								
	28								
	29						Prepared By:		
	30						Standard Added By:		

INSTRUMENT MAINTENANCE LOG

Page 1

INSTRUMENT MAINTENANCE LOG FOR DISSOLVED GAS

EMAX
LABORATORIES, INC.

Instrument No: 72	Month			Year: YYYY		Book # N	172-XXX
	ate						
Column Head Pressure							
Column Temperature							
FID lit up							
FID signal within specs							
Check make up gas flow							
Run instrument blank							
Computer Date/Time							
Computer Paper							
Analyst Initial							
Trouble Shooting							
Problem(s) Encountered							
Return to Control (Analyst Init	tial)						
Code	Problems Encount	ered	Code		Correctiv	e Action	

SOP REVIEW FORM

DISSOLVED GASES

SOP#: EMAX-RSK175

Rev 5

Effective Date: 28-Sep-22

COMMENTS	Reviewed By	Review Date
No update needed per DRF by LErmolova dated 09/19/23	syesty	09/19/23
		_

ENVIROFLUX

PFM Standard Operation Procedure

EnviroFlux, LLC 1140 NW 8th Ave, Suite 20 Gainesville, FL 32601 Work) 352-554-5296 E-mail: jay.cho@enviroflux.com

1.0. PFM Construction, Storage, and Transport

1.1. Description of PFM

The PFM is a self-contained permeable unit that is inserted into a well or boring such that it intercepts groundwater flow but does not retain it (See Figure 1-1).

The interior composition of the flux meter is a matrix of hydrophobic and hydrophilic permeable sorbents that retain dissolved organic and/or inorganic contaminants present in fluid intercepted by the unit. The sorbent matrix is also impregnated with known amounts of one or more fluid soluble 'resident tracers'. These tracers are leached from the sorbent at rates proportional to fluid flux.

After a specified period of exposure to groundwater flow, the flux meter is removed from the well or boring. Next, the sorbent is carefully extracted to quantify the mass of all contaminants intercepted by the flux meter and the residual masses of all resident tracers. The contaminants masses are used to calculate cumulative and time-averaged contaminant mass fluxes, while residual resident tracer masses are used to calculate cumulative or time- average fluid flux. Depth variations of both water and contaminant fluxes can be measured in an aquifer from a single flux meter by vertically segmenting the exposed sorbent packing, and analyzing for resident tracers and contaminants. Thus, at any specific well depth, an extraction from the locally exposed sorbent yields the mass of resident tracer remaining and the mass of contaminant intercepted. Note that multiple tracers with a range of partitioning coefficients are used to determine variability in groundwater flow with depth that could range over orders of magnitude. This data is used to estimate local cumulative water and contaminant fluxes.

Figure 1-1. Schematic of a Flux meter comprised of a permeable sock filled with a selected sorbent.

1.2. Assembly of PFMs

The passive flux meters are constructed in a pipe having the same diameter as the well screen. The exception is for stainless steel well screen nylon for which a mesh material is added. In this case the pipe used for construction should be slightly (0.1 inch) smaller diameter than the well screen. The pipe length is 5 feet.

Prior to packing the PFMs with AC or AC with resin, the sock is attached to the center tube of the PFM. The center tube for 2-inch wells consists of 1/2 inch CPVP pipe cut to 5 feet lengths. The bottom of the sock is clamped to the CPVC pipe using a SS worm drive clam (pipe band clamp). The sock and tube are then placed in the packing pipe. AC (or resin) is transferred into the PFM sock. After adding the required amount of AC or AC with resin up to the desired sampling interval, a thin viton washer is placed. This process is continued until completing. At the top of the PFM a thick viton washer is added followed by a sponge cut to the same size as the viton washer. The sponge is used to minimize AC loss from the top of the PFM. At this point the top of the sock is attached to the retrieval collar with a wire loop on which PFM retrieval rope is attached using a carabineer connector. During this period, an initial AC sample is collected and placed in a 40ml vial.

1.3. PFM Storage

If the PFMs are constructed for transport to the field site, the PFMs will be stored in tubes and cooled. PFM storage tubes are constructed using PVC pipe the same diameter as the packing tube. The PFM is then extruded from the packing tube into the storage tube. A section of threaded rod or PVC pipe is used to push the PFM out of the packing tube and into the storage tube. The top of the storage tube is then sealed using gas tight mechanical plugs. The PFMs are then placed in cooled environment, under air conditioner or storage (4 °C), until transport.

1.4. PFM Transport

The PFMs are transported in cardboard boxes to the site.

2.0. PFM Deployment

2.1. PFM Insertion

At the field site the PFM in the transport tube is prepared for PFM insertion into the well casing. A rope is attached to the top of the PFM using a safety carabineer connector. The tube is lined up with the top of the well casing and section of push rod (or by hand) is used to push the PFM from the tube into the top section of well casing. Once the PFM is placed on the top of well and insert the tip of weight into the PVC center tube of PFM. Then lower the PFM with a weight to the

bottom of the well. Another option could be pushing PFM into position in the well using Geoprobe rods while holding retrieval rope. If multiple PFMs are deployed on a single line, short sections of cable (about 5.2ft long) are thread through the upper PFM to link the PFMs together well. When inserting the PFM some back pressure may build since the water in the well casing must flow through the center tube as the PFM is inserted. Proceed slowly as pressure builds. The weight should be retrieved back when done and used for next PFM installation. The PFM retrieval rope is then secured to the well lid using cable ties or others to ensure that it will not be lost to the well head.

2.2. PFM Retrieval

PFMs are retrieved using the rope. The top PFM in the well is extracted first by gently pulling up on the rope (heavy work gloves should be worn when pull on rope). The PFM should be pulled to the top of the well casing. The PFM will occasionally catch on joints in the well screen. Simply apply more pressure to overcome. If the PFM will not move look at troubleshooting options below. When the PFM is at the top of the well casing untangle any rope (or wires) that are twisted at the well head. Thread the retrieval cable through a 5ft transport PVC pipe and place the pipe over the well to guide and contain the extruded PFM. Move the PFM to the sampling work station.

2.3. PFM Sampling

A tarpaulin acts as a 'protective flooring' for the work zone. A portable table is used as a work zone for sampling the PFMs. Nitrile protective gloves and necessary other protective clothing will be worn by all samplers. A lined bucket (5gal) is placed under the work area to capture un-sampled residual activated carbon from the retrieved PFM. The sock is extruded from the PVC pipe to the sampling interval extent. The flexible mesh packing material is cut and the sorbent (activated carbon or resin) captured in plastic or stainless steel mixing bowls for homogenization using a stainless steel spatula. A sub-sample is then transferred into 120 mL jars for GAC (or HDPE bottles for resin). The jars (or HDPE bottles) are stored in a cooler for transport back to the laboratory for analysis. The center tube and viton washers are measured to obtain the sample interval lengths in the PFM. Sampling materials, spatula, scissors, mixing bowls are wiped clean to remove carbon particles prior to retrieving the next PFM.

2.4. Transportation and Storage of PFM samples: Sorbent (GAC or GAC/resin) samples are stored on-site in coolers then shipped via overnight air express (e.g., FedEx) to the EnviroFlux laboratory. Samples are stored in a cold storage room or refrigerator at 4°C until extraction and analysis.

2.5. Troubleshooting PFM extraction

In the event that the PFM is difficult to remove from the well the following steps might be considered. If available, use metal rods or pvc pipes, push down to move the PFM below the obstruction. In this case it is useful to attach a viton 2 inch (or other size) washer at the end of the push rod to center the rod in the well. Holding both the retrieval wire and the push rod, surge the PFM up and down to attempt to overcome the obstacle.

In the event that the wire breaks or becomes detached from the PFM, a corkscrew attachment can be added to the rod to attempt to "grab" the top of the PFM and advance it upwards. If this fails the corkscrew can be used to dig into the AC and viton washers again in an attempt to "grab" the PFM. Finally, a pump with tubing lowered to the top of the PFM can be used to extract the AC. This slow process obviously destroys the PFM, but can be successful in clearing the well.

3. Standard operating procedure for extraction and analysis of analytes from passive flux meter sorbents

3.1. Scope and application

3.1.1. This SOP describes the sample procedures used by EnviroFlux LLC., for extraction and analysis of target analytes (including tracers) from sorbents used in Passive flux meter (PFM) inserted in monitoring wells.

3.1.2. The Passive flux meter (PFM) contains a permeable sorbent (GAC or GAC with resin) which allows groundwater flow through the device. The sorbent matrix should be preloaded with five resident tracers. The tracers are displaced from the sorbent at rates proportional to groundwater flux. Simultaneously the sorbent retains dissolved contaminants such as TCE in the GW flowing through PFM. After a 2-3 weeks period of exposure to GW, the PFMs are removed from the well. The sorbent (GAC) samples from the PFM are sub-sampled into a 125ml of glass jars and the resin samples are transferred into 120 mL HDPE (or PP) bottles in the field and transferred to the EF lab or the client's lab for analysis. The sorbent is then extracted to quantify the residual masses of all resident tracers and contaminants. The extracted samples are analyzed for Darcy and contaminants fluxes.

3.1.3. The selected constituents should be target field contaminants and alcohol tracers: The alcohol tracers are methanol, ethanol, iso-propanol, t-butanol, and 2,4-dimethyl-3-pentanol and the contaminants could be CVOCs, semi-VOCs, PFAS, pesticides, PAH, metals, nutrients, others.

3.1.4. The method involves liquid extraction in 40 ml VOA vials using liquid solvents or others.

3.2. Purpose

The purpose of this SOP is to: (1) insure reliable and reproducible results, and (2) track possible sources of error in the extraction of alcohol tracers and contaminants from the PFM sorbents and the subsequent analysis by analytical methodology.

3.3. Procedures

3.3.1. Transportation and Sample Process

Transportation and Storage: The field samples should be shipped to the Enviroflux laboratory packed in coolers containing "blue ice or ice" via overnight air express (e.g., FedEx) and stored in the refrigerator.

Sample Process: As received the PFM samples from the field site should be extracted to quantify the residual masses of all resident tracers and contaminants. If not, the PFM samples should be stored in a refrigerator at 4C, until extraction/analysis, but no more than 1 week. 40 ml VOA vials are used for AC sampling. The vials are weighed empty (nearest 0.01 g) and recorded. A few grams of PFM sorbent samples from 125 ml sample jars should be subsampled into the pre-weighed 40-ml VOA vials. Following addition of AC, the vials are weighed. The vials weights are then recorded. The vials are then filled with extraction solvent using a fixed volume dispenser and sealed. Then the sample vials will be rotated, set at 20% rotation speed, for about 24 hours on a rotator (Glas-Col model RD 4512) and then refrigerated for several hours to allow suspended particulate matter to settle out.

3.3.2. Sub-sampling

When the suspended particle completely settled out, the supernatant should be taken into two separate 2-ml GC vials, one for alcohol tracer analysis and another for contaminants. Note that if the suspended particulate matter does not settle out, a syringe filter (0.22 micron) should be used to remove the suspended GAC or resin particles from the samples to protect analysis instruments. Then PFM samples will be sub-sampled into 2 ml GC vials. Pipets will be used to transfer samples from 40-mL sample vials to the 2-mL GC vials.

3.3.3. Chemicals and Laboratory Supplies and Materials

Certified ACS grade pure alcohols and solvent should be purchased from one or more of the following vendors; Fisher Scientific, VWR and/or Sigma-Aldrich and used as received. Alcohol tracers (methanol, ethanol, iso-propanol, tert-butanol, 2,4-dimethyl-3-pentanol) and extraction solvents are purchased from Sigma-Aldrich, all with purities >98%.

Volumetric class 'A' pipettes and volumetric class 'A' flasks for preparation of calibration standards and sample dilutions. Disposable Pasteur glass pipettes for sub-sampling. GC vials (2 mL) with Teflon-faced caps for GC analysis.

3.3.4. Calibration and Stock Standard Solutions

Contaminant stock standard solutions are purchased from Restek or Sigma Aldrich. If needed, individual alcohol tracer and some contaminant stock standard solutions are prepared in reagent solvent using volumetric glassware and stored in 20 or 40mL glass vials with Teflon-lined caps. Stock solutions should be kept in a refrigerator at 40 C. Fresh stock standards should be prepared every six months and follow protocols outlined in the Federal Register, Rules and Regulations, "Standard Stock Solutions".

Mixed calibration standards should be prepared by diluting stock standards in reagent solvent using volumetric glassware. A minimum of four standards should be prepared and should bracket the expected concentration range.

3.3.5. Quality Control (QC) Blank Spike/Matrix Spike

A blank spike should be prepared by the addition of 1 mL of calibration standard to 1mL of extraction solvent. A matrix spike should be prepared by the addition of 1mL of calibration standard to 1 mL of extracted sample. Spike recoveries should be calculated using the difference between the two measured concentrations and the known spike concentration.

3.3.6. Analytical Instrumentation

A Shimadzu GC/MS-QP2010 SE and Perkin Elmer Clarus 590 Gas Chromatograph equipped with FID and ECD detectors, autosampler, a temperature-programmable oven, heated autoinjector and detector zones, a 30 meter or greater capillary separations column, nitrogen carrier gas, standard compressed air and hydrogen flame gases and controlled by a PC-based data acquisition/analysis software system.

3.3.7. Sample Analysis

All analyses should be performed consistent with the quality assurance program of Enviroflux. Individual alcohol tracer and contaminant identification should be based on absolute retention times compared to calibration standards. Alcohol tracer and contaminant concentrations should be calculated on chromatographic peak area response converted to units of concentration in ug/L or mg/L based on standard calibration curves.

3.3.8. Interferences

Contamination by carry-over may occur when high-level and low-level samples are sequentially analyzed. Subsequent dilution and reanalysis should be completed on samples identified as outside the standard concentration bracket. Samples analyzed immediately following a 'high-concentration sample' should be reanalyzed. In an attempt to minimize carryover, samples suspected of being in a higher concentration range should be isolated and bracketed by the analysis of reagent solvent samples.

3.3.9 Safety

Gloves and eye protection will be worn during all extraction activities. The Materials Safety Data Sheets (MSDS) will be kept in the lab for information on toxicity, flammability, and other hazard data.

4.0. Quality Assurance Project Plan

4.1. Purpose and Scope of the Plan

This Quality Assurance plan focuses on field installation, sampling and processing of data from the Flux Meters.

4.2. Quality Assurance Responsibilities

The responsibility for QA should be by the Lab Manager/Project Manager of EnviroFlux.

4.3. Data Quality Parameters

This section discusses measures to be taken to ensure the representativeness, completeness, comparability, accuracy, and precision of the data.

Accuracy

Accuracy is defined as the closeness of the results to the true value.

The percent recoveries of surrogates, QC check standards, and matrix-spiked analytes are used to evaluate the accuracy of an analysis. The percent recovery represented by X can be calculated using the following equations:

For surrogates and QC check standards:

$$X = \frac{SSR}{SA} \times 100$$

For matrix spikes:

$$X = \frac{SSR - SS}{SA} \ge 100$$

where:

SSR = Spiked sample result SS = Sample result SA = Spike added from spiking mix

The mean percent recovery (X) is defined by:

$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{N}$$

where:

 X_i = The percent recovery value of a spike replicate N = Number of spikes

Precision

Precision is a measure of the mutual agreement among individual measurements of the same parameters under prescribed similar conditions.

The analytical precision is determined using results from duplicate or replicate analyses of samples and from matrix spike results for a given matrix. The Relative Percent Difference (RPD) is used to evaluate the precision of duplicate analyses. Relative Percent Difference is defined in the following equation:

$$\% RPD = \frac{2(XI - X2)}{\overline{x}} \times 100$$
 3

X1 = First duplicate value X2 = Second duplicate value

When replicate analyses are performed, precision is measured in terms of the Standard Deviation (SD) which is defined in the following equation:

$$S = \sum_{i=1}^{N} \left[\frac{\left(X_{i} - \overline{X}\right)^{2}}{N - I} \right]^{\%}$$

$$4$$

where:

Completeness

Completeness is defined as the percent of parameters falling within acceptance criteria and the results subsequently reported. A goal of 95 percent completeness has been set for all samples.

The general requirement of this quality assurance program is to analyze a sufficient number of standards, replicates, blanks, and spike samples to evaluate results adequately against numerical QA objectives.

4.4. Calibration Procedures, Quality Control Checks, and Corrective Action

The focus of the following section is to describe initial and continuing calibration procedures for analytical instrumentation, duplicate and control testing and data reduction, validation, and reporting.

Supplies and Quality Control Materials

All supplies (i.e., glassware, chemicals, reagents) used will be of the best possible quality to ensure proper instrument calibration and avoid contamination. All reagents used are prepared from Analytical Reagent Grade (AR) chemicals or higher purity grades, unless such purity is not available. The preparation of all reagents will be documented, including source, mass, and dilutions. Each reagent will be clearly labeled with the composition, concentration, date prepared, initials of preparer, expiration date, and special storage requirements, if any.

Reagents

Reagent solutions are stored in appropriate glass, plastic, or metal containers. Reagents are stored under conditions designed to maintain their integrity (refrigerated, dark, etc.). Shelf life is listed on the label and the reagent is discarded after it has expired. Dry reagents such as sodium sulfate, silica gel, alumina, and glass wool are either muffled at 400°C or extracted with solvent before use for organic chemical analyses. Water used in the laboratory is glass distilled or deionized, and periodically checked for purity. In addition, water used in the organics area is carbon-filtered or purchased as HPLC grade. All organic solvents used are either glass-distilled or pesticide grade. Solvents and reagent solutions are checked for contamination by employing reagent blanks, before use in any analysis.

Quality Control Reference Materials

All Quality Control Reference Materials are acquired only from authorized vendors or sources commonly used by U.S. EPA Regional Laboratories.

Standards Traceability

When standard reference materials arrive at the laboratory, they are registered in a bound log book, "Standards Notebook for Neat Materials and Primary Solutions." An example of a logging sequence is used to illustrate this process.

(1-S-XXX-12-4) (label and log sequence)

where:

1	=	Notebook log number
S	=	Standard Notebook"Neat and Primary Standards"
XXX		= Receiving analyst's initials
12	=	Notebook page

4 = Entry number on notebook page

All working standards prepared at the site lab are logged in the "Standards Notebook for Intermediate and Working Standards." A similar labeling convention has been adopted for classifying these working standard materials. An example is given below.

1-W-XXX-6-5 (label and log)

Where:

- 1 =Number of notebook
- W = Standards notebook "Intermediate and Working" Standard

XXX = Analyst's initial

6 = Page Number

5 = Page entry number in sequence

Instrument Calibration

Every instrument used to analyze samples must pass the calibration criteria established in the appropriate SOP. Initial calibration criteria for instrument linearity, sensitivity, resolution, and deactivation must be met before samples can be analyzed. Sustained performance is monitored periodically during sample analyses by the use of continuing calibration check standards.

GC Section

Initial Calibration

The linear calibration range of the instrument must be determined before the analysis of any samples. Gas chromatographic conditions used for sample analyses are used during calibration.

The calibration is performed in accordance with the SOP derived from the methods used. For most GC analyses, a 5-level calibration is run. The concentrations of the standards must bracket the linear range of the instrument. Calibration using fewer than 5-levels is done only when specifically allowed by the method.

Relative Retention Times and Relative Response Factors

Instrument calibration and sample analysis must be performed using appropriate internal standards to establish relative retention times (RRT) and relative response factors (RRF) where required. Internal standards appearing in a chromatogram will establish primary search windows for those target compounds nearby in the chromatogram. RRT are calculated using this equation:

$$RRT = \frac{RT^{target}}{RT^{is}}$$
5

The RRF may be calculated as follows:

Absolute Response Factor = RF = AreaAmount

Note: <u>Amount</u> in this equation refers to the mass (e.g. ug) of compound mixed into the solution injected.

Each calibration standard is analyzed and the RRF is calculated for each analyte according to the following equation:

$$RRF = \frac{A_s \times C_{is}}{A_{is} \times C_s}$$

$$A_s = Area of analyte$$

$$A_{is} = Area of internal standard$$

$$C_{is} = Concentration of internal standard$$

$$C_s = Concentration of analyte$$

Note: Certain data processors may calculate the RRF differently.

The standard deviation (SD) and the % coefficient of variation (CV) of RRFs for the compounds are calculated using the following equations:

$$S = \sum_{i=I}^{N} \left[\frac{\left(RRF_{i} - RRF_{m} \right)^{2}}{N - I} \right]^{\infty}$$
 7

Where:

RRFi	=	Individual RRF
RRF_m	=	Mean RRF
Ν	=	Number of RRFs

and

$$\% CV = \frac{S \times 100}{RRF_m}$$
8

Coefficient of Variation

The %CV of each compound must be less than 30 percent. This criterion must be achieved for the calibration to be valid.

If the %CV is less than 20 percent, the RRF of the compound can be assumed to be invariant, and the average RRF can be used for calculations.

If the %CV is between 20 percent and 30 percent, calculations must be made from the calibration curve. Both the slope and the intercept of the curve must be used to perform calculations.

Initial Calibration Verification

The calibration curve must be validated further by analyzing a QC check sample. The QC check sample must be obtained from EPA, another vendor, or it must be from another lot number. The QC check sample verifies the validity of the concentrations of the standards used to obtain the initial calibration.

All analytes in the QC check standard must be recovered within 80 to 100 percent. If any analyte exceeds this criterion, then a new calibration curve must be established. All sample results for a target analyte can be reported only from valid initial calibrations.

Continuing Calibration

The working calibration curve or RRF for each analyte must be verified daily by the analysis of a continuing calibration standard. The ongoing daily continuing calibration must be compared to the initial calibration curve to verify that the operation of the measurement system is in control.

The continuing calibration check must be performed during each day of analysis to verify the continuing calibration of the instrument. A day is defined as 24 hours from the start run time of the last valid continuing calibration. Generally, a continuing calibration check sample is injected every 10 samples.

Verification of continuing calibration is performed by the analysis of a midpoint standard containing all of the analytes of interest. Verification of continuing calibration of the measurement system is done by calculating the percent difference (%D) of the continuing calibration RRF from the mean RRF from the initial calibration curve using the following equation:

$$\%D = \frac{(RRF_m - RRF) \times 100}{RRF_m} \qquad 9$$

where:

 $RRF_m =$ The mean relative response factor from the initial calibration curve

RRF = The relative response factor from the continuing calibration standard

The %D must meet the acceptance criteria established in the appropriate SOP. If these criteria are exceeded, a new calibration curve must be established.

Other Calibrations

Weekly calibrations are performed for equipment such as balances, thermometers, pH meter that are required in analytical methods, but which are not recorded in a dedicated QA instrument log.

Balances

Balances are checked with Class S weights on a daily basis. Before a weighing session, the analyst is required to perform at least one calibration check in the range of the material to be weighed. This value is also recorded on the specific balance control chart and must be within the control limit. The criteria for calibration checks are given in Table 4.1.

Table 4-1.

Analytical]	Balances	
Class S Weight	Warning Level	Control Level
(grams)	(grams)	(grams)
0.0100	0.0098-0.0102	0.0097-0.0103
0.1000	0.098-0.102	0.097-0.103
1.000	0.995-1.005	0.990-1.010
10.000	9.995-10.005	9.990-10.010
50.00	49.98-50.02	49.95-50.05
Top Loadi	ing Balances	
1.00	0.95-1.05	0.90-1.10
10.0	9.9-10.1	9.8-10.2
50.0	49.7-50.3	49.5-50.5

CRITERIA FOR BALANCE CALIBRATION CHECKS

pH meters

The pH meter is standardized daily using buffers at pH of 4, 7, and 10.

Refrigerators

Refrigerators are maintained at 4°C, with control levels ranging from 1°C to 10°C. A temperature reading is taken each workday morning immediately after unlocking the refrigerator.

The temperature reading is recorded and entered on the control chart posted on the door of the refrigerator. If a trend is apparent or if the temperature is outside the acceptable range, the Lab Manager is notified so that corrective action can be initiated if required.

Freezers

Freezers are maintained at -10°C, with control levels ranging from 0°C to -35°C. A temperature reading is taken each workday morning immediately after unlocking the freezer. The temperature reading is recorded and entered on the control chart posted on the door of the freezer. If a trend is apparent, or if the temperature is outside the acceptable range, the Lab Manager is notified so that corrective action can be initiated if required.

Calibration Standards

All calibration standards, including internal standards, are obtained from chemical suppliers with certificates of high purity and concentration.

Traceability

All standards are traceable to the National Institue of Standards and Testing (NITS) Standard Reference Materials (SRM) or to the U.S. EPA Reference Standards.

Working Standards

The commercial standards are used as stock standards. Working standards are made from the stock standards at appropriate concentrations to cover the linear range of the calibration curve. The working standards are used for initial calibration curves, continuing calibration checks, and preparation of analyte spiking solutions as appropriate for a particular analysis. All stock and working solutions are uniquely identified, dated, labeled, and initialed.

Standards Logbook

All stock solutions are given a unique code number and are entered into a bound "Primary Standards" logbook. The name of the compound and other pertinent information, including concentration, date of receipt, and analyst's name, are also entered.

Working standards are given a unique code number that allows them to be traced to a specific stock solution. The working standard is entered in a "Working Standards" logbook with analyst's name, date and method of preparation, and other pertinent information.

CORRECTIVE ACTIONS

Laboratory Imposed

Corrective actions will be initiated if the quality control criteria indicate an analysis is out of control.

- Check calculations for accuracy
- Check instrumentation to ensure it is operating properly. Recalibrate if necessary.
- Remake standards and reagents and reanalyze samples.
- Re-prep and re-analyze samples.

The analyst is responsible for initiating corrective actions for analytical problems encountered during analysis of samples. Most problems which occur and are corrected during the analytical run will be explained in the run log or analytical bench sheet for that run. A corrective action report (CAR) may be necessary for some problems encountered, such as complete system failure, chronic calibration failure, or severe matrix interferences.

During data review, the reviewer may initiate corrective actions based on problems or questions arising from the review. A CAR will be initiated.

The Laboratory Manager may initiate corrective actions if a problem is noticed during a QC review of data, a system audit, or a performance audit. A CAR will be initiated.

CARs are signed and dated by Project Manager, and by the Laboratory Manager. CARs will be filed in appropriate department files and in the Lab Manger's files.

Agency Imposed

Any actions deemed necessary by regulatory agencies, such as EPA, will be taken. These actions are most likely to arise from a systems or performance audit, or from data review conducted by the agency.

Corrective Action Reports

The laboratory will have a Corrective Action System that ensures the proper documentation and dispositions of conditions requiring corrective action. The system will also ensure that the proper corrective action is implemented to prevent recurrence of the condition.

Situations Requiring Corrective Action Reports

The Corrective Action System applies to all situations that affect data quality. These situations include, but are not limited to, quality control criteria being exceeded, statistically out-of-control events, deviations from normally expected results, suspect data, deviations from the standard operating procedure, and special sample handling requirements. Corrective actions may also be initiated as a result of other QA activities, such as performance audits, systems audits, laboratory/interfield comparison studies, and QA project-related requirements of certifying agencies such as EPA.

Corrective Action Procedures

The procedure requires documenting the condition requiring corrective action on a Corrective Action Report and implementing corrective action based on the results of the investigation performed to determine the cause of the condition (Table 4-1 and 4-2).

When a condition requiring corrective action arises, the Corrective Action Report is initiated. The initiator describes the condition requiring corrective action. An investigation, if necessary, is conducted to determine the cause of the condition. A corrective action is recommended based on the results of the investigation. The Corrective Action Report is reviewed by the Project Manager and the Lab Manager who either approve the recommended corrective action or indicate a different corrective action. The originator has the responsibility of following up to be sure that the corrective action is implemented. Implementation of the corrective action is documented by the Corrective Action Report being signed and dated by the person who implemented the corrective action.

Table 4-1. Corrective Actions					
QC Activity	Acceptance Criteria	Recommended Corrective Action			
Initial instrument blank	Instrument response <mdl response<="" td=""><td>Prepare another blank, if same response, determine cause of contamination: reagents, environment, instrument equipment failure, etc.</td></mdl>	Prepare another blank, if same response, determine cause of contamination: reagents, environment, instrument equipment failure, etc.			
Initial calibration standards	Coefficient of variation >0.99995 or standard concentration value <u>+</u> 10% of expected value	Reanalyze standards. If still unacceptable, then remake standards			
QC Check Standard	\pm 10% of expected value	Reanalyze standard. if still unacceptable, then remake standards, or use new primary standards if necessary			
Continuing calibration Standards	\pm of expected value	Reanalyze standard. If still unacceptable, then recalibrate and rerun samples from the last cc stnd. Check			
Method blank	<mdl< td=""><td>Reanalyze blank. If still positive, determine source of contamination. If necessary, reprocess (i.e., digest or extract) sample set</td></mdl<>	Reanalyze blank. If still positive, determine source of contamination. If necessary, reprocess (i.e., digest or extract) sample set			
Initial calibration Standards (GC/MS)	RRF <30%	Reanalyze standards. If still unacceptable, prepare new standards.			

Surrogate recovery (GC/MS Semivolatiles)	0 or 1 outside CLP criteria	Re-extract and/or re-analyze
Surrogate recovery (GC/MS volatiles)	0 outside criteria	Re-analyze

Table 4-2. Corrective Action Report Criteria for Control Charts				
Criteria	Corrective Action			
A point outside ± 3	Attempt to determine the source of the problem. Verbally			
standard deviations	report the deviation and results of preliminary investigation			
	to the Field Site Manager, who will decide jointly what			
	action to take. After implementing corrective action,			
	complete the Corrective Action Report and submit it to the			
	Project Manager and the Field Site Manager for approval.			
Three consecutive points	Conduct investigation. Check accuracy of data input,			
accuracy outside <u>+</u>	calculations, instrument, standards, etc., to locate the source			
standard deviation	of the problem. Document results in a Corrective Action			
	Report. Have the report approved by the supervisor. No			
	results can be reported until the Corrective Action Report			
	has been approved. Send a copy of the Corrective Action			
	Report and a copy of the QC chart to the Field Site Manager.			
Obvious outlier.	Conduct investigation. Check accuracy of data input,			
	calculations, dilutions, instrument, standard, etc present			
	initial findings to the Field Site Manager. They will jointly			
	decide what actions need to be taken. Document the results			
	in a Corrective Action Report and have it approved by the			
	Field Site Manager. No results can be reported until the			
	Corrective Action Report is approved. Send a copy of the			
	Corrective Action report and a copy of the control chart to $1 - \Gamma^2$			
	the Field Site Manager.			
Obvious shift in the mean.	Conduct investigation. Check calculations, data entry,			
	standards, instrument, calibrations, etc. Document results in			
	a Corrective Action Report. Have the Corrective Action			
	Report approved by the Field Site Manager. No results can			
	Corrective Action Perpert and a convert the OC short to the			
	Field Site Manager			
	rielu She Manager.			

4.5. Demonstration Procedures

Maintenance Schedule

Preventive maintenance, such as lubrication, source cleaning, and detector cleaning, is performed according to the procedures delineated in the manufacturer's instrument manuals.

The frequency of preventive maintenance varies with different instruments. Routine maintenance performed includes cleaning and/or replacement of various instrument components.

In general, the frequency recommended by the manufacturer is followed. In addition to the regular schedule, maintenance is performed as needed. Precision and accuracy data are examined for trends and excursions beyond control limits to determine evidence of instrument malfunction. Maintenance is performed when an instrument begins to degrade as evidenced by the degradation of peak resolution, shift in calibration curves, decreased ion sensitivity, or failure to meet one or another of the quality control criteria. GC injector septa is changed every 100 to 150 injections, or sooner if instrument performance deteriorates. Injection port glass liner is cleaned or changed after 100 to 150 injections or sooner if instrument performance deteriorated. A method blank is analyzed at the beginning of each sample set and after every 20 samples to monitor instrument background.

Instrument maintenance logbooks are maintained in the laboratory at all times. The logbook contains a complete history of past maintenance, both routine and nonroutine. The nature of work performed, the date, and the signature of the person who performed the work are recorded in the logbook. Preventive maintenance is scheduled according to each manufacturer's recommendation. Instrument downtime is minimized by keeping adequate supplies of all expendable items on hand. Expendable items are those with an expected lifetime of less than one year. Routine instrument preventive maintenance is handled by the instrument operator. Repair maintenance is performed by a full-time electronics technician, or by the manufacturer's service personnel.

4.6. Calculation of Data Quality Indicators

The focus of this section is to present methods of calculating data quality that will be used for this project.

Control Samples

The laboratory will employ control samples to assess the validity of the analytical results of the field samples. Determination of the validity of field sample results is based on the acceptance criteria being met by the control sample. The acceptance criteria for each type of control sample are delineated in the appropriate SOP. These acceptance criteria are based on the laboratory's statistical process capabilities determined from historical data, and meet the EPA CLP acceptance criteria as a minimum. Often, in-house criteria are more stringent than required by CLP. The control samples are analyzed in the same manner as the field samples. They are interspersed with the field samples at frequencies that are specified by the appropriate SOP.

Method Blank Analyses

A method blank is a "clean" sample (i.e., containing no analyte of concern), most often deionized water, to which all reagents are added and analytical procedures are performed. Method blanks are analyzed at a rate of one per sample lot or at least every 20 samples. The blank is analyzed in order to assess possible contamination from the laboratory or the procedure. If the analyte of interest is found in the blank at above reporting levels, inorganic analysis is suspended until the source of contamination is found and corrective action is taken. The Laboratory Manager is notified when blank results are unacceptably high, and may assist in the investigation.

Surrogate Spike Analyses

For certain analyses such as those performed by GC/MS, each sample and blank is spiked with one or more surrogate compounds before preparatory operations such as purging or extraction. These surrogate standards are chosen for properties similar to sample analytes of interest, but are usually absent from the natural sample.

Surrogate spikes evaluate the efficiency of the analytical procedure in recovering the true amount of a known compound.

The results of surrogate standard determinations are compared with the true values spiked into the sample matrix prior to extraction and analysis, and the percent recoveries of the surrogate standards are determined. Recoveries should meet the upper and lower control limits as specified for each compound. If control limits are exceeded for surrogate standards, the following sequence of actions is taken:

a. The sample is re-injected.

b. Raw data and calculations are checked for errors.

c. Internal standards and surrogate spiking solutions are checked for degradation, contamination, or solvent evaporation.

d. Instrument performance is checked.

e. If a, b, and c fail to reveal the cause of the noncompliance surrogate recoveries, the sample is re-purged or re-extracted.

f. If all the measures listed above fail to correct the problem for laboratory blank surrogate analyses, the analytical system is considered out of control, and the instrument must be recalibrated and examined for mechanical faults.

g. If all the measures listed above fail to correct the problem for field sample surrogate analyses, the deficiency probably is due to sample interferences, and not due to any procedural or

mechanical problems in the laboratory. The surrogate spike recovery data and the sample data from both extractions are reported and are flagged. The Laboratory Manager is notified with an exceptions report and the corrective actions taken.

Matrix Spike/Matrix Spike Duplicate Analyses

To evaluate the effect of the sample matrix on the analytical methodology, two separate aliquot samples may be spiked with a standard mix of compounds appropriate to a given analysis. The matrix spike and the matrix spike duplicate (MS/MSD) are analyzed at a frequency of one per lot or one per 20 samples, whichever is more frequent. The percent recovery for each of the spiking compounds is calculated. The relative percent difference (RPD) between the MS/MSD is also calculated.

The observed percent recoveries (%R) and relative percent differences (RPD) between the MS/MSD are used to determine the accuracy and the precision of the analytical method for the sample matrix. If the percent recovery and RPD results exceed the control limits as specified for each spiking compound, the sample is not reanalyzed. Poor recovery in matrix spiked samples does not necessarily represent an analytical system out of control. It is possible that unavoidable interferences and matrix effects from the sample itself preclude efficient recoveries. The poor recovery is documented for the Lab Manager.

Internal Standards Analysis

Once an instrument has been calibrated, it is necessary to confirm periodically that the analytical system remains in calibration. The continuing calibration and precision of the organics analytical system are checked for each sample analysis by monitoring the instrument response to internal standards. When internal standard addition is not appropriate to a particular method, other means of accuracy checks, such as standard addition, are used. Results from internal standard analyses are compared to the mean calibrated value. Deviation from this mean beyond a predetermined magnitude, depending on the type of analysis, defines an out-of-control condition. The system must then be brought back into control by:

- Checking the quality of the internal standards and reanalyzing the sample
- Recalibrating the system
- Correcting the malfunctions causing the instrument to fall out of calibration

Duplicate Sample Analyses

Duplicate analyses are performed for cations analyses and upon special request for selected other parameters to evaluate the reproducibility of the method. Results of the duplicate analyses are

used to determine the RPD between replicate samples. For each parameter analyzed, at least one duplicate sample is run per group of 20 samples.

The precision value, RPD, is reviewed by the section supervisor and the division manager. If the precision value exceeds the control limit or the established protocol criteria for the given parameter, the sample set is reanalyzed for the parameter in question unless it is determined that heterogeneity of the sample has caused the high RPD.

QC Check Standard Analyses

Analysis of QC check standards is used to verify the preparation process or the standard curve, and is performed with each group of samples. Results of these data are summarized, evaluated, and presented to the section supervisor and the division manager for review.

The results of the QC check standard analysis are compared with the true values, and the percent recovery of the check standard is calculated. If correction of a procedure or instrument repair is done, the check standard is reanalyzed to demonstrate that the corrective action has been successful.

At least twice a year, a QC check standard for each parameter group is analyzed as a doubleblind sample. Samples are prepared, submitted, and evaluated by the Laboratory Manager.

Other Quality Control Samples

Under some sampling analysis, additional quality control samples may be required. These may include:

a. **Blank/Spike--**Analyte of interest or surrogate is spiked into blank water rather than into a sample. The blank/spike goes through the entire analytical procedure, and percent recovery is calculated with no likelihood of matrix effect. For many contracts, an externally provided LCS sample (EPA) serves as a blank/spike sample.

b. **Trip Blank--**A sample bottle filled with laboratory blank water travels with the sample kit to the sampling site, and is sent back to the laboratory packed in the same container as any volatile samples collected. Trip blank analyses check for possible volatile contamination during shipping or sampling.

c. **Field Blank--**A field blank can be a sample container filled with laboratory blank water and sent to the sampling site, or it may be filled at the site with purchased distilled water or decontamination water. The field blank analysis checks for possible contamination by the sampling team.

d. **Equipment Rinsates--**After equipment has been cleaned in the field, many contracts require that the equipment be rinsed and the rinsate analyzed for the same parameters requested

on the samples. The rinsate analysis proves the equipment has been cleaned properly and will not contaminate the next samples taken. **Instrument Detection Limits, Method Detection Limits, and Reporting Limits**

Instrument Detection Limits (IDL)

Instrument Detection Limit (IDL) studies are performed for inorganic parameters when an instrument is installed, when major maintenance or repair work has been done, and routinely once per calendar quarter.

To determine IDL, seven consecutive measurements per day are made on a prepared standard solution (in reagent water) of an analyte at a concentration 3 to 5 times the instrument manufacturer's suggested IDL. Each measurement is performed as though it were a separate analytical sample. This procedure is repeated on three nonconsecutive days. The standard deviation is calculated for each set of seven replicates and the average of the standard deviations is obtained. This average is multiplied by 3 to give the instrument detection limit (IDL).

Method Detection Limits (MDL)

The Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the value is above zero. The sample must be carried through the entire method under ideal conditions. MDL is determined according to the method outlined in 40 CFR 136, Appendix B. MDLs are determined at least annually for all parameters. MDL studies are also conducted for new methods introduced in the lab, after major maintenance or modification to an instrument, and as part of the training of new analysts.

To determine MDL, seven replicate analyses are made of analytes spiked into blank water at 1 to 5 times the estimated method detection limit. The spiked samples must be carried through the entire analytical procedure, including any extraction, digestion, or distillation process, for MDL calculation. The SD of these replicates is calculated. Where:t = The student t value for a 99% confidence interval

 $MDL = t \ x \ S$ 10

S = Standard deviation of the replicate analyses

Reporting Limits

In most cases, final report forms list reporting limits rather than either IDL or MDL. Reporting limits are taken from EPA SW846 published limits or from historical data. Matrixes or analyte concentrations which require dilution will change the detection limits for that sample.

4.7. Performance and System Audits
In this section information is provided on performance audits.

Performance Evaluation Samples

Performance evaluation samples are analyzed throughout the project for all parameters, as a constant check on accuracy and precision for all analyses.

Audits

Internal audits of the laboratory are conducted in two phases. The first phase is conducted by the Laboratory Quality Assurance Coordinator during the fourth quarter of the year. This is usually a 2-day systems audit which covers all sections of the laboratory. An audit report is issued within 2 weeks of completion. The Lab Manager has the responsibility for coordinating all responses to the audit finding and for following up on the required corrective action. A followup audit is made when deemed necessary by the Lab Manager.

The second phase consists of quarterly audits performed by the Lab Manager. These are half-day or day-long audits, and are concentrated on specific areas that are deemed problem areas by the Lab Manager. An audit report is issued at the completion of the audit. Responses and followup corrective action to the audit findings are required, and are monitored by the Field Site Manager.

All audit reports are issued to management and circulated to all staff. Copies are filed with the Laboratory Manager.

4.8. Quality Assurance Reports

The performance of the laboratory as assessed by the quality monitoring systems in place is reported by the Lab Manager to management quarterly and as needed. Copies of all quality reports are maintained in the Laboratory Manager files.

Quality assurance reports to management include, but are not limited to, the following:

- Results of performance and systems audits
- Status of corrective actions
- Periodic assessment of data accuracy, precision, and completeness
- Significant QA problems and recommended solutions

In addition to the quarterly reports, a final report summarizing items covered in the quarterly reports is provided by the Lab Manager to the Project Manager.

4.9. Data Format

Introduction

In order to provide analytical data which is technically sound and defensible, a system of data management will be implemented in the laboratory. All activities which pertain to a sample are documented.

All data generated during the demonstration, except those that are generated by automated data collection systems, will be recorded directly, promptly, and legibly in ink. All data entries will be dated on the day of entry and signed or initialed by the person entering the data. Any change in entries will not obscure the original entry, will indicate the reason for such change, and will be dated and signed or identified at the time of the change.

In automated data collection systems, the individual responsible for direct data input will be identified at the time of data input. Any change in automated data entries will not obscure the original entry. Updated entries will indicate the reason for the change, the date, and the person responsible for making the change.

Data Tracking in the Laboratory

The Lab Manager is responsible for developing a system for tracking and maintaining sample identity between the collection point, analysis and reporting. This process will be periodically reviewed by the Project Manager.

Analyses and Data Reduction

The Lab Manager is responsible for the reduction of raw data when such steps are required to produce the correct data format for reporting. Data reduction may be done manually or through one of a number of computer programs used in the laboratory.

Chromatogram Identification

In the GC section computer software is used to identify chromatograms. A system-supplied file name (a hexadecimal date-time) and a user-supplied file name (related to an entry in the injection log) identify each acquisition.

Data Reduction Formulas

Linear regression formulas are used in a computer software system to calculate samples values for many general inorganic parameters and metals analyses. These programs use the general formula for linear regression:

$$Y' = a + bx 11$$

where:

Y' = The predicted value of y for a selected value of x

a	=	The value of y when $x = 0$
b	=	The slope of the straight line
Х	=	Any value of x selected

Sample values for GC/MS parameters are calculated by systems software using the general formula:

$$\frac{Area_{Target} \ x \ Amount_{IS}}{Area_{IS} \ x \ Response \ Factor}$$
12

GC data is calculated using either an internal or an external standard. For internal standards:

$$Concentration = \left(\frac{A_x^{sample}}{A_x^{standard}}\right) \left(\frac{A_{IS}^{standard}}{A_{IS}^{sample}}\right) \left(amt_x^{standard}\right) \left(\frac{P}{T}\right) \left(\frac{amt_{IS}^{sample}}{Amt_{IS}^{standard}}\right)$$
13

where: P = 1/fraction of extract to which IS is added

For calculations using an external standard:

$$Concentration = \left(\frac{A_x^{sample}}{A_x^{standard}}\right) \left(C_x^{standard}\right) \left(\frac{V}{T}\right)$$
 14

where: C	=	concentration of x in standard
	V	= volume of final extract
	Т	= total sample extracted

4.10. Data Storage and Archiving Procedures.

Data from GC's will be saved and archived in P&E Turbochrom format. All data will be backedup on portable hard disks. This data will be batch processed into an Excel .csv file that can be easily converted to an Excel Worksheet. These files will be backed-up and transferred to individuals responsible for calculating flux results. All data related to the project will be organized for rapid retrieval and transfer to other interested parties.